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Abstract Deep neural networks achieve outstanding results in
perception tasks such as semantic segmentation and monocular
depth estimation, making them indispensable in safety-critical
applications like autonomous driving and industrial inspection.
However, they often suffer from overconfidence and poor ex-
plainability, especially for out-of-domain data. While uncer-
tainty quantification has emerged as a promising solution to
these challenges, multi-task settings still need to be investigated
in this regard. In an effort to shed light on this, we evaluate
Monte Carlo Dropout, Deep Sub-Ensembles, and Deep Ensem-
bles for joint semantic segmentation and monocular depth esti-
mation. Thereby, we reveal that Deep Ensembles stand out as
the preferred choice and show the potential benefit of multi-task
learning with regard to the uncertainty quality in comparison to
solving both tasks separately.

Keywords Deep learning, uncertainty quantification, multi-task
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1 Introduction

Deep neural networks are increasingly being used in real-time and
safety-critical applications like autonomous driving [1], industrial in-
spection [2], and automation [3]. Although they achieve incomparable
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performance in fundamental perception tasks like semantic segmenta-
tion [4] or monocular depth estimation [5], they still suffer from prob-
lems like overconfidence [6], lack explainability [7], and struggle to
distinguish between in-domain and out-of-domain samples [8].

In order to tackle these critical challenges and prevailing shortcom-
ings of deep neural networks, a number of promising uncertainty quan-
tification methods [9-12] have been proposed. Surprisingly, however,
quantifying predictive uncertainties in the context of joint semantic seg-
mentation and monocular depth estimation has not been thoroughly
explored yet [13]. Since many real-world applications are multi-modal
in nature and, hence, have the potential to benefit from multi-task
learning, this is a substantial gap in current literature.

To this end, we conduct a comprehensive series of experiments to
study how multi-task learning influences the quality of uncertainty es-
timates in comparison to solving both tasks separately. Our contribu-
tions can be summarized as follows:

* We combine three different uncertainty quantification methods -
Monte Carlo Dropout (MCD), Deep Sub-Ensembles (DSE), and
Deep Ensembles (DE) - with joint semantic segmentation and
monocular depth estimation and evaluate how they perform in
comparison to each other.

¢ In addition, we reveal the potential benefit of multi-task learning
with regard to the uncertainty quality compared to solving se-
mantic segmentation and monocular depth estimation separately.

2 Related Work

2.1 Joint Semantic Segmentation and Monocular Depth Estimation

Semantic segmentation and monocular depth estimation are both es-
sential tasks in image understanding, requiring pixel-wise predictions
from a single input image. Due to the strong correlation and comple-
mentary nature of these tasks, several previous works have focused on
addressing them jointly [14-18].

Notably, almost all previous works employ out-of-date architectures
and require complex adaptations to either the model, the training pro-
cess, or both. Instead of following this trend, we adapt a modern
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Vision-Transformer-based architecture similar to Xu et al. [18], achiev-
ing competitive predictive performance while maintaining simplicity
and transparency of the results.

2.2 Uncertainty Quantification

In order to address the shortcomings of deep neural networks, a variety
of uncertainty quantification methods [9-12] and studies [19-21] have
been proposed. The predictive uncertainty can be decomposed into
aleatoric and epistemic uncertainty [22], which can be an essential for
applications like active learning and detecting out-of-distribution sam-
ples [23]. The aleatoric component captures the irreducible data un-
certainty, such as image noise or noisy labels from imprecise measure-
ments. The epistemic uncertainty accounts for the model uncertainty
and can be reduced with more or higher quality training data [22,24].
Remarkably, quantifying uncertainties in joint semantic segmenta-
tion and monocular depth estimation has been largely overlooked [13].
Therefore, we compare multiple uncertainty quantification methods for
this task and show how multi-task learning influences the quality of the
uncertainty quality in comparison to solving both tasks separately.

3 Evaluation Strategy

3.1 Baseline Models.

To explore the impact of multi-task learning on the uncertainty quality,
we conduct our evaluations with three models:

1. SegFormer [25] for the segmentation task,

2. DepthFormer for the depth estimation task,

3. SegDepthFormer for joint semantic segmentation and monocular

depth estimation.

