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Abstract To improve object recognition and tracking in au-
tonomous driving, we first create a seamless panorama. Object
recognition can benefit from image stitching, especially at the
borders of individual images when an object is only partially
visible. This also prevents duplicate detection of the same ob-
jects in overlapping image areas that are to be filtered for track-
ing. In this process, a homography is determined for the over-
lapping image area, whereby the entire image is transformed
using classical image stitching methods. As a result, the defor-
mations propagate to further images that are to be added to the
panorama. To avoid this problem, we integrated a step-by-step
image warping approach into our existing stitching pipeline.
This ensures that after attaching one image to another, the out-
ermost right and left borders of the panorama are no longer de-
formed. Furthermore, the panorama width remains constant re-
gardless of the calculated homography. We have evaluated our
approach on the nuScenes dataset and the Waymo Open Dataset
for perception. In addition to a qualitative assessment, we eval-
uate the resulting panoramas in terms of the deformation of the
individual images as well as the deformation of labeled object
instances.
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1 Introduction

The UNICARagil [1,2] project, in which four autonomous vehicles were
built entirely from scratch, investigated how and whether camera im-
ages should be stitched together to form a panorama before object
recognition. One of the resulting articles [3] shows that object recogni-
tion performs just as well on panoramic images as on individual im-
ages without the need for retraining. In addition, in another article [4]
we demonstrate that object detection on panoramic images improves
compared to single images after retraining in this domain.

To stitch two images together, in a simple procedure, a homography
is determined between pairs of feature matches in the overlapping im-
age area to transform one of the images. However, this procedure for
stitching images has the disadvantage that the resulting deformations
increase with each additional images added to the panorama. For this
reason, we have implemented a gradual image warping method based
on the approach in [5]. Our main contribution is the elimination of
deformations at the outermost right and left borders of the panorama,
allowing any number of images to be stitched together horizontally. In
this way, the transformations of all individual images can be calculated
independently of each other. At the same time, the resulting panorama
has a constant image width, which makes it more suitable as training
data, as less zero padding needs to be applied. Furthermore, we de-
cided to realize the local alignment not as a grid but as vertical image
slices in order to reduce the computational effort.

2 Related Work

In the work by Zaragoza et al. in [6], a global homography between
two images is first estimated, then equally sized grid cells in the image
are transformed by local homographies to improve the alignment of the
images to each other. In contrast, Chang et al. introduced a three-step
process to preserve perspective by combining transformations from
homography and similarity transformation in [7]. Based on this, Xi-
ang et al. achieve smoother transitions by using weighted combinations
of homography and similarity transformation in [5]. Chen and Chuang
specifically aim for natural image stitching in [8] by using APAP [6] in
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combination with a global similarity transformation to adjust scale and
rotation for each image to be stitched. In [9], Zhang et al. developed a
method specifically designed to return a rectangular panoramic image
to reduce deformations in the images.

3 Implementation

The presented approach extends our image stitching method presented
in [3] and [4]. Our image stitching pipeline is shown in Fig 1, with
the modifications highlighted in blue. Thus, the deformation of the
panorama towards the outermost right and left borders is gradually
eliminated. The core components for gradual image warping can be
divided into three consecutive steps, where first a homography in over-
lapping image areas is determined. In the second step, we divide the
camera image into vertical sections and determine a transformation for
each part of the image from the resulting homography. In the last step,
we apply the resulting transformations to each image section and com-
bine them to create a panorama.

3.1 Homography Estimation

The homography between two individual images p and q is determined
by features in the overlapping image area. Consequently, the transfor-
mation of a feature point in a camera image p into another image q is
given by (1).

H
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 , s ∈ R (1)

H stands for the homography and s for the scaling factor. As in [3],
we do not perform feature extraction as well as subsequent feature
matching. Instead, we use depth information as in a LiDAR point
cloud, which we project into the overlapping image areas. Compared to
image features, however, we have the disadvantage that an error occurs
when projecting into cameras due to the parallax and the rotation of
the LiDAR. This error can be reduced if the cameras are triggered as
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soon as the LiDAR points in their direction. The Waymo Open Dataset
for perception [10] also provides synchronized LiDAR data regarding
the movement of the ego vehicle and the movement of other traffic
participants. To calculate the homography, we use a method based on
the RANSAC algorithm. In addition, learned methods as in [11] to
determine a homography between two images would also be possible.

