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Abstract This paper investigates how the noise characteristics of
synthetically generated camera images correspond to those of a
real camera. We determine the photon transfer curve from a set
of rendered images of a static scene. Furthermore, we present
a method to identify the regions with high temporal noise, i.e.,
rendering noise, in synthetically generated data from a single
rendered image. Finally, we present a strategy on how a param-
eterization of the rendering can be achieved that minimizes the
noise while also minimizing the rendering time.
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1 Introduction

The advances in detecting and classifying defects that we might expect
from machine learning (ML) approaches have often been stymied by
lack of data. To train the Al models, they would need to be fed with
a large number of examples of good products, but also supplied with
precisely labeled bad ones. There are simply not enough of those, if
any at all, which is why we turned the focus of our efforts on synthetic
image generation as it has been performed in various visual inspection
applications [1-8]. The idea is to simulate the entire testing and inspec-
tion environment — specimen geometry, material properties, lighting,
sensor technology — to produce images that are synthetic, but still suf-
ficiently realistic. And then we can use data of defects that we have
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Figure 1: Mathematical camera model of a single pixel (source: EMVA Standard 1288
9D

gathered in the past to add synthetic defects as well and vary them
in various ways. This might help us solve the “chicken or egg” prob-
lem. ML-based reproduction of images with defects requires that there
are at least some images available, so it still depends on the quantity
and quality of the input data. We can also build in any kind of defect
we want, and, of course, the synthetic images created in this way are
always labeled perfectly.

In the following, we analyze the noise characteristics of such a syn-
thetic scene and how it resembles the linear camera model according to
the standard EMVA 1288 [9]. Furthermore, we are developing strate-
gies on how the noise characteristics can be improved so that they more
closely resemble those of a real camera.

2 Fundamentals

2.1 Image Formation

We assume the transmission system to be a linear, shift invariant sys-
tem. A standard digital industrial camera provides a linear photo re-
sponse characteristic: the digital signal increases linearly with the num-
ber of photons received. These assumptions describe the properties of
an ideal camera or sensor as described by the EMVA Standard 1288 (cf.
Fig. 1) [9,10].

When a mean number of photons j, reaches the pixel area during
exposure time, the fraction # is absorbed and creates a mean number
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of photo electrons

He = Hp-. @

The dark current pq4 is the mean number of electrons present without
light. It is added to the mean number of electrons ye. Together they
form a charge, which is converted by a capacitor to a voltage and am-
plified by the system gain K. Then the voltage is digitized resulting in
a digital gray value piy:

Hy = K(Ve + .ud) = K‘ue + Hy.dark- (2

The mean photon flux fluctuates randomly according to the Poisson
probability distribution [11]. Therefore, the variance of the electron
noise is equal to the mean number of electrons:

2
02 = Ye. ®3)
All noise sources related to the sensor read out and amplifier circuits

can be described by a signal independent normally distributed noise

source with variance ¢3. The final analog-to-digital conversion adds

another noise source that is uniformly distributed with variance aé =

1/12. Because the variances of all noise sources add up linearly, the
total temporal variance of the digital signal yy is given according to the
laws of error propagation by

a}% = K*(03 + 02) + oy. 4)
After plugging (3) into (4), we get
a}% = K*(05 + pe) + ay. ®)

The mean number of photo electrons . cannot be measured. From (2)
we get

He = (Vy - .uy.dark)/K' (6)
Now plugging (6) into (5) yields

U)% = KzadzacZI + K(.uy - Vy.clark)- (7)
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Figure 2: Photon transfer function of a real camera. The graph draws the measured

variance U}% versus the mean photo-induced gray values piy — iy dark and the

linear regression line used to determine the overall system gain K. The red
dots mark the 0—70% range of saturation that is used for the linear regression.

Now the unknown parameters from Fig. 1 (red color) can be deter-
mined using the so called photon transfer method [12]: The system
gain K is determined from the slope of (7), and the dark noise variance
Ué from its offset.

So in summary, for a linear camera, the temporal noise with vari-
ance 02 shows a linear dependence on the mean signal jy. In order to
verify whether a camera or a (synthetically generated) dataset exhibits
this linear characteristic, one simply has to apply the photon transfer
method and analyze the linearity of the graph. A real camera has the
characteristics as shown in Fig. 2.