SegFormer. For solving the semantic segmentation task by itself, we
use SegFormer [25], a modern Transformer-based architecture. Due to
its high efficiency and performance, it is particularly suitable for real-
time applications that might rely on uncertainty quantification. We
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train all SegFormer models with the categorical Cross-Entropy loss

1 N C
ﬁCE:_NZ’Z nc - 10g(p(z)nc) 1)

for a single image, where N is the number of pixels in the image, C
is the number of classes, v, is the corresponding ground truth label,
and p(z)n, is the predicted softmax probability.

To obtain a measure for the aleatoric uncertainty [24] of the baseline
model, we compute the predictive Entropy

C
Z ¢ log(p(z)c) - @)

DepthFormer. Highly inspired by the efficiency and performance of
SegFormer [25], we propose DepthFormer for monocular depth esti-
mation. We use the same hierarchical Transformer-based encoder and
all-MLP decoder. In contrast to SegFormer, the output layer differs by
having two output channnels: one for the predictive mean (z) and
one for the predictive variance s?(z) [26]. The first output channel uses
a ReLU output activation function, while the second output channel
applies Softplus activation, which is a smooth approximation of the
ReLU functon with the advantage of being differentiable at z = 0. We
found Softplus to work better than ReLU for the predictive variance,
following the work of Lakshminarayanan et al. [11].

For all DepthFormer models we follow Nix and Weigend [27] and
treat the output of the model as a sample from a Gaussian distribution
with the predictive mean y(z) and a corresponding predictive variance
s?(z). Based on this, we can minimize the Gaussian Negative Log-
Likelihood (GNLL) loss

(v — 1(2)? 2
LoNLL = 5 ( 2(2) +log(s°(z)) | , 3)
where v is the the ground truth depth.

Through GNLL minimization, DepthFormer inherently learns corre-
sponding variances, which can be interpreted as the aleatoric uncer-
tainty [24,26].
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Figure 1: A schematic overview of the SegDepthFormer architecture. It combines the
SegFormer [25] architecture with a lightweight all-MLP depth decoder.

SegDepthFormer. To jointly solve semantic segmentation and
monocular depth estimation, we propose SegDepthFormer. The ar-
chitecture, which is shown in Figure 1, combines SegFormer [25]
and DepthFormer. It comprises three modules: a hierarchical
Transformber-based encoder, an all-MLP segmentation decoder, and
an all-MLP depth decoder. Both decoders fuse the multi-level features
obtained through the shared encoder to solve the joint prediction task.

SegDepthFormer is trained to minimize the weighted sum of the
two previously described objective functions: £ = Lcg + w1 LgNLL,
where w, is a weighting factor, which we set to w; = 1 for the sake of
simplicity and because both loss values are of similar magnitude.

The respective aleatoric uncertainty is obtained by computing the
predictive entropy H(p(z)) for the segmentation task or by the predic-
tive variance s?(z), which is learned implicitly through the optimiza-
tion of EGNLL-

3.2 Uncertainty Quantification

We evaluate Monte Carlo Dropout (MCD) [10], Deep Ensembles (DEs)
[11], and Deep Sub-Ensembles (DSEs) [12], motivated by their simplic-
ity, ease of implementation, parallelizability, minimal tuning require-
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ments, and state-of-the-art performance.

Monte Carlo Dropout. MCD depends on the number and place-
ment of dropout layers and particularly the dropout rate. We adopt
the original SegFormer [25] layer placement and consider two dropout
rates , 20% and 50%. We sample ten times to obtain the prediction and
predictive uncertainty [10,28].

Deep Ensemble. DEs achieve the best results if they are trained
to explore diverse modes in function space, which we accomplish by
randomly initializing all decoder heads, using random augmentations,
and by applying random shuffling of the training data points [11,29].
We report results of a DE with ten members, following the suggestions
of previous work [11,29,30].

Deep Sub-Ensemble. Consistent with DEs and MCD, we train the
DSE with ten decoder heads for each task on top of a shared en-
coder [12]. During training, we only optimize a single decoder head
per training batch and alternate between them. Thereby, we aim to in-
troduce as much randomness as possible, analogous to the training of
DEs. For inference, we utilize all decoder heads.

4 Experimental Setup

Predictions. Regardless of the uncertainty quantification method, we
report the results of the mean prediction.

