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Abstract This paper addresses the problem of calibrating mul-
tiple visual sensors mounted on a robotic manipulator, a task
critical for accurate robot perception and interaction. We present
a novel approach to hand-multiple-eyes calibration that incorpo-
rates closed-loop constraints to ensure consistency between the
sensors’ poses. Unlike traditional hand-eye calibration methods
that handle individual sensor pairs independently, our method
leverages a unified optimization framework that simultaneously
optimizes the relative poses of all sensors while enforcing a loop
closure constraint to each pose triplet. The core of our approach
is a least squares approach to solve multiple hand-eye matrix
equations of the form AX = XB, further enhanced with the
method of Lagrangian multipliers to account for loop-closure
constraints. We apply this idea to a minimal setup involving one
hand and two eyes and demonstrate its effectiveness in improv-
ing the accuracy of pose estimation for various levels of noisy
measurements.

Keywords Hand-eye calibration, multi-sensor-robot calibration,
pose-graph optimization, constrained optimization

1 Introduction

The spatial relationship between a robot’s end-effector (hand) and

its

visual sensor (eye) is critical for achieving synchronization in task ex-
ecution [1]. In certain robotic applications, the use of multiple visual
sensors is necessary for robust and reliable estimations, often requiring

precise calibration.

DOI: 10.58895/ksp/1000174496-5 erschienen in:
Forum Bildverarbeitung 2024

DOI: 10.58895/ksp/1000174496 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000174496/

47



M. Jorpenda and V. Willert

A hand-eye calibration outputs the relative pose X € SE(3) be-
tween a sensor (eye) and the robot end-effector (hand) comprising ro-
tation R and translation t. Using N pairs of measured pose changes
{A;, B;}Y | and minimizing the nonlinear least squares loss £(X) =
7 TN |A;X — XB;|? subject to X via a gradient descent approach re-
sults in a very accurate estimate for the unknown pose X (see also
Fig. 1) outperforming non-iterative classical methods [2]. This idea has
been extended to multi-sensor setups comprising K sensors by several
authors [3-5] that all share the same basic idea: Simply optimizing
the overall loss Lx = Z]K:l L(X;), whereas {X]-}]K:1 are the fixed rela-

tive poses between each possible pair of sensors. This is equivalent to
optimizing each pair of sensors separately because the constrained ge-
ometric relations between the relative poses are not taken into account.
In [4] the constraint of equivalent rotations of the measured poses A;
and B; are considered but no loop-closure constraint on the estimates
X;. There are also solutions that increase accuracy for the special case
of hand-cameras calibration by directly optimizing the reprojection er-
ror and considering the uncertainties of the different measures using a
Gaussian-Helmert model [4, 6].

2 Proposed Method

Our work follows the idea of gradient based nonlinear least squares op-
timization but includes additional closed loop pose-graph constraints
to fulfill physical world reality for the estimates of all relative sensor
poses. Here, we explore the minimal multi-sensory setup consisting
of two sensors S1 and S2 rigidly attached to the end-effector EE of a
serial manipulator, as illustrated in Figure 1. Here, {A;, B;, C,-}fi | are
all measured pose changes of the two sensors and the end-effector ac-
quired by moving the robot arm accordingly. This sensory setup results
in three unknown relative poses X, Y and Z. These three relative poses
form a closed pose-graph loop at any time. Hence, we can formulate an

additional least squares loop closure constraint £, = %HXY —Z|? 0
and add it to the hand-multiple-eyes loss £3 for K = 3 frames via a
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Figure 1: Schematic representation of the configuration of the robot end-effector (EE) and
sensors (S1 and S2) for robot-multiple-eyes calibration. The figure illustrates
two states of the robot’s motion (represented by black and gray outlines) used
to measure pose changes {A;, B;, C;}. Additionally, the unknown relative poses
{X,Y, Z} between the sensors and the end-effector need to form a closed pose-
graph loop, where the constraint: XY = Z holds in the physical real world.

Lagrangian Multiplier A as follows: £ = L3 4+ AL., which reads

1 N
£ =35 L (IAX - XB,| + |BY - YC/I* + |A.Z - 2C)
1
+§/\||XY—Z||2, icl,..,N]. 1)

This objective is optimized with a gradient descent approach apply-
ing constrained differential optimization [7] and the angle-axis repre-
sentation for rotations.