2.2 Ray Tracing

Ray tracing is a rendering technique that simulates the behavior of
light to create realistic images using geometric optics. At its core, the
process begins by sending rays from a virtual camera into a scene.
When a ray encounters an object, the algorithm evaluates how light
interacts with the surface at that point. This involves calculating surface
normals, material properties, and the angle of incidence, which inform
how much light is reflected, refracted, or absorbed by the material.
Finally, after processing all rays for each pixel, the results are combined
to form the final image. The accumulated energy values, influenced by
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lighting and surface properties, create a 2D image representation of
the scene. During the rendering, the render equation is approximately
solved using a monte carlo approach. The render equation

Lo(p, wo) = Le(p, wo) + [ BRDF(p, @i, wo)Li(p, @) (@[n) dwi ()
Q

describes the propagation of light through the scene with L, (p, w,)
representing the outgoing radiance from point p in the direction w,,
Le(p, wo) being the emitted radiance from point p in the direction
wo, BRDF(p, wj, w,) denoting the bidirectional reflectance distribution
function (BRDF), which indicates how light is reflected from the di-
rection w; to the direction w, at point p, L;i(p, wi) representing the
incoming radiance to point p from the direction wj, the cosine w/n of
the angle of incidence between the incoming light direction w; and the
surface normal n and the positive hemisphere () above point p.

3 Setup

The pipeline for image synthesis consists of several steps, which are
described subsequently. First, the setup for the real world image ac-
quisition is virtually recreated using 3D models. The open source 3D
software Blender [13] makes it possible to either model the required
objects manually or import existing models from CAD data and other
sources. In Blender the visual inspection system setup is recreated in
detail and the positions of sensors and lighting can be defined in the 3D
scene. To generate images from the 3D scene, ray tracing is used as a
rendering method. Ray tracing physically simulates light rays to create
photo-realistic images by following the path of light rays and analyzing
their interaction with surfaces to calculate effects such as shadows and
reflections. Mitsuba 3 [14] is used as the rendering engine. To render
the scene created in Blender with Mitsuba, all objects in the scene are
exported and the Mitsuba Blender Add-On is used to generate an XML
scene description. This scene description contains a textual description
of the recreation of the measuring setup including all the information
required for rendering with Mitsuba 3. The rendering is followed by
a denoising process using Intel Open Image Denoise [15]. This open
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source library offers high-quality and high-performance denoising fil-
ters. The rendering and denoising process is automated through script-
ing. In the process of rendering an image using the Mitsuba rendering
tool, each generated pixel value represents the energy received at that
pixel. This energy is linearly assigned to the pixel values. Similar to the
saturation in CCD sensors, the pixel values are clipped at a maximum
value of one. Before saving the images, a gamma correction of 2.2 is
applied in accordance with the sRGB color space, and the images are
quantized into 8-bit formats.

The image generation in ray tracing algorithms is dependent on ran-
dom variables. Therefore, the seed of the random number generator is
changed to produce statistically independent images.

The stochastic nature of the rendering process leads to local devia-
tions from the perfect scene, which can be interpreted as spatial noise.
Less noise can be achieved by increasing the rendering parameter sam-
ples per pixel (SPP) but at the cost of higher rendering times. In prac-
tice, the maximum allowed time to render an image sets an upper
boundary for the maximum SPP.

Especially in dark field setups the noise is very strong. Fig. 3 depicts
the test object as seen by the virtual camera, with the effects of different
SPP and the denoiser turned off or on.

4 Experiments

The scene is a dark field setup and consists of several components,
with the base being a housing made of aluminum profiles and black
cover plates that ensure controlled imaging conditions on the inside.
An area light is installed at the bottom of the housing, above which a
movable shutter is fitted to shade the light. Additional lights are po-
sitioned above the mount on the rear wall and on both sides, whereby
these area lights illuminate the test object from three directions. The
camera is positioned above the test object. The object under con-
sideration is a two-component injection molded part for which CAD
data is provided. The top layer consists of transparent polymethyl
methacrylate (PMMA), under which symbols with varying degrees of
transparency are arranged. The next layer represents a deformed film,
while the base consists of a thermoplastic base body. Fig. 4 visualizes
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(a) 64 SPP (b) 2500 SPP

(c) 64 SPP, denoised (d) 2500 SPP, denoised

Figure 3: Scene rendered with different samples per pixel (SPP) and denoiser turned off
or on.

the composition of the inspected object. For the simulation of image
data, suitable materials for all components are defined using surface
scattering models. The Mitsuba 3 renderer provides a principled bidi-
rectional scattering distribution function (BSDF) model that can cover a
wide range of materials and is used to simulate all materials contained
in the scene. The individual parameters are adjusted, as far as possible,
according to the real material properties, such as the refractive index
of PMMA. Where it is not possible to transfer the material properties
directly to the simulation model, the parameters are selected in such a
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Figure 4: Composition of the modeled product.

way that the visual impression of the rendered images closely matches
the real appearance.