Raw Images Image Preprocessing

Overlapping Image
Area Estimation

Homography
Estimation

Image Warping

Weighted Transformations
Calculation

Gradual
Image Warping

Seam Carving

Vignetting and
Exposure Correction Panoramic View

Figure 1: Workflow of our modifications shown in blue to the image stitching pipeline
in [3] and [4] by integrating gradual image warping. Consequently, the image
warping module shown in red is replaced.

3.2 Weighted Transformations Calculation

Using the homography determined in 3.1, the respective overlapping
area is transformed. The opposite overlapping image area adjacent to
the next camera image is not transformed. If there is no further camera
image to be stitched, we assume a quarter of the image width that
is not transformed. The remaining image area in between is warped
gradually. First, a configurable parameter k, is used to define how
many vertical image sections the center image area is divided into. This
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determines how well the individual sections merge into one another.
Similar to the approach in [5], we determine weighted transformations
for each image section from two individual transformations, as shown
in (2).

T = αH + βI3 (2)

However, we use the homography H determined in 3.1 and the iden-
tity matrix I3. For the first vertical image section adjacent to the over-
lapping image area associated with the homography, α = 1 − 1

k+1 and
β = 1

k+1 . As the horizontal distance to the overlapping area increases,
β gradually increases and α gradually decreases, so that the last vertical
image section matches the overlapping area at the far end of the im-
age. This allows any number of camera images to be stitched together
horizontally without the deformations in the panorama becoming pro-
gressively larger towards the outside. In addition, the identity means
that smoother video sequences can be created from the panoramas with
a constant image width.

3.3 Gradual Image Warping

Once the transformation matrices have been determined for each indi-
vidual image section, the image can be warped gradually. However, the
transformations are still in image coordinates (u, v). In order to pro-
cess smaller amounts of data and thus improve the runtime, we first
transform each matrix T into the coordinate system of the respective
image section (ui, vi) and denote the resulting transformation matrix
as Ti. The transformation into the vertical image sections can be de-
scribed by a translation ∆u. Finally, each transformation Ti is applied
to the corresponding image section. These are subsequently projected
onto the overall panoramic image.

4 Evaluation

First, we qualitatively compare our approach of gradual image warp-
ing with our previous approach as baseline described in [3] and [4].
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Furthermore, we evaluate our approach also in comparison to our pre-
vious method using a quantitative measure of image deformation. In
addition, we separately compare the deformations of labeled object
instances. The two publicly available datasets nuScenes [12] and the
Waymo Open Dataset for perception [10] are used in our evaluation.

(a) Individual images from which the panorama is composed using a
spherical camera model.

(b) Image stitching using the method in [3] and [4].

(c) Image stitching with gradual image warping.

Figure 2: Comparison on image stitching using data from the nuScenes dataset [12].

4.1 Qualitative Comparison

To give an first impression of how our method performs, we use the
two panoramas in Fig. 2 and 3 to show the comparison with the use
of a homography per overlapping area. Fig. 2 compares both methods
using an example from the nuScenes dataset [12] whereas Fig. 3 uses
data from the Waymo Open Dataset for perception [10]. Both figures
show that gradual image warping can better compensate for strong de-
formations. This applies in particular to the images from the outermost
cameras. The curvature at the top and bottom of the images is due to
the use of a spherical camera model, which can be seen in Fig. 2(a)
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and 3(a). Particularly with video sequences, strong deformations are
noticeable as jumps in the panoramas, as these do not remain constant.
Gradual image warping ensures that the deformations are substantially
smaller and more consistent. This could improve object tracking, espe-
cially if it is assumed that a detected object is in a similar position in
the subsequent panoramic image.

(a) Individual images from which the panorama is composed using a
spherical camera model.

(b) Image stitching using the method in [3] and [4].

(c) Image stitching with gradual image warping.

Figure 3: Comparison on image stitching using data from the Waymo Open Dataset [10].

4.2 Image Deformation Evaluation

To quantitatively evaluate gradual image warping, we determine the
deformations in the warped images compared to the original images.
In this case, the term original image refers to images that have already
been processed but not warped for image stitching. Pre-processing
consists of compensating for lens distortion and converting the image
from a pinhole camera model to a spherical camera model.

