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Abstract Demand for reliable data remains a major issue in
training machine learning models in computer vision. Fre-
quently, datasets are of insufficient scale, imbalanced, not di-
verse, and of poor quality, potentially resulting in biased, inaccu-
rate, non-robust, and badly generalizing models. Moreover, real-
world training data can raise privacy concerns or be extremely
expensive to gather, necessitating alternative solutions.
This paper investigates the use of diffusion models for generative
data augmentation in semantic image segmentation, specifically
in the domain of vehicle damage detection. We propose a new
approach that utilizes an existing diffusion model ControlNet to
generate useful synthetic data depicting realistic vehicles with
damages such as scratches, rim damages, dents and etc. Based
on this we provide an analysis and show how such a generative
data augmentation may help in scenarios where training data is
scarce and of low quality.

Keywords Generative data augmentation, diffusion models,
ControlNet, damage detection

1 Introduction

A major challenge in Deep Learning for Computer Vision persisting is
the scarcity and quality of training data, which is crucial for training
robust and generalizing models. Acquiring a large quantity of detailed
and balanced images for training is often time-consuming, expensive,
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Figure 1: Edge detection maps with color patches as labels used as conditional control
input and respective generated images from our trained ControlNet. With a)
rim damages (yellow), b) deformations (blue), scratches (pink), and rim dam-
ages (yellow).

and sometimes impossible. This paper aims to address the challenge
of limited training data in the domain of vehicle damage detection by
investigating the use of ControlNet [1] for Generative Data Augmen-
tation (GDA) [2] in scarce and low-quality data scenarios. We trained
ControlNet based on StableDiffusion (SD) to generate synthetic images
of damaged cars from labeled edge-detection maps and use these gen-
erated images to train segmentation models for damage detection (see
fig. 1).

In automotive damage detection, semantic segmentation models may
be used to recognize various types of exterior damages on images
for efficient vehicle inspection. In practical industrial setting usually
images of passing cars are taken autonomously from multiple angles
by vehicle scanners and sent to cloud processing, to recognize several
damage classes. Due to the nature of the damages it is quite impracti-
cal, even impossible in some cases to collect such data manually.

Guiding this are the questions about (1) how synthetic training data
transfers to real-world evaluation, (2) its capacity to tackle challenges
of scarcity, quality, and bias in training data, and (3) the effect on model
generalizability. In the process, we evaluate parameters, design deci-
sions, and training data compositions in extensive ablation studies and
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experiments. The use of GDA has not been explored yet on this prob-
lem and may increase the potential of synthetic data in vehicle damage
detection scenarios.

2 Related Work

Data augmentation addresses challenges like data scarcity, lack of di-
versity, and overfitting by creating new label-preserving examples from
existing datasets [3]. Common augmentation approaches include im-
age manipulation, image erasing, image mixing, auto-augment, feature
augmentation, and neural style transfer [3]. GDA involves supplement-
ing training data with synthetic examples to improve model perfor-
mance, especially when only little training data is available and overfit-
ting is of concern [2]. Classic methods in computer vision include CGI
placement [4], model renderings [5–7], and degrading techniques [8].
Training data generation may help increase diversity, generalization ca-
pabilities, and robustness including to adversarial attacks.

Synthetic data from Denoising Diffusion Probabilistic Models
(DDPM) [9] prove to be effective for GDA in ImageNet [10] classifi-
cation [11], even achieving new state-of-the-art scores using supple-
mented real training data [12]. Synthetic data is also employed to fight
representation bias [13, 14] and privacy concerns [15] in medical im-
age data, with curation of synthetic data proving important [14]. For
segmentation model training, mostly Generative Adversarial Networks
(GANs) [16] have been employed to generate samples, using a decoder
to extract pixel-wise annotations from latent space [17, 18], and show-
ing performance gains mainly in out-of-domain data. Only recently
DDPMs have been explored for GDA, mostly following a similar ap-
proach, extracting labels from attention-maps [19] or training a ground-
ing model to align pixels with textual representations [20]. Apart from
their superior sample quality [21], DDPMs for GDA face challenges in-
cluding dataset memorization [22], diversity [23] and do not generally
outperform GANs from scratch [24].