For the evaluations, 50 images each with 64 SPP and 2500 SPP are
generated using the pipeline described in Sec. 3.

The rendering noise (cf. Sec. 3) is not detectable from a single im-
age, because any rendered image is only an approximation but we
would need a perfectly rendered scene against which we could com-
pare. Therefore, we render the same scene multiple times (50 in this
paper). It is important to set a random seed. As a result, the imperfec-
tions, i.e., the spatial noise, occurs in different pixels for each rendered
image. By looking at the rendered images (cf. Fig. 3) as a temporal
sequence, like in a video, the noise now appears as temporal noise
between the rendered images. Fig. 5 depicts the variance along the
temporal axis of the rendered images. As can be seen, the noise de-
creases significantly with higher SPP as well with the denoiser turned
on.
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Figure 5: Variance along the temporal axes of the rendered images. Note the different
scales.

5 Results

In this section we analyze how the rendering noise compares to the
linear camera model.

To compute the photon transfer curve, we make use of the fact that
the rendered data does not contain spatial non-uniformities as com-
pared to a real camera sensor. Hence we do not have to apply the
method described in the EMVA1288 standard and simply compute the
average and variance along the temporal axis of the image sequence.
We then quantize the average in bins with width one and average the
variance at all pixels where the average has equal values.
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Finally we plot the variance against the average yielding the graphs
as shown in Fig. 6. They are very noisy compared to the photon transfer
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Figure 6: Photon transfer curve with different samples per pixel (SPP) and denoiser
turned off or on.

curved of a real camera, cf. Fig. 2. They are non-linear and not even
monotone. Therefore we conclude that the characteristic of rendering
noise does not conform to the linear camera model according to the
EMVA1288 standard.

It is very insightful to note that the variance is high near edges, i.e.
where there are strong brightness changes in the image. Fig. 7 de-
picts the Sobel-filtered images for the four different rendering settings;
besides the scaling they look quite similar to Fig. 5. As expected, it ap-
pears that the noise is particularly high in regions with complex light
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propagation.
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Figure 7: Sobel-filtered images with different samples per pixel (SPP) and denoiser
turned off or on.

6 Proposed Method

A straight forward approach to minimize the noise is to render a scene
multiple times and compute its variance along the temporal axis (cf.
Fig. 5). We set for each pixel an individual SPP based on the targeted
rendering time. It must be chosen in such a manner that the overall
noise is minimal, i.e., low in regions with low temporal variance and
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vice versa. However, to render a scene multiple times (50 to 100) be-
forehand is extremely time consuming.

Therefore, we make use of the similarities between the variance im-
ages (cf. Fig. 5) and the Sobel images (cf. Fig. 7): The regions with
strong edges can be extracted from a single rendered scene by edge
detection, e.g. by using a Sobel-filter (cf. Fig. 7). This serves as an
approximation for the variance but can be computed much faster.

If the photon transfer curves are now calculated without the regions
with strong edges, the signal variance 05 is significantly reduced or
even almost below 2. Here, the rendered image is practically noise
free; to resemble the image of a real camera we can now add photon
noise and dark current noise by simple parameterization based on the
pixel gray values in compliance with the linear camera model [9].

7 Summary

Synthetically generated data contains temporal noise that does not cor-
respond to the photon noise of real cameras, but rather correlates with
the complexity of the scene. The rendered image is less accurate and
therefore more susceptible to noise in regions with edges or strong
brightness transitions and in places that exhibit diffuse volume scatter-
ing.

Based on these findings, a fast method was derived to identify the
regions with high rendering noise from a single rendered image. These
regions must be sampled with a higher SPP-setting, while the average
SPP-setting is based on the targeted rendering time.
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Figure 8: Photon transfer curve of filtered data with different samples per pixel (SPP)
and denoiser turned off or on. The graph in (a) is discontinuous because some
mean signal values i, no longer exist in the filtered data.
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