To measure the deformation, we analyze points pi evenly distributed
over the images with a distance of 20 pixels. Then these points are
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deformed to pwarped,i by image warping either with a single homogra-
phy or with gradual image warping. First, we determine the average
displacement d between all N points in the deformed image and those
in the original image, since a constant translation has no influence on
the deformation. Accordingly, the average displacement d is calculated
separately for the directions u and v in (3).

d =

(
du
dv

)
=

1
N

N

∑
i=1

pi − pwarped,i (3)

We then calculate the displacement between the points in the origi-
nal images and in the warped images, taking into account the average
displacement. This results in our error metric Ei in (4).

Ei =

(
Eu,i
Ev,i

)
=
∣∣∣pi − pwarped,i − d

∣∣∣ (4)

The evaluation of the image deformation is performed on 10 se-
quences of the nuScenes dataset [12] and on 6 sequences of the Waymo
Open Dataset for perception [10]. This results in an evaluation of
404 panorama images for nuScenes and 551 for Waymo. The results
are displayed as two-dimensional box plots in Fig. 4 for the nuScenes
dataset [12] and in Fig. 5 for Waymo Open Dataset for perception [10].
Both graphs clearly show that the deformations for gradual image
warping are much smaller compared to the use of a single homog-
raphy. The difference in deformation is most noticeable in the u di-
rection. The smaller parallax in the Waymo Open Dataset results in
significantly reduced warping on average. However, the outliers to
the maximum are also higher in this case. The reason for this are the
motion-compensated lidar point clouds. With high ego velocity or fast
moving objects in the overlapping image area, significantly fewer point
correspondences are available to calculate a homography.

4.3 Object Instances Deformation Evaluation

Especially in object recognition with machine learning, it is crucial that
the results obtained on datasets can also be reproduced in the real
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Figure 4: Image deformation analysis over 10 sequences of the nuScenes dataset [12]. 2D
box plot of the deformations of the individual images in u- and v-direction in
pixels with the method in [3] and [4] (red) compared to gradual image warping
in (blue).
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Figure 5: Image deformation analysis over 20 sequences of the Waymo Open Dataset for
perception [10]. 2D box plot of the deformations of the individual images in
u- and v-direction in pixels with the method in [3] and [4] (red) compared to
gradual image warping in (blue).
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Figure 6: Deformation analysis of the object instances over 10 sequences of the nuScenes
dataset [12]. 2D box plot of the deformations of the object bounding boxes in
u- and v-direction in pixels with the method in [3] and [4] (red) compared to
gradual image warping in (blue).
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Figure 7: Deformation analysis of the object instances over 20 sequences of the Waymo
Open Dataset for perception [10]. 2D box plot of the deformations of the object
bounding boxes in u- and v-direction in pixels with the method in [3] and [4]
(red) compared to gradual image warping in (blue).
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world. Object recognition based on panoramic images has already
been investigated in [4], where the network used was pre-trained on
raw camera images. Consequently, it is not desirable for the objects
in the panoramas to be deformed. For this reason, we run the same
evaluation as in section 4.2 for the deformation of all object instances
separately. In this case, an average displacement is determined for each
object instance and not for each individual image. In the nuScenes
dataset [12], the 2D bounding boxes are evaluated with the object
classes car, truck, bus, construction, cycle, trailer, pedestrian and cyclist. In
the Waymo Open Dataset for perception [10], we evaluate the panoptic
labels with the classes car, truck, bus, other large object, trailer, pedestrian,
pedestrian object, bicycle, motorcycle, cyclist, motorcyclist. The results are
shown analogously as two-dimensional box plots for both evaluated
datasets in Fig. 6 and 7. As in 4.2, a comparable reduction in image
deformations due to gradual image warping can be recognized for the
object instances.

5 Conclusion

In this article, we presented a method for improved image stitching
using gradual image warping in autonomous driving. To achieve this,
the images are warped in vertical sections to gradually compensate
for the initial deformation caused by the estimated homography. In
the evaluation, we were able to show successfully that the deforma-
tions in the panoramic images are significantly compensated for with
our approach. We demonstrated this effect not only qualitatively but
also quantitatively by evaluating deformations in 955 images from the
nuScenes dataset [12] and the Waymo Open Dataset for perception [10].
Since our approach is primarily designed for improving object detec-
tion, we specifically measured deformations of object instances labeled
in the data. Also in this case, gradual image warping shows clearly re-
duced image deformations. As a positive side effect, the image width of
the resulting panoramas now remains constant. In upcoming research,
we plan to investigate object detection capabilities on panoramic im-
ages created with gradual image warping.
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