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Abstract This paper addresses the need for reliable person de-
tection systems in public spaces by developing a novel dataset
tailored for solid-state 3D-LiDAR sensors and evaluating vari-
ous neural network architectures. The dataset was created using
a Blickfeld solid-state 3D-LiDAR, capturing 265 point clouds in
a controlled test environment modeled on a three-lane pedes-
trian crossing. The neural network architectures evaluated in-
clude VoxelNeXt, PillarNet, SECOND, PointPillar, CenterPoint,
Voxel-R-CNN, PointRCNN, PartA2, and PV-RCNN. The eval-
uation methodology follows the KITTI benchmark metric for
performance analysis. Key results indicate that voxel-based ap-
proaches like SECOND and VoxelNeXt achieve inference speeds
of 10.3 FPS and 9.8 FPS on an NVIDIA Jetson AGX platform,
respectively, with mean Average Precision (mAP) scores of 95%
and 90%. In contrast, the hybrid approach PV-RCNN, which
combines voxel-based and point-based methods, achieves a mAP
of 92% but a slower inference speed of 2.5 FPS. These results un-
derscore the trade-offs between speed and accuracy in person
detection using solid-state 3D-LiDAR, highlighting the potential
of voxel-based methods for real-time applications. The results
contribute to the advancement of person detection technologies
in public security and smart city initiatives.
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1 Introduction

The increasing demand for robust and reliable person detection sys-
tems in public spaces has driven advancements in sensor technology
and machine learning algorithms. Accurate detection is crucial for ap-
plications like public security, traffic management, and smart city ini-
tiatives. In the domain of public space surveillance, these systems must
accurately localize and classify objects in real-time and operate under
challenging conditions such as fog, snow, and rain, while complying
with the General Data Protection Regulation (GDPR) in the European
Union. Existing systems use various sensors like PIR, laser barriers,
radar, and cameras. However, each technology has drawbacks. For
example, PIR sensors struggle with detecting groups due to lack of a
classical field of view, while cameras, although effective with AI for de-
tection and classification, raise privacy concerns under EU-GDPR [1].

In contrast, solid-state 3D-LiDAR technology shows great potential
by generating precise 3D point clouds for privacy-preserving and reli-
able detection [2]. This makes 3D-LiDAR ideal for applications requir-
ing accuracy, real-time operation, environmental resilience, and data
privacy. Currently, 3D-LiDAR is extensively used and researched in
autonomous driving systems [3]. However, the available datasets for
training neural networks focus on automotive use and may not encom-
pass the broader range of potential applications. They are captured
with rotating 3D-LiDAR sensors, whose characteristics, such as res-
olution, range, and field of view, differ significantly from solid-state
3D-LiDARs. Transferring an existing dataset to the characteristics of a
solid-state 3D-LiDAR is challenging. Consequently, there is no suffi-
cient dataset for independent analysis using solid-state 3D-LiDAR sen-
sors. This necessitates the creation of new datasets targeting the spe-
cific hardware characteristics of solid-state 3D-LiDAR to achieve opti-
mal performance in people detection with deep learning approaches.
Furthermore, there has been no comprehensive comparison of neural
network architectures with respect to the specific requirements for per-
son detection in public spaces using solid-state 3D-LiDAR sensors and
edge computing. Therefore, this paper contributes by developing a
novel dataset for solid-state 3D-LiDAR sensors and performing a thor-
ough comparison of various neural network architectures addressing
the requirements for person detection systems in public environments.
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The rest of this paper is organized as follows: Section II reviews re-
lated work focusing on 3D-LiDAR datasets. Section III describes the
generation of the novel dataset based on a design flow and a person
classification scheme. In Section IV, the approach is applied within
a case study by creating a dataset used to train different CNN archi-
tectures. Section V presents the results of the evaluation, and finally,
Section VI concludes the paper.

2 Related Work

3D-LiDAR technology has become crucial for advanced driver assis-
tance systems, primarily used for detecting obstacles [4]. Current im-
plementations mainly utilize rotating 3D-LiDARs, as demonstrated by
datasets like KITTI, which is a standard benchmark in this field [5].
Several other datasets have been created (refer to Tab. 1), all based on
rotating 3D-LiDARs. These datasets are primarily designed for auto-
motive applications, potentially limiting their broader applicability.

Table 1: Overview of various LiDAR datasets.

