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1 Introduction

The aim of this article is to provide an application-oriented overview of two
variants of the Sparse Identification of Nonlinear Dynamics (SINDy). The
original variant introduced by Brunton et al. in [1], and a modified integral
version presented by Schaeffer and McCalla in [2]. The SINDy algorithm is, in
general, a method for estimating the governing equations of nonlinear dynamical
systems from measurement data. It is based on sparse regression and therefore
designed to find a parsimonious mathematical model with the fewest terms
necessary to accurately describe the underlying dynamics of a system. SINDy
leverages techniques from the field of data science to produce interpretable
models that can provide additional insight into the fundamental principles that
describe a system’s behavior. Data-driven methods for system identification are
also valuable in scenarios where more traditional approaches, such as modeling
from first principles, are impractical due to the high complexity of a system or
because the governing scientific laws are not fully known. These techniques
can therefore accelerate industrial tasks, such as controller design, and support
research by providing dynamic models that offer new insights into a process.

As presented in [1], SINDy is capable of estimating a nonlinear discrete-time
model in the form of difference equations as well as a nonlinear continuous-
time model in the form of ordinary differential equations (ODEs). This work,
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however, focuses solely on continuous-time models, as ODEs are likely to
provide a better basis for an in-depth analysis of a system. This is partly due to
the fact that the form and parameter values of difference equations are influenced
by factors such as the discretization method or the sample time, whereas the
attributes of ODEs are determined solely by the system they describe. ODEs,
therefore, provide more accessible information when governing physical laws or
the physical interpretation of parameters are of interest. For more information
on the estimation of discrete-time models with SINDy, the reader is referred
to [1, 3].

The nonlinear ODE model generated by SINDy is of the general form

ẋ(t) = f(x(t),u(t), t) (1)

where u(t), x(t), ẋ(t), and f(x(t),u(t), t) are vectors whose elements represent
potential inputs to the system, the system’s state variables, the state variables’
first derivatives with respect to time, and the corresponding state equations. This
model is estimated from training data for u(t), x(t), and ẋ(t) by approximating
the right-hand side of (1) as linear combinations of user-defined candidate
functions. The construction of training datasets therefore requires data of all
the inputs, state variables, and state variables’ first derivatives with respect
to time. Especially the last requirement, however, creates challenges since
the time derivatives of a system’s state variables are not always measurable,
and common numerical differentiation techniques (e.g., finite differences)
are likely to produce corrupted derivative approximations when applied to
noisy measurements of the state variables. To address this issue, more ad-
vanced methods, such as the Total Variation Regularized Derivative [4], Spline
Polynomial Interpolation [5], and an algorithm based on the Savitzky-Golay
Filter [6] were proposed in [1, 7–9], [10], and [11], respectively. While these
methods produce significantly more accurate derivative approximations of noise-
contaminated data, some of them, like the Savitzky-Golay Filter, can corrupt
the data, and therefore the derivative, by altering curvature or moving extrema.
Other methods, such as the Total Variation Regularized Derivative, may be
less prone to altering the data but have limitations on the size of the dataset
they can be applied to. To address these issues, an algorithm for batchwise
Tikhonov Regularized Differentiation (TRD) is presented in this work. The
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algorithm extends the basic TRD [12], which has high accuracy compared to
many of the aforementioned methods [5], but is also limited with regard to the
size of the dataset it can be applied to. Batchwise TRD splits larger datasets
into batches for the differentiation and merges the individual segments back
into a single derivative, allowing it to be applied to datasets of all sizes. This
combination of high accuracy and flexibility makes batchwise TRD a suitable
tool for generating training data for SINDy when only noisy measurements of a
system’s state variables are available. For a more detailed description of most
of the differentiation methods referenced in this work, the reader is referred
to [5].

An alternative variant of SINDy, that does not require the state variables’
derivatives for the construction of training datasets, was introduced in [2].
This variant will be referred to as integral SINDy (I-SINDy) within this work,
as the key difference between SINDy and I-SINDy is given by the fact that
I-SINDy uses the time integral of relationship (1) for the model estimation. This
modified approach also translates to the training data, as the time integrals of
the state variables are required for the construction of training datasets instead
of their time derivatives. While these integrals are also not measurable in many
cases, computing them from noisy measurement data of the state variables poses
notably less challenges then it does for the derivatives. This is due to the fact
that even simple numerical integration schemes resemble a high robustness
against noise. Moreover, numerical integration is performed iteratively and
therefore not constraint with regard to the dataset size. I-SINDy and SINDy
with batchwise TRD can therefore be recognized as alternative options for the
identification of nonlinear ODE models, when only noisy measurements of
a system’s states are available. This leads to the aim of this article, which is
providing an application-oriented comparison of both methods.