ControlNet is a neural network structure aimed to further condition
the output of DDPMs [1]. ControlNet is a copy of an arbitrary neural
network block, running in parallel to the original network, incorpo-
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rating an encoding of additional control input and feeding its guided
output back to the main structure. During training of ControlNet, the
original model is locked to preserve its distilled knowledge, only the
parallel, duplicated blocks are trained for guidance. Using this archi-
tecture we can control DDPMs to exactly match input conditions, like
edge detection maps, human poses, or drawings, even with compara-
bly low training data available.

3 Methodology

The core part of this paper is the implementation of ControlNet gener-
ating pre-labeled data as GDA for segmentation model training for
damage detection. We consider four commonly occurring damage
classes: deformation, dent, rim damage and scratch.

In this section, we discuss how to guide and train ControlNet to
generate pre-labeled samples for semantic segmentation training.

Conditional Control We utilize ControlNet’s conditional control fea-
ture to generate precise images representing specific views of cars and
damage positions. Edge detection maps, identifying image boundaries,
serve as the control input. This approach offers a balance between de-
tailed output descriptions and the freedom to generate varied results
and has proven to work well with ControlNet [1].

For pre-labeled sampling, we need to include detailed label infor-
mation in the conditional control. We propose to include the labels
using color patches on the black-and-white edge detection maps (see
fig.1). This approach of labeling the conditional control to generate
pre-labeled training data has, to our knowledge, never been evaluated
before.

It has the following advantages: (1) Efficient placement and gen-
eration from existing labels, (2) effective guidance for ControlNet, (3)
easily differentiable by eye, (4) covering edge detection maps on rel-
evant positions, and (5) referenceable in text prompts by naming the
respective color.

Text prompts play a crucial role in text-to-image generation, func-
tioning as fundamental guidance, and imparting context and semantic
information to the generative process. When using ControlNet, the
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textual prompt introduces background information guiding the inter-
pretation of the conditional control. The integration of semantically
relevant textual information to image generation results in more pre-
cise and sophisticated outcomes, potentially improving its capability
for GDA.

Text prompts are generated following a specific prompting schema:
(1) The applying short description of the relevant damage: Rim damage
at the yellow marking, Scratch at the pink marking, Dent at the green mark-
ing, Deformation at the blue marking, (2) a background prompt to define
the image, context, and style: side of a car in a workshop, high quality,
detailed, and professional image.

Training Generative Model We train the generative model on the
available real-world training data, to generate damaged cars match-
ing the conditioning. Apart from its comparably low requirements
on training data, ControlNet training is exhibiting a sudden conver-
gence phenomenon [25], which we take into account asjusting the vir-
tual batch size using gradient accumulation to reach around 10k steps
during training.

Fine-Tuning In visual evaluation, samples of different damage classes
showed significant deviations in image quality, suggesting that the gen-
erative model might be improved by fine-tuning it on specific damage
classes. We filtered the 17k dataset to include only images containing
instances of the respective class and trained a generative model for each
one. We name these fine-tuned models (damage-class-) specific.

4 Experiments

Experiments have been split into (1) tuning and evaluating the image
generation process and (2) optimizing training of segmentation mod-
els from (partly) synthetic data. The used dataset includes 17k hand-
labeled images from a vehicle scanner containing from 1k to 9k in-
stances per damage class (see appendix).
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4.1 Image Sampling

Firstly, we conducted experiments to evaluate the quality of synthetic
images for different parameters and ablations. To measure improve-
ments, we employ an existing segmentation model, trained on the ex-
isting real17k dataset and evaluate it on our generated datasets. We
expect correlation between sample quality and the model’s ability to
recognize synthetic damages, measured by the evaluation F-Scores.