2.1 Optimization of Rotations

We propose an optimization for estimating rotations and translations
separately by decoupling the poses of the measurements and estimates
from Eq. (1) into rotation matrices and translation vector components.
Additionally, we incorporate the closed-loop constraint into the objec-
tive function using a Lagrange multiplier, as shown in Egs. (3), where
Lrx, Lry, Lrz, and Lrc represent the rotational components of the
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objective function corresponding to the transformations X, Y, Z, and
the constraint, respectively. The rotation matrices are parameterized
in terms of their rotation axes s = [s, 51,52]T and denoted as Rx(sx),
Ry (sy), and Rz(sz). The rotation objective reads

Lr(sx,sy,sz,A) = Lrx(sx)+ Lry(sy) + Lrz(sz) + ALrc(sx,Sy,52),

()
1 N ) )
Lr= 2 (HRAiRX — RxRp;[|” + |RgiRy — RyR¢|
2N 3
2\, 1 2
+||R4iRz — RzR¢]| ) + E/\HRXRY —Rz|”. ®3)

We derive the gradients of the rotational objective function with respect
to the axis parameters and the Lagrange multiplier, as follows:

dLr _ ILrx(Rx(sx)) + dLrc(Rx(sx),A)
ast ast ast

1 T oRx (s
- {tr ([ZRX — R} RyRp; — RA,-RXR;.] X(X)> }
i

ast
T 0Rx(sx)
Isxk ’

f At ([RX—RZRH @)

OLr _ OLry(Ry(sy)) . 9Lrc(Ry(sy) M)
aSYk aSYk aSYk

1 T oRy (s
=< {tr ([2RY — RLRyRc; — RB,»RYREZ} Y(Y)) }
i

aSYk
T dRy(sy)
aSYk !

FAtr ([Ry — R)T(RZ} ®)
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dLr _ 9Lrz(Rz(sz)) n dLrc(Rz(s7),A)
aSZk 8sZk aSZk

1 T oRz(s
=< {tr ([ZRZ — R} RzR¢; — RAiRZR(E} Z(Z)> }
i

aSZk

+ Atr <[Rz—Rny]TaRZ(SZ)> ’ (6)
8sZk
oL 1
TAR = §||RXRY —Rz||* = Lgc. )

Compact formulas for partial derivatives of 3D rotation matrices in
exponential coordinates can be found in [8]. The gradients were instru-
mental in the gradient descent optimization, where the update rules for
the optimization parameters - rotation axes elements sy, sy and sy
for k € {0,1,2} and the Lagrange multiplier A —are given like follows:

sl = shy —zx% J,E€{X,Y,Z}, ke{0,1,2}. 8)
Ek
; ; oL ‘ 1 - ‘ ‘
AL =AT 4B 8)\11‘{ — A +:B§HRX(SZX)RY(SZY) “Ry(sh)2. )

Here, « and S are the step sizes and 7 representing the iteration index.
It should be noted that a gradient descent is performed to find the op-
timum rotation parameters sg;, whereas a gradient ascent is performed
to find the optimum A [7].

2.2 Optimization of Translations

Next, we optimize Eq. (1) for the translation vectors tx, ty and tz as-
suming the rotations Ry, Ry and Ry to already been optimal. This
leads to the following objective:

Lt = Lix+ Ly + Lz + MiLic, (10)
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1 N ) ,
=N (||((RAi*I)tX*RXtBiHAz‘)H + || (Rp;i—I)ty —Rytci+g; ||
i=

1
+[[(Ra; =Dtz — Rztc; + tAi||2> + 5/\t IRxty + tx — tz ]|

(11)
The gradients for the different translation vectors read
0Lix _
T Z ( Rai—1]" [(Ra;i—Dtx —RXtBi+tAi]> +At(tx+Rxty—tz),
i
(12)
oL 1
attyy =N ;([RBi_I)]T[(RBi_I)tY_RYtCi‘HBi])+)\t (terRg [tx—tz]) ,
(13)
oL 1
attzz = N;((RAi —I)"[(Ra,— D)tz —Rztci+ta;] )+/\t(tz —tx—Rxty) .

(14)

These gradients lead to the update rules for the translation parame-
ters with step sizes 7y and ¢ as follows

oLy

til =L — Vo Eec{X,Y,Z}, (15)
E
0L ; 1 . . )
AT Al 5%1 Ap+03 Rt} + b — t] (16)
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3 Evaluation

The gradient descent approach derived in Section 2 was implemented
in Matlab and tested using synthetic data. Robot and sensor poses were
generated using RoboDK [9] and then perturbed with Gaussian noise
to simulate real-world conditions. For all experiments the number of
measurements is set to N = 20, the step sizes are fixed to a = 0.5,
B =001,y =03and § = 1077 and the number of iterations is i =
1,...,5000. Each optimization run is initialized using the Tsai and Lenz
method [10].

