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Abstract This paper presents an analysis of various autoencoder
methods for automated anomaly detection. Prototype image
datasets of battery foils, used as anode (copper foil) and cathode
(aluminum foil) in lithium-ion batteries, are generated using a
line-scan camera system with different illumination setups. The
objective is to design and evaluate unsupervised learning meth-
ods for surface inspection of the foils. Additionally, the impact
of different illumination geometries on the classification perfor-
mance of the implemented models and their inference times is
investigated and analyzed. Another objective is to accelerate
model inference by integrating a DPU-based architecture, focus-
ing on optimizing runtime performance for real-time anomaly
detection. Using the DPU, an approach achieved a speedup by a
factor of 40 compared to computations on the CPU.

Keywords Autoencoder, unsupervised machine learning,
anomaly detection, DPU acceleration, hardware acceleration

1 Introduction

The detection of defects in industrial production is crucial as product
anomalies can lead to increased costs, delays, and quality issues. In
recent years, the production of lithium-ion batteries has significantly
expanded due to the rising demand for electronic devices and electric
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vehicles. Quality assurance plays a vital role in ensuring that the pro-
duced batteries meet performance standards. This includes the quality
of the battery electrode foils, the anode, and the cathode, which are
later used in batteries. Early detection of anomalies in these foils is es-
sential to identify potential production errors or quality problems. This
is where anomaly detection using machine learning methods, such as
the autoencoder, comes into play. The autoencoder is a special type of
neural network that can be used for unsupervised or semi-supervised
anomaly detection [1]. Unsupervised methods are particularly suitable
for industrial anomaly detection because labeled defect data are often
scarce, expensive, or difficult to obtain.
For this reason, the following study investigates various methods for
automated anomaly detection in the context of anode and cathode bat-
tery foils. To ensure a comprehensive analysis of autoencoder meth-
ods, these will be compared with methods based on similarities be-
tween data points extracted from pre-trained neural networks. Fur-
thermore, the implemented methods will be compared with state-of-
the-art approaches in industrial anomaly detection, like Patchcore [2]
and PaDim [3].

Another objective includes examining the impact of different lighting
conditions on the application-specific properties of the foils. For this
purpose, datasets will be created under various lighting conditions,
including both defect-free training data and defect anomaly data. The
goal is to find a suitable lighting geometry and a method appropriate
for the respective applications of the cathode and anode.

As the complexity of machine learning models increases, the de-
mand for computational resources becomes more stringent. Tradi-
tional CPU and GPU implementations may struggle to meet the strict
real-time processing requirements of industrial applications. There-
fore, achieving real-time anomaly detection in industrial environments
requires not only effective detection methods but also optimized in-
ference speed to meet operational demands. To address this issue,
the study also explores accelerating model inference using DPU-based
hardware architectures. By deploying anomaly detection models on a
DPU, inference speed and runtime performance can be significantly en-
hanced, enabling the real-time deployment of complex machine learn-
ing models and bridging the gap between advanced detection tech-
niques and practical industrial applications.
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2 Materials and Methods

2.1 Data Acquisition and Preprocessing

A line-scan-system (Figure 1) is used to create the datasets for anode
and cathode. The foils are illuminated using different geometries: one
brightfield and two darkfields. A bright field lighting technique makes
reflecting surfaces appear bright since the angle at which the light is
incident and the angle at which the camera is aimed are equal. Con-
versely, dark field illumination involves observing the light that has
been dispersed or refracted from the sample. The goal is to identify
different types of anomalies.

The line-scan system records image information line by line (8192
pixels per line), and the foils movement over a roller enables the assem-
bly of these lines into a complete surface image. Each line is captured
three times, with the different lighting geometries each time. This setup
allows capturing the same area under varied lighting conditions, and
through a line shift called deinterlacing, the images are separated into
three distinct ones for further processing.

Initially, images of undamaged foils are captured to serve as the base-
line for training sets. Subsequently, anomalies such as dust, scratches,
and moisture are introduced to create test datasets. The influence of
the three lighting setups is demonstrated in Figure 2.

Figure 1: Line-scan-vision platform while scanning the cathode.
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(a) Anode

(b) Cathode

Figure 2: Images of same sample material under different illumination geometries (dark
field back, bright field, dark field front).

The preprocessing strategy is based on the assumption that differ-
ent defects are visible under different lighting conditions. Images from
each lighting condition are split into patches (256x256x3), transformed
into grayscale (256x256x1), and combined into a multi-flash image
(256x256x3). This combination stores relevant information from each
lighting condition in separate color channels, facilitating the recogni-
tion of various anomaly types in a single image.