Uncertainty. For the segmentation task, we compute the predictive
entropy based on the mean softmax probabilities as a measure for the
predictive uncertainty [31]. For the depth estimation task, however,
we calculate the predictive uncertainty based on the mean predictive
variance and the variance of the depth predictions of the samples [26].

Datasets. We conduct all experiments on Cityscapes [32] and NYUv2
[33].

Data Augmentations. Regardless of the trained model, we apply
random scaling with a factor between 0.5 and 2.0, random cropping
with a crop size of 768 x 768 pixels on Cityscapes and 480 x 640 pixels
on NYUv2, and random horizontal flipping with a flip chance of 50%.

Implementation Details. For all training processes, we use AdamW
[34] optimizer with a base learning rate of 6-10~° and employ a poly-
nomial rate scheduler. Besides, we use a batch size of 8 and train for
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250 epochs on Cityscapes and for 100 epochs NYUv2, respectively.

Metrics. For semantic segmentation, we report mean Intersection
over Union (mloU) and Expected Calibration Error (ECE) [35]. For
monocular depth estimation, we use root mean squared error (RMSE).
The uncertainty is evaluated using the following metrics proposed by
Mukhoti and Gal [31]:

1. p(accurate|certain): The probability of accurate predictions given
low uncertainty.

2. p(uncertain|inaccurate): The probability of high uncertainty
given inaccurate predictions.

3. PAuvPU: The combination of both cases, i.e. accurate|certain and
inaccurate|uncertain.

Although these metrics have originally been proposed for semantic
segmentation [31], we also use them to evaluate the depth uncertainty.
We use the following formula to determine whether a depth prediction
is accurate:

max (My) — 6 <125, @)
y "u(z)
where 1i(z) is the predicted depth value of a pixel and y is the corre-
sponding ground truth depth.
For the sake of simplicity and to simulate real-world employment,
we set the uncertainty threshold to the mean uncertainty of a given
image for all evaluations.

5 Results

In this section, we describe the results of our joint uncertainty eval-
uation quantitatively. Tables 1 and 2 contain a detailed comparison,
primarily focusing on the uncertainty quality.

Single-task vs. Multi-task. Looking at the differences between
the single-task models, SegFormer and DepthFormer, and the multi-
task model, SegDepthFormer, the single-task models generally de-
liver slightly better prediction performance. However, SegDepth-
Former exhibits greater uncertainty quality for the semantic segmen-
tation task in comparison to SegFormer. This is particularly evident for
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Table 1: Quantitative comparison on the Cityscapes dataset [32] between the three base-
line models paired with MCD, DSE, and DEs, respectively. Best results are

marked in bold.
Semantic Sq ion Monocular Depth Estimation
mloU 1 ECE | p(acc/cer) T p(inacc/unc) T PAVPU 1|RMSE | p(acc/cer) 1 p(inacc/unc) T PAVPU t|Inference Time [ms]
Baseline SegFormer 0.772 0.033 0.882 0.395 0.797 - - - - 17.90 + 047
DepthFormer - - - - - 7.452 0.749 0.476 0.766 17.59 + 0.82
SegDepthFormer| 0.738 0.028 0.913 0.592 0.826 7.536 0.745 0.472 0.762 22.04 + 027
MCD (20%)|SegFormer 0.759 0.007 0.883 0424 0.780 - - - - 177.13 £ 0.64
DepthFormer - - - - - 7.956 0.749 0.555 0.739 139.32 + 0.78
SegDepthFormer| 0.738 0.020 0911 0.592 0.803 7.370 0.761 0.523 0.757 20223 £ 0.39
MCD (50%)|SegFormer 0.662 0.028 0.883 0.485 0.760 - - - - 176.98 £ 0.53
DepthFormer - - - - - 21.602 0.181 0.366 0.431 139.81 + 1.20
SegDepthFormer| 0.640 0.021 0.906 0.616 0.782 8.316 0.733 0.558 0.723 203.82 £ 0.81
DSE SegFormer 0.772  0.037 0.890 0.456 0.797 - - - - 132.30 + 3.16
DepthFormer - - - - - 7.036 0.762 0.467 0.772 91.82 + 2.01
SegDepthFormer 0.749  0.009 0.931 0.696 0.844 7.441 0.751 0.463 0.766 212,11 + 844
DE SegFormer 0.784 0.033 0.887 0416 0.798 - - - - 667.51 + 2.89
DepthFormer - - - - - 7222 0.759 0.486 0.771 626.79 £+ 2.05
SegDepthFormer| 0.755 0.015 0917 0.609 0.828 7.156 0.763 0.493 0.773 743.23 + 32.95