Dataset LiDAR Type LiDAR System Licensing
KITTI [6] Rotating Velodyne HDL-64E Non-commercial
Waymo Open Dataset [7] Rotating In-house development Non-commercial
nuScenes [8] Rotating Velodyne HDL-32E Non-commercial
PandaSet [9] Rotating Hesai Pandar64 Commercial
Argoverse 2 [10] Rotating Velodyne VLP-32C Non-commercial
ONCE [11] Rotating 40-Beam LiDAR Non-commercial

Solid-state LiDARs, however, offer several advantages over rotat-
ing LiDARs, such as being more compact, lighter, more energy- and
cost-efficient. Additionally, without mechanical components, they are
maintenance-free and have a longer lifespan [12]. Recent studies sug-
gest that solid-state LiDARs can also be used effectively for tasks be-
yond obstacle detection, like pedestrian recognition. For example, Peng
et al. [13] explored using solid-state LiDAR and cameras for pedestrian
detection. However, using camera data raises privacy concerns as it
can capture identifiable personal information.

Sprute et al. [14] address the challenge of achieving high-resolution
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spatial coverage with solid-state LiDAR without cameras, focusing on
detecting people using deep learning techniques. 3D-LiDAR sensors
capture point clouds, which are then converted into depth images
through clustering techniques. Afterwards, they are processed with
a ResNet-based neural network for object classification. This method is
computationally intensive, limiting real-time processing on embedded
systems. While it improves spatial coverage and detection accuracy, it
does not offer direct real-time processing of point clouds, which can be
a limitation in scenarios requiring immediate feedback.

Several points from current research highlight the need for further
investigation. First, detecting people using solid-state LiDAR and deep
learning is feasible, but existing datasets are designed for rotating Li-
DAR systems, limiting their applicability. A new dataset for solid-state
LiDAR is needed.

Second, direct processing of point clouds for person detection is
rarely explored. Most studies convert point clouds into depth images
before classification, which is computationally demanding and unsuit-
able for real-time applications.

Third, embedded systems have not been sufficiently considered.
Mapping deep learning architectures onto embedded systems could
enhance efficiency and applicability, especially for compact, energy-
efficient use cases.

This work develops a new dataset for solid-state LiDAR and evalu-
ates deep learning architectures for direct point cloud processing. The
aim is to identify effective deep learning models for implementation on
embedded systems for efficient person detection.

3 Novel dataset for person detection

Since there are currently no publicly available datasets specifically tai-
lored to the requirements for person detection using solid-state LiDAR,
a custom dataset for model training is required.

A solid-state 3D-LiDAR sensor system is employed to capture data,
mapping the surroundings as a 3D point cloud. The orientation and
position of the sensor remain static throughout the data collection pro-
cess, ensuring consistent raw data acquisition.

To create a dataset, several processing steps must be carried out. The
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raw data has to be stored, followed by storing the raw data in individ-
ual frames. These frames then have to be normalized and converted
into a point cloud format. Subsequently, the LiDAR coordinate data
has to be adjusted to meet the specific requirements for training. After
this, the data has to be annotated, and labels have to be created. Finally,
the dataset has to be split into training, validation and test subsets.

The sensor setup was established in a specially designed test envi-
ronment on the premises of the Fraunhofer IOSB-INA Institute, ensur-
ing unobstructed visibility. The setup is based on previous work of
Sprute et al. [15]. The LiDAR sensor was installed at a height of four
meters with a 16° tilt to ensure optimal coverage of the entire area.
The setup was focused on a distance of 9 meters and was directed to-
wards a three-lane pedestrian crossing at an intersection. The data was
captured using a solid-state 3D LiDAR sensor from the company Blick-
feld [16]. The sensor was configured with a field of view of 72° x 30°, a
framerate of 2.4 Hz, and 200 scan lines.

The dataset is collected from the recorded raw data, where different
individuals passed by the LiDAR within a range of up to 30 meters.
For the training of the deep learning algorithms, a single class ’Person’
with different variations was considered. This ensured that the model
could detect and analyze various person types and their movement
patterns. The manual annotation of the single objects was carried out
carefully, as it directly impacts the quality of the detection results after
training. The entire dataset consists of 265 different point clouds. An
example of the classes annotated in the dataset can be seen in Fig. 1.

To ensure the versatility and robustness of the proposed recognition
system, various classes of people based on their relevance in public
space have to be provided [15]. The following classes are used to extend
the dataset: 1) individuals without physical disabilities, 2) individuals
with forearm crutches, 3) individuals with rollators, 4) individuals with
mobile phones, 5) groups of people, and 6) individuals with walking
sticks.