2.2 Solution Approach 1: Reconstruction-Based Methods

To classify the anomalies in the generated datasets, two autoencoder
methods were initially tested: Convolutional Autoencoder (CAE) [4]
and Variational Autoencoder (VAE) [1]. Autoencoders learn to recon-
struct an image from error-free data that closely resembles the origi-
nal. During inference, images with errors are reconstructed by the
model as if they had no anomalies. By comparing the original input
image with the reconstruction, such as using the Mean Squared Error
(MSE), anomalies can be classified. For the reconstruction-based meth-
ods, Mean Squared Error (MSE) and Structural Similarity Index (SSIM)
are used as classification metrics. MSE is widely used and quickly
computed, making it suitable for high-speed applications. However, it
can be sensitive to noise. SSIM, on the other hand, considers bright-
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ness, contrast, and structure, providing robustness against noise [5] .
Both metrics help determine anomaly scores and set thresholds for bi-
nary classification based on F1-score (harmonic mean of presision and
recall) maximization.

2.3 Solution Approach 2: Similarity-Based Embedding Methods

This approach involves using pre-trained neural networks (backbones)
to extract features from error-free training data, forming embeddings
that are then reduced using Principal Component Analysis (PCA). Classi-
fication methods such as k-Nearest Neighbors (kNN) and Kernel Density
Estimation (KDE) compare the similarity of these embeddings to detect
anomalies.

ResNet-50 and MobileNet are chosen as backbones. ResNet-50 is suited
for extracting complex features and structures in image data, making
it ideal for patterned surfaces like the anode foil. MobileNet is selected
for its efficiency and suitability for resource-constrained environments.

The extracted feature embeddings of the error-free images are stored
as vectors after dimensionality reduction. During inference, the Eu-
clidean distance to the k-nearest neighbors in the embeddings is cal-
culated. The features of anomalous images are further away from the
stored features of error-free images. The mean of the calculated dis-
tances then forms the anomaly score for this method.

The choice of these classifiers is motivated by the need for efficiency
and the generally low complexity of the image structures involved.
These approaches are based on state-of-the-art methods such as Patch-
core [2], PaDim [3], and a method from the TKH Group (TKH-AD) 4,
which are also compared in the evaluation. Figure 3 shows the pro-
cess of the Similarity-Based Embeddings approach. All approaches were
implemented in Python using TensorFlow and Keras.

2.4 DPU acceleration Solution

To meet the demanding processing speeds required in the battery foil
industry, the Xilinx Deep Learning Processing Unit (DPU) [6] IP core
was selected for hardware acceleration. The DPU, integrated into the

4 https://www.tkhgroup.com/
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Figure 3: Testing or inference procedure of the similarity-based KNN method.

Xilinx ZCU102 FPGA platform, is designed to accelerate Convolutional
Neural Network (CNN) computations using dedicated hardware opti-
mized for parallel processing and high throughput. The architecture
is configurable, supporting up to four cores [7], with a maximum of
three cores used on the ZCU102 due to resource constraints. Each core
independently handles deep learning tasks, maximizing resource uti-
lization through multi-core and multi-threaded processing.

The DPU’s specialized instruction set efficiently manages CNN oper-
ations such as convolutions and activation functions, making it suitable
for real-time applications. Models must be quantized and compiled
using Xilinx’s Vitis AI tools to optimize them for the DPU, with un-
supported operations offloaded to the ARM CPU. This study focused
on deploying a quantized Convolutional Autoencoder (CAE) model on
different DPU configurations, analyzing the impact of multi-threading
on inference speed and how quantization affects the model’s accuracy,
using the cathode dataset.

3 Results and discussion

3.1 Performance Evaluation under Different Illumination Geometries

This section presents the evaluation of model performance by analyz-
ing their Receiver Operating Characteristic (ROC) curves and Area Under
the Curve (AUC) values. The ROC curve illustrates the true positive rate
against the false positive rate at various threshold settings, while the
AUC value provides a single measure of overall model performance by
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quantifying the area under the ROC curve. The models were trained
with 300 good samples per dataset, and the evaluation metrics were
calculated on a test set with 200 good and 200 bad samples. Initially,
we evaluated the implemented approaches using combined illumina-
tion geometries (Multi-Flash).

Figure 4 show the ROC curves for the cathode and anode, respec-
tively, under Multi-Flash illumination. The ROC curves for the anode
are significantly lower than those for the cathode. To examine the im-
pact of the individual illuminations, the best models for each illumi-
nation category were tested and summarized in Figure 5. The results
indicate that the combined illumination (Multi-Flash) does not enhance
performance for the anode, with the best performance achieved using
dark field back illumination alone, where MobileNet with KNN classi-
fier reached 97% AUC. For the cathode, multiple approaches achieved
99% AUC under both Multi-Flash and bright field illumination.