We evaluated the prompting schema defined in section 3: As the
models had been trained with the fixed schema, additional background
and negative text prompts, as well as no prompts at all resulted in
worse samples. This suggests that our prompts need to stick to the sce-
nario or have to be trained on a more diverse prompt landscape. We
also evaluated a pre-trained ControlNet from a large edge detection
dataset on damage generation, which was not able to extract meaning-
ful results from the guidance input, though.

4.2 Training Data Compositions

Evaluating a model trained from synthetic data on the real evaluation
dataset, a first approach showed a significant domain gap between real
and synthetic images, with F-Scores of less than 0.1. In the second
part of our experiments, we therefore evaluate (only partly) synthetic
training data compositions to train segmentation models based on their
downstream performance on real evaluation data.

Damage-Specific Training Data To evaluate samples from damage
specific generative models, we combined 2k samples for each class with
2k samples from a general model to a new dataset - specific10k - for seg-
mentation model training. Compared to 10k samples from the general
model, we seem to slightly improve F-Scores on average, reflecting the
the results from class-specific sample evaluation. Furthermore, we are
able to improve over real17k training data in the deformation class, rep-
resenting the most scarce and low-quality training data, increasing the
F-Score by ∼ .03 when using specific training data.

We also supplemented fake training data to real17k, instead of us-
ing it isolated, and employed a quality filter to curate the samples for
training. We used an IOU threshold of 25% per image from evaluating
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Figure 2: Left: F-Scores of segmentation models trained using different (synthetic)
datasets evaluated on real test data. Specific10k refers to samples from damage-
specific generative models, with real17k referring to the original training data as
reference. Filtered referencing to a quality threshold. Right: Generalization IOU
values of trained segmentation models (synthetic and limited training data) on
out-of-domain data in proportion to the same reference model.

the images by a pre-trained segmentation model as in image sampling
experiments (section 4.1). Using both supplementation and filtering
greatly reduced the synthetic-to-real-data gap, resulting in only .04 dif-
ference in macro average scores. This was primarily due to a further
improvement in deformation accuracy (see fig. 2), where we increased
the existing lead over real training data. Notably, we still decrease
overall performance by supplementing fake data to our training, espe-
cially in well-represented classes. This suggests a key difference in data
distribution regardless of the visual quality of samples, but we show
potential application and benefit of GDA for very scarce classes.

Comparison on limited data To find a threshold of data availability
where synthetic samples outperform real training data, we limit avail-
able real training data (to 25, 100, 250, and 1000 examples per class). As
expected, limiting the availability of real training data negatively im-
pacts overall segmentation performance. Decrease differs from class to
class, with scarce classes (dent and deformation) benefiting from more
balanced training data. Synthetic data outperforms very limited real
datasets (25 samples per class) across all damage classes and enhanced
datasets are competitive to larger real datasets (up to 1k), especially in
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rim damage.
In this damage detection scenario, the targeted threshold seems to

be between 25 and 100 images per class.

Generalizability To assess generalizability, we evaluate models
trained with GDA on a new dataset of 250 labeled samples from un-
seen locations and vehicle scanners (out-of-domain dataset) and com-
pare them to limited real datasets. Especially in the deformation class,
the GDA-trained model (filtered, specific, and supplemented samples)
significantly outperforms the reference model in the out-of-domain set-
ting by 25 % (see fig. 2). Even on average, filtered supplemented data
outperforms real training data, with even non-filtered outperforming
up to 1k real samples per class, and generated samples only still sig-
nificantly dominating over 100 real samples. Synthetic data improves
generalization performance compared to limited datasets, particularly
outperforming the original training data in scarce classes. This un-
derlines the potential of synthetic data especially when it comes to
generalization, where GDA shows more competitiveness than during
in-domain evaluation.

5 Discussion

We show how ControlNet with StableDiffusion can be effectively used
to generate pre-labeled, high-fidelity images for GDA in image seg-
mentation tasks. In the context of vehicle damage detection the model
demonstrates the ability to accurately place damages on vehicles.