These annotations reflect common situations in public areas, cap-
turing a wide range of human activities and interactions. Recogniz-
ing such diverse scenarios is particularly relevant for surveillance and
public safety applications, enhancing the model’s ability to detect in-
dividuals accurately in various contexts. This variety of annotated
classes ensures that the developed model is capable of recognizing and
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correctly classifying different situations and groups of people.

Figure 1: Examples from the custom dataset of manually annotated people.

4 Case Study

4.1 Neural Network

There are various approaches of deep learning architectures for the
direct processing of point clouds, which can be categorized into voxel-
based, point-based, and hybrid methods.

Voxel-Based Approaches

Voxel-based approaches partition the point cloud into small 3D cubes
(voxels) and extract features from each voxel using a Voxel Feature En-
coding (VFE) layer. These methods convert the irregular point cloud
data into a regular grid, which can then be processed using sparse con-
volutional neural networks (CNNs) [17]. Advantages of these methods
include fast inference times and reduced computational load. How-
ever, there are drawbacks, such as information loss due to the choice
of voxel size [18]. Examples of voxel-based approaches used in this
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study include: (1) SECOND [17], (2) PointPillars [19], (3) PillarNet [20],
(4) CenterPoint [21], (5) VoxelNeXt [22], (6) PartA2 [23], (7) Voxel-R-
CNN [24].

Point-Based Approaches

Point-Based approaches directly process the point cloud . These
method use PointNet++ [25], to learn features directly from the raw
points, achieving a higher level of detail. However, they often incur
higher computational costs due to the unstructured nature of the data,
increased memory usage, and slower inference speeds [26]. Example
of a point-based approach used in this study is PointRCNN [27]

Hybrid-Based Approaches

The hybrid method is an extension that combines voxel- and point-
based approaches to point cloud processing, combining the strengths
of each. Voxel-based methods are faster but can lose information, while
point-based methods retain all information but are slower to process.
This hybrid approach attempts to combine efficient computation with
comprehensive data representation. An example of a hybrid-based ap-
proach used in this study is PV-RCNN [28]

4.2 Training

The open-source framework Point Cloud Detection (OpenPCDet) [29]
was employed for training and execution of the deep learning architec-
tures described in Section 4.1. The deep learning architectures were
trained on a Windows system with the following specifications: 64
GB of DDR4 RAM, an AMD Ryzen 9-3900X 12-core processor, and an
RTX2080 graphics card with 8 GB of memory. To ensure the reliability
of the results, the dataset was randomly divided into two distinct sets:
70% for training and 30% for validation. To enhance the performance
of the trained model, data augmentation techniques were employed to
artificially expand the dataset [30]. These techniques included rotation,
scaling, and mirroring of the point cloud, as well as the generation of
additional bounding boxes and their point data based on the training
dataset through the introduction of artificial elements.
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The extended Adam algorithm, OneCycleLR [31], was employed for
all architectures for the optimization of the neural network’s weights
mentioned in Section 4.1, wherein a variable learning rate was utilized
during training. A maximum learning rate of 10−4 was selected, with
a momentum of 0.95–0.85. The training process was performed with
batch sizes of 6 point clouds over 120 epochs.

5 Results

The calculation to analyze performance is based on the KITTI bench-
mark procedure [5]. Nine distinct neural network architectures were
trained on our novel dataset and subsequently evaluated in terms of
their performance, including measures such as average precision (AP)
and inference time. In Tab. 2, the results of the conducted investigation
of the evaluated deep learning architectures with the custom dataset
for AP and the measured inference time on an edge computing device
Nvidia Jetson AGX system are presented.

The results demonstrate that voxel-based approaches, such as SEC-
OND, VoxelNeXt, or Voxel-R-CNN, achieve notable performance in
both AP and inference time, offering a suitable balance between speed
and accuracy when compared to point-based and hybrid approaches.
These results are significantly better when compared to the perfor-
mance of a point-based approach, such as PointRCNN and a hybrid
approach, such as PV-RCNN. Some qualitative detection results are
shown in Fig. 2.

Table 2: Comparison of architecture performance.

Type Architecture AP (IoU = 0.5) Inference time (FPS)
Voxel CenterPoint 0.92 7.7
Voxel Part-A2 0.95 5.0
Voxel PillarNet 0.91 7.2
Voxel PointPillar 0.89 9.1
Voxel SECOND 0.95 10.3
Voxel Voxel-R-CNN 0.97 7.2
Voxel VoxelNeXt 0.90 9.8
Point PointRCNN 0.92 1.6

Voxel/Point PV-RCNN 0.90 2.5
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Figure 2: Exemplary person detection based on SECOND architecture. The blue rectan-
gles represent the reference bounding boxes, while the green rectangles indi-
cate the predicted bounding boxes from the neural network.