Table 2: Quantitative comparison on the NYUv2 dataset [33] between the three baseline
models paired with MCD, DSE, and DEs, respectively. Best results are marked

in bold.
ion Monocular Depth Estimation
mloU 1 ECE | p(acc/cer) 1 p(inacc/unc) 7 PAVPU 1|RMSE | p(acc/cer) 1 p(inacc/unc) T PAVPU 1|Inference Time [ms]
Baseline SegFormer 0.470  0.159 0.768 0.651 0.734 - - - - 18.09 + 0.41
DepthFormer - - - - - 0.554 0.786 0.449 0.610 17.51 £ 0.87
SegDepthFormer| 0466 0.151 0.769 0.659 0.733 0.558 0.776 0.446 0.594 22314023
MCD (20%)|SegFormer 0422 0.102 0.767 0.706 0.724 - - - - 222.67 £ 0.61
DepthFormer - - - - - 0.605 0.741 0.478 0.568 139.58 + 052
SegDepthFormer| 0433 0.093 0.771 0.710 0.725 0.610 0.731 0.450 0.560 251.25 + 0.81
MCD (50%)|SegFormer 0.273  0.083 0.705 0.722 0.713 - - - - 223.25 4 0.82
DepthFormer - - - - - 0.978 0.516 0.492 0.526 139.27 + 0.69
SegDepthFormer| 0.272 0.084 0.702 0.721 0711 0.837 0.576 0473 0.525 251.98 4 0.60
DSE SegFormer 0469 0.092 0.776 0.681 0.726 - - - - 180.42 +3.93
DepthFormer - - - - - 0.547 0.782 0.423 0.596 91.66 + 0.26
SegDepthFormer| 0461 0.077 0.776 0.692 0.723 0.584 0.738 0.403 0.573 261.69 & 5.10
DE SegFormer 0.486 0.125 0.782 0.675 0.734 - - - - 715.97 + 7.55
DepthFormer - - - - - 0.524 0.808 0.475 0.613 624.30 & 2.07
SegDepthFormer| 0.481 0.122 0.783 0.682 0.733 0.552 0.785 0.453 0.590 788.76 + 2.00

p(uncertain|inaccurate) on Cityscapes. For the depth estimation task,
there is no significant difference in terms of uncertainty quality.
Baseline Models. As expected, the baseline models have the low-
est inference times, being 5 to 30 times faster without using any un-
certainty quantification method. While their prediction performance
turns out to be quite competitive, only beaten by DEs, they show poor
calibration and uncertainty quality for semantic segmentation. Sur-
prisingly, the uncertainty quality for the depth estimation task is very
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decent, often only surpassed by the DE.

Monte Carlo Dropout. MCD causes a significantly higher inference
time compared to the respective baseline model. Additionally, leav-
ing dropout activated during inference to sample from the posterior
has a detrimental effect on the prediction performance, particularly
with a 50% dropout ratio. Nevertheless, MCD outputs well-calibrated
softmax probabilities and uncertainties, although the results should be
interpreted with caution because of the deteriorated prediction quality.

Deep Sub-Ensemble. Across both datasets, DSEs show compara-
ble prediction performance compared with the baseline models. No-
tably, DSEs consistently demonstrate a high uncertainty quality across
all metrics, particularly in the segmentation task on Cityscapes.

Deep Ensemble. In accordance with previous work [28], DEs emerge
as state-of-the-art, delivering the best prediction performance and
mostly superior uncertainty quality. At the same time, DEs suffer from
the highest computational cost.

6 Conclusion

By comparing uncertainty quantification methods in joint semantic seg-
mentation and monocular depth estimation, we find Deep Ensembles
offer the best performance and uncertainty quality, albeit at higher
computational cost. Deep Sub-Ensembles provide an efficient alter-
native with minimal trade-offs. Additionally, we reveal the potential
benefit of multi-task learning with regard to uncertainty quality of the
semantic segmentation task compared to solving both tasks separately.
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