The remainder of the article is structured as follows. The general SINDy
framework and the modifications resulting in I-SINDy are presented together
with the batchwise TRD algorithm in section 2. The robustness of both methods
to noise in the training data as well as the results that were achieved with data of
a real world tank system, are illustrated in section 3. The results are summarized
in section 4 and future research directions are discussed.
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2 The SINDy, I-SINDy, and TRD Methods

This section provides a detailed overview of the SINDy and I-SINDy methods,
as well as the batchwise TRD algorithm. The general framework of SINDy is
illustrated in 2.1, and the modifications leading to I-SINDy are summarized in
2.2. Subsequently, the batchwise TRD algorithm is be presented in 2.3.

2.1 The SINDy Method

Since SINDy was originally introduced in [1], the general concepts discussed
here are drawn from that source unless stated otherwise.

SINDy estimates a nonlinear ODE model of the the general form

ẋ(t) = f(x(t),u(t), t), (1)

where u(t) ∈ Rp and x(t), ẋ(t), f(x(t),u(t), t) ∈ Rn are column vectors whose
elements represent the inputs to the system, the system’s state variables, the
state variables’ first derivatives with respect to time, and the corresponding
state equations. The model is estimated from training data for u(t), x(t)
and ẋ(t) by approximating the individual state equations in terms of of k
user-defined candidate functions gi : Yi → Zi, i ∈ {1,2, . . . ,k}. Assuming
the training data is real-valued, gi(·) is a scalar and real-valued function of
wi scalar and real-valued arguments. Formally, this equates to Zi ⊆ R, and
Yi := Yi,1×Yi,2 · · ·×Yi,wi with Yi, j ⊆ R for all j ∈ {1,2, . . . ,wi}. The model esti-
mation process yields n coefficient vectors vi := [vi,1 . . . vi,k]

T ∈ Rk,

i ∈ {1,2, . . . ,n}, with each vector determining the contribution of the candidate
functions to a corresponding state equation. The estimated model is therefore
composed of n state equations, with each being a linear combination of the
candidate functions.

ẋ(t) =




ẋ1(t)
ẋ2(t)

...
ẋn(t)



=




v1,1g1(·)+ v1,2g2(·) · · ·+ v1,kgk(·)
v2,1g1(·)+ v2,2g2(·) · · ·+ v2,kgk(·)

...
...

. . .
...

vn,1g1(·)+ vn,2g2(·) · · ·+ vn,kgk(·)




(2)
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For the construction of training datasets, the data for u(t), x(t), and ẋ(t) are
required. Since this section focuses on the general framework of SINDy, it
will be assumed that these data are available in sufficiently high quality and
that they are given as discrete measurements collected at the time instances
t1, t2, . . . , tm.

A training dataset for SINDy consists of three data matrices and the vector t :=
[ t1 . . . tm ]T ∈Rm. To construct the matrices, the measurements are arranged into
the column vectors µi, χ j, χ̇ j ∈Rm, with i ∈ {1,2, . . . , p} and j ∈ {1,2, . . . ,n},
where each vector holds the data for one input, state variable, or time derivative,
respectively.

µi :=




ui(t1)
...

ui(tm)


 , χ j :=




x j(t1)
...

x j(tm)


 , χ̇ j :=




ẋ j(t1)
...

ẋ j(tm)




Subsequently, the matrices U ∈ Rm×p and X, Ẋ ∈ Rm×n are constructed from
these vectors and provided to SINDy as training data along with t.

U :=
[
µ1 . . . µp

]
, X :=

[
χ1 . . . χn

]
, Ẋ :=

[
χ̇1 . . . χ̇n

]

In addition to the training data, SINDy requires the user to define the candidate
functions. This step is analogous to the tuning of an essential hyperparameter, as
the quality of the estimated model largely depends on it. In general, any function
with a domain and codomain compatible with the training data can be used as a
candidate function. In practice, the selection of candidate functions should be
based on the characteristics of the system being modeled. For example, if the
system exhibits oscillatory behavior, trigonometric functions such as sine and
cosine may be a reasonable choice. Another common choice is powers of the
inputs or state variables, as they often appear in models that were derived from
first principles. A constant bias, as well as functions that depend solely on time,
may also be selected if the corresponding behavior is observed in the system.
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Provided with the training data and candidate functions, SINDy constructs the
library matrix

D :=




g1(·)
∣∣
t=t1

g2(·)
∣∣
t=t1

. . . gk(·)
∣∣
t=t1

g1(·)
∣∣
t=t2

g2(·)
∣∣
t=t2

. . . gk(·)
∣∣
t=t2

...
...