6 Conclusions and Future Work

The study employing the newly created dataset demonstrates that
voxel-based methods, particularly SECOND, achieved the best results,
reaching 10.3 FPS with an average precision (AP) of 95%. This indicates
that classification and localization using point clouds collected with
solid-state 3D-LiDAR sensor are possible with an embedded system
like the Nvidia Jetson AGX. The evaluation of nine deep learning algo-
rithms for processing 3D point clouds with a solid-state 3D-LiDAR sen-
sor on an edge computing system revealed that single-stage methods
based on voxel preprocessing are most effective. Specifically, SECOND,
VoxelNeXt, and PointPillar showed high classification and localization
performance with real-time processing capabilities. These results con-
firm that appropriate voxel-based deep learning architectures exist to
implement a person detection system on an edge computing platform
with a solid-state 3D-LiDAR sensor, enabling efficient real-time person
detection and visualization of 3D point clouds.

Future work will focus on refining the dataset to include more di-
verse and realistic point cloud scenes, addressing variations in weather
conditions and background objects. Class separation and the inclusion
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of new classes, such as people with bicycles and strollers, will be inves-
tigated to enhance the system’s robustness and flexibility. Finally, the
approach will be integrated into an embedded smart sensor system,
designed for usage in public spaces.

References

1. A.-M. C. Drăgulinescu, I. Marcu, S. Halunga, and O. Fratu, “Persons
Counting and Monitoring System Based on Passive Infrared Sensors and
Ultrasonic Sensors (PIRUS),” in Pervasive Computing Paradigms for Mental
Health. Springer International Publishing, 2018, vol. 207, pp. 100–106.

2. N. Li, C. P. Ho, J. Xue, L. W. Lim, G. Chen, Y. H. Fu, and L. Y. T. Lee, “A
progress review on solid-state lidar and nanophotonics-based lidar sen-
sors,” Laser & Photonics Reviews, vol. 16, no. 11, p. 2100511, 2022.

3. K. Li and L. Cao, “A Review of Object Detection Techniques,” in Inter-
national Conference on Electromechanical Control Technology and Transportation
(ICECTT). IEEE, May 2020, pp. 385–390.

4. Y. Li and J. Ibanez-Guzman, “Lidar for Autonomous Driving: The Prin-
ciples, Challenges, and Trends for Automotive Lidar and Perception Sys-
tems,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 50–61, Jul. 2020.

5. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
The KITTI vision benchmark suite,” in 2012 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2012, pp. 3354–3361.

6. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The
KITTI dataset,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1231–1237, Sep. 2013.

7. P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang,
J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception for au-
tonomous driving: Waymo open dataset,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2443–2451.

8. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for au-
tonomous driving,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, jun 2020, pp. 11 618–11 628.

9. P. Xiao, Z. Shao, S. Hao, Z. Zhang, X. Chai, J. Jiao, Z. Li, J. Wu, K. Sun,
K. Jiang, Y. Wang, and D. Yang, “PandaSet: Advanced Sensor Suite Dataset

168



3D-LiDAR based person detection

for Autonomous Driving,” in 2021 IEEE International Intelligent Transporta-
tion Systems Conference (ITSC), Sep. 2021, pp. 3095–3101.

10. B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan,
R. Kumar, A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr, and J. Hays,
“Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting,” arXiv, 2023, version Number: 1.

11. J. Mao, M. Niu, C. Jiang, H. Liang, J. Chen, X. Liang, Y. Li, C. Ye, W. Zhang,
Z. Li, J. Yu, H. Xu, and C. Xu, “One Million Scenes for Autonomous Driv-
ing: ONCE Dataset,” arXiv, 2021, version Number: 3.

12. Y. Li and H. Shi, Eds., Advanced driver assistance systems and autonomous
vehicles: from fundamentals to applications. Springer, 2022.

13. Z. Peng, Z. Xiong, Y. Zhao, and L. Zhang, “3-d objects detection and track-
ing using solid-state lidar and rgb camera,” IEEE Sensors Journal, vol. 23,
no. 13, pp. 14 795–14 808, 2023.

14. D. Sprute, T. Westerhold, F. Hufen, H. Flatt, and F. Gellert, “DSGVO-
konforme Personendetektion in 3D-LiDAR-Daten mittels Deep Learning
Verfahren (in German),” in Bildverarbeitung in der Automation: Ausgewählte
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