Our experiments and ablation studies have revealed several key fac-
tors that can contribute to optimizing ControlNet generative perfor-
mance. Parameter tuning and input specifications significantly im-
proved sample fidelity. The ablation studies further provided valu-
able insights into the role of various techniques guiding and training
ControlNet: We discovered the necessity of fine-tuning and additional
text prompts, incorporating quality guidance. Finally, tuning damage-
class-specific generative models for specific damage classes is benefi-
cial, compared to a general multi-class generative-model. We showed
how our synthetic data can be effectively used to train segmentation
models for damage detection: Synthetic data alone can enhance seg-
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mentation performance for very scarce classes and generally outper-
form limited real data when only a few samples (less than 50) are
available. Especially scarce classes can benefit from additional synthetic
training data. Furthermore, GDA can, with some limitations, be used
to increase the generalization capabilities of our segmentation models,
where supplemented fake data is outperforming the real dataset, espe-
cially limited to a few hundred examples only. Key findings from this
study align with prior research GDA.

As a key takeaway we note that filtered, specific generated datasets
supplementing real data can increase in-domain and especially out-
of-domain performance significantly for scarce data classes. However,
synthetic-only data remains no match to real large scale datasets, due
to a significant distribution shift between real and fake samples. This
is emphasized by a significant performance drop when GDA-trained
models are evaluated on real-world test data, indicating how synthetic
data may not fully capture the nuances and variations present in real-
world data. We show that GDA in this use-case is mostly not effective
for well represented data classes.

Future Work To guide effective utilization of GDA we suggest em-
ploying synthetic data when real data is very scarce. When using Con-
trolNet for GDA, stronger guidance and increased steps benefit sample
fidelity. Furthermore, analyzing the characteristics of synthetic com-
pared to real samples and employing inpainting for GDA might be
promising directions.
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6 Appendix

Labeled Edge Detection Sample 1 Sample 2

1

2

3

Figure 3: Sampled images of different damage classes from shown labeled edge detection
maps as conditional control input for ControlNet.

Segmentation Model We use a U-Net [26] from the segmentation
model library [27]. The reference model is trained on the real17k train-
ing data and does not represent the performance of similar models in
production. ControlNet version 1.0 with StableDiffusion 2.1 is trained
on the same T4 for 15 epochs on a virtual batch size of 32 for about
8,000 steps, taking around 100 hours per model. Virtual batch size is
reached by using gradient accumulation of 32.
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6.1 Datasets

The used dataset - real17k - contains 17467 manually labeled images
of cars with different damages (9234 rim damages, 8685 scratches, 1803
dents, 972 deformations). The test dataset contains 739 images of which
177 include rim damages, 168 scratches, 104 dents, and 11 deforma-
tions. The in-domain images are taken from an automatic vehicle scan-
ner at entry points to a workshop. They all come from the same loca-
tion, taken with the same equipment, lighting conditions, background,
and surroundings. The weather is similar with only a few images con-
taining rainy or snowy conditions.

The limited datasets real4*x with x ∈ 25, 100, 250, 1000 contain a ran-
dom sample from the real17k dataset. They are used to simulate a sce-
nario, where only a limited but balanced amount of data is available.

The out-of-domain dataset to test generalization contains 170 im-
ages, with some being from different locations and types of vehicle
scanners. The dataset contains 169 images of which 31 deformations,
32 dents, 0 include rim damages, and 128 scratches.

Synthetic Datasets The specific10k dataset of generated synthetic
data contains 2k images per class generated from class-specific genera-
tive models and 2k images from a general model. The filtered dataset
contains all images from specific10k, that passed a quality threshold
established as an IOU greater than .25 in evaluation using a real-world
pre-trained segmentation model: Deformation 339 (from 2940 samples
containing instances in total), Dent 392 (3095), Rim Damage 876 (3804)
& Scratch 490 (5164).
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