. . .
...

g1(·)
∣∣
t=tm

g2(·)
∣∣
t=tm

. . . gk(·)
∣∣
t=tm



∈ Rm×k.

The structure of D is such that each column contains the values of a candidate
function evaluated at the time instances in t.

Following the construction of the library matrix, SINDy estimates the individual
state equations. Within this process, Sparse Regression Methods (SRMs) are
employed for solving the optimization problems that yield the coefficient vectors.
SRMs are used in in particular, as they are designed to balance model accuracy
and complexity. Within the context of SINDy, this translates to the objective
of finding a set of state equations, where each is composed of the fewest
number of candidate functions necessary to accurately describe the dynamics
of the training data. The use of SRMs, therefore, counteracts overfitting and
prevents unnecessary model complexity. Moreover, the results in [1] suggest that
sparse models are more likely to represent the actual physical laws that govern
a system’s behavior. Examples for SRMs, that have been used particularly
within the SINDy framework, are the Sequential Threshold Least Squares
algorithm [1], the Douglas-Rachford algorithm [2, 13], the Least Absolute
Shrinkage and Selection Operator [11, 14], and Sparse Relaxed Regularized
Regression [15, 16]. As the referenced literature suggests, that all of these
methods are compatible with the SINDy framework, the choice of a particular
SRM is not as important as, for instance, the choice of candidate functions.
However, some methods may still perform better in specific scenarios than
others (e.g., limited training data or high noise levels). It is therefore suggested,
to perform an initial comparison of multiple models, where each is estimated
with a different SRM. This approach is feasible without to much additional
effort, as an open source software package for SINDy ( [3]) is available, that
allows the user to choose from different pre-implemented SRMs. Since the
specifics of the aforementioned sparse regression algorithms are beyond the
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scope of this article, a general approach for the estimation of the state equations
will be illustrated in the remainder of this section.

SINDy performs the model estimation in n steps, corresponding to the estimation
of n state equations. In each step, the selected SRM aims to recover a sparse
coefficient vector that provides the best fit to the training data. Independent of
the particular choice of SRM, the overall objective of the estimation process
may be expressed as

argmin
vi∈S

(χ̇i−Dvi), i ∈ {1,2, . . . ,n}. (3)

where S is the set of all sparse coefficient vectors. It should be noted however,
that (3) is only used for conveying the general aim of the optimization, as the
particular form of the optimization problem depends on the choice of SRM.

Subsequent to the calculation of all coefficient vectors, SINDy constructs the
row vector

δ
T(t) :=

[
g1(·) g2(·) . . . gk(·)

]
∈ Rk,

whose elements are the symbolic candidate functions, arranged in the same order
as the corresponding data in D. It should be noted, that D contains discrete data
values that were generated by applying the candidate functions to the training
data, while δ T(t) contains the actual symbolic candidate functions.

In the final step, SINDy recovers the state equations via the relationship

ẋi(t) = δ
T(t)vi i ∈ {1,2, . . . ,n}.

Which is equivalent to the form (2), that was used in the introduction of this
section.
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2.2 The I-SINDy method

This subsection illustrates the modifications to the general SINDy framework
that result in I-SINDy. It therefore builds strongly on the content of 2.1, where
the general SINDy framework is presented. Accordingly, 2.1 is recommended as
preliminary literature. As I-SINDy was originally introduced in [1], the general
concepts illustrated here are drawn from that source unless stated otherwise.

I-SINDy also estimates a nonlinear ODE model of the general form (1). For the
model estimation process, however, I-SINDy uses the relationship

x(t)−x(t1) =
∫ t

t1
f(x(τ), u(τ), τ)dτ, (4)

which is the time integral of (1), assuming measurements begin at t = t1.
Equivalent to SINDy, I-SINDy approximates the right-hand side of (4) as linear
combinations of candidate functions. However, the derivatives of the candidate
functions are first defined in terms of x(t), u(t), and t and then numerically
integrated. Thus, the construction of training datasets requires the measurement
data to be integrated rather than differentiated.

Provided with the training data and choice of candidate functions, I-SINDy
constructs the library matrix D. Since this