For a comprehensive comparison with state-of-the-art methods, Fig-
ure 6 presents the AUC values and F1 scores for the anode data under
dark field back illumination. With this Dataset the MobileNet KNN
approach achieved a slightly higher AUC (97%) compared to Patch-
core and PaDim (both 94%). However, Patchcore achieved the best per-
formance under Multi-Flash illumination with 88% AUC, while PaDim
performed best under dark field front illumination with 97% AUC for
the anode data.
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Figure 4: ROC-Curves with combined Multi-Flash images.
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Figure 5: Comparison of the best approaches per illumination geometry.
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Figure 6: Comparison of the classification performance for the anode in the dark field
back with state-of-the-art methods.

3.2 Speed evaluation

The inference speed (time for predicting, if one patch is normal or
anormal) of the implemented methods is measured across the entire
test dataset. The measurements were taken on a NVIDIA GeForce RTX
3090 GPU and averaged over all test samples to relate speed to classi-
fication performance (AUC). The best time was achieved by the CAE
and corresponds to a line rate of 0.076 kHz. The measurements in-
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Figure 7: Inference speed of the implemented models at the anode in the darkfield front.

clude the predictions or reconstructions made by the autoencoder and
the feature extraction from the pre-trained networks (calculated on the
GPU), as well as the computation of the post-processing on the CPU
(Intel Core i7).

3.3 Performation Evaluation of Hardware acceleration

Figure 8 is a performance comparison line chart that illustrates the time
efficiency of three different configurations, labeled as 1DPU, 2DPU,
and 3DPU, across various thread counts while processing a single
frame. In studying the impact of DPU core count and thread count
on acceleration performance, it was found that performance improve-
ments are not linear as the number of DPU cores and threads increases.
When the thread count reaches a certain level, the performance of a
single DPU core tends to saturate, and adding more threads may ac-
tually lead to a decline in performance. In multi-core configurations,
although increasing the number of cores can enhance performance, the
complexity of coordinating multiple cores and resource contention lim-
its the extent of these improvements.

For the CAE model used in this study, the optimal configuration,
identified through optimization analysis, is a combination of two DPU
cores with four threads. Under this configuration, model inference
achieved a line rate of 2.65 KHz (32 Patches). This result demonstrates
the significant performance improvement in model inference within a
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Figure 8: Thread-based performance analysis of single and multi-DPU Configurations.

DPU-accelerated environment.
Quantization was found to degrade the reconstruction accuracy of

the models, particularly for MSE-based approaches due to their sensi-
tivity to pixel-level variations, whereas SSIM-based models maintained
greater robustness, demonstrating better tolerance to the effects of re-
duced precision.

4 Conclusions and outlook

This work developed and evaluated unsupervised machine learning
methods for detecting anomalies in battery foils under various light-
ing conditions. Additionally, by using Xilinx’s DPU IP core and Vitis
AI tools for hardware acceleration, we achieved significant improve-
ments in the model’s speed and efficiency. This highlights the ben-
efits of FPGA-based solutions for industrial applications that require
fast and power-efficient performance. The investigations showed that
combining different illumination geometries into a single image proved
effective for the cathode, while the anode did not benefit from this ap-
proach. The best results for the anode were achieved using only the
dark field back illumination. Here, the best approach (MobileNet-KNN)
delivered slightly better results compared to established state-of-the-art
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methods such as PatchCore and PaDim. For datasets containing more
structure (anode, multi-flash), PatchCore achieved higher results com-
pared to MobileNet-KNN.

To obtain the most realistic results from the models, annotation by
an expert would be necessary. Furthermore, saturation of AUC values
was observed for several approaches in the cathode datasets. A future
approach would be to generate and annotate datasets with even more
subtle anomalies to better compare the approaches.

The findings have also demonstrated the significant improvements
in processing speed and efficiency afforded by DPU acceleration, mak-
ing these systems suitable for scenarios where rapid data analysis is
critical.

For future advancements, focusing on further reducing latency in
data processing and optimizing the entire computational pipeline will
be crucial. This includes not only enhancing the model inference stages
but also streamlining data input/output operations, preprocessing,
and postprocessing. Real-time applications often involve continuous
data streams, necessitating systems that can maintain high processing
speeds without bottlenecks.

The concept of Whole Application Acceleration(WAA) is particularly
promising. Considering the substantial improvements in processing
times and efficiency achieved through DPU acceleration in this study,
future research could further expand the scope of acceleration. By em-
ploying FPGA or High-Level Synthesis (HLS) not only for model infer-
ence but also for preprocessing and postprocessing, the entire com-
putational pipeline, from data acquisition to final output, could bene-
fit from hardware acceleration. Implementing WAA would lead to a
more comprehensive utilization of FPGA capabilities, minimizing CPU
dependencies and alleviating the bottlenecks observed in the current
setup.
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