3.1 Pose-Graph Loop Closure

Our method enforces a solution for hand-multiple-eyes calibration,
achieving a closed-loop pose graph by pushing the closed-loop con-
straints Lrc and Lyc close to zero, as shown in Figure 2 (a) and (b)
(green lines). In contrast, the unconstrained optimization fails to meet
the loop closure constraint (orange lines). The inclusion of constraints
also enhances the convergence rate for both rotational and translational
errors (green lines), resulting in more precise relative pose estimates
(see Fig. 3) that stabilizes at a lower error level.
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Figure 2: Rotational and translational errors for constrained (green) and unconstrained
(orange) optimization. (a) Error v/Lgrc when optimizing Ly including (green)
or excluding Lgrc (orange). (b) Error \/L;c when optimizing £; including
(green) or excluding L;c (orange).
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3.2 Improved Rotation and Translation Estimates

We compared the rotation and translation estimates against the ground
truth using the metrics Eg = ||Rest — R || for rotational deviation and
& = ||test — tgr|| for translational deviation. Figure 3 demonstrates
the impact of applying the loop-closure constraints during the opti-
mization process by comparing the total rotational and translational
errors against ground truth with and without constraints. As can be
seen the inclusion of loop-closure constraints not only enforces pose
estimates that form a closed pose loop but also enhances the overall
calibration accuracy, resulting in a better sensor alignment that is geo-
metrically consistent. In contrast, the unconstrained method achieves
less accurate results and does not provide a fully closed pose loop (see
also Fig. 2). Additionally, we analyzed the evolution of the accuracy
of the relative poses of the sensors during optimization: Sensor 1 with
respect to the end effector (X), sensor 2 with respect to sensor 1 (Y),
and sensor 2 with respect to the end effector (Z), as shown in Figure
4. Improvements relative to the ground truth were observed across all
system components but the improvements vary between the sensors.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Iterations Number of Iterations

(@) (b)
Figure 3: Rotation and translation estimates versus ground truth during unconstrained

(orange) and constraint (green) optimization. (a) Overall rotation errors .
(b) Overall translation errors &;.

3.3 Effect of Noise

We conducted 100 simulation runs per noise level, following [11], with
noise sampled from a Gaussian distribution. The histograms in Fig-
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Figure 4: Individual rotation and translation estimates versus ground truth during con-
straint optimization. (a) Rotation errors Egrx, gy and Erz. (b) Translation
errors Ex, Ery and &z .

ure 5 present the results for four different noise levels (NL1 to NL4). In
the rotation error histograms (top row), the noise follows a Gaussian
distribution with standard deviations from 0.5 to 2.0 degrees, while in
the translation error histograms (bottom row), the noise has standard
deviations from 1 to 4 mm, as per [12]. As the noise levels increase
(NL1 to NL4), the spread of both rotation and translation errors broad-
ens, indicated by the larger standard deviations (green dashed lines).
These results demonstrate the system’s sensitivity to increasing noise
in both rotation and translation estimates.

4 Summary

We present a new extension to hand-multiple-eyes calibration by
adding closed-loop constraints to ensure geometrical consistency be-
tween the poses of multiple visual sensors mounted on a robotic ma-
nipulator. Unlike traditional hand-eye calibration methods that ad-
dress sensor pairs independently, our approach simultaneously opti-
mizes the relative poses of all sensors.

First experimental results indicate that the inclusion of closed loop
pose-graph constraints in the optimization process leads to estimates
that form closed pose loops and each of these estimates are more accu-
rate than if the optimization is done without adding the loop closure
constraint. We have experienced that the results and the convergence
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Figure 5: Histograms of rotation errors (g, top row) and translation errors (&, bottom
row) for four different noise levels (NL1 to NL4). The orange bars show the
error distribution from 100 simulation runs per noise level. The red vertical
lines represent the mean errors, while the green dashed lines mark the standard
deviations.

properties strongly depend on the choice of suitable step sizes. Next,
an adaptive step size control should be added to take this problem into
account. Further on, the dependency on the number of measurements
and imbalances in the noise levels between the sensors need to be eval-
uated.

The Langrangian Multiplier method allows a straight forward exten-
sion to a calibration of more than three relative poses. Also a direct
optimization of the reprojection error for multiple-camera setups in-
cluding the loop-closure constraints is some future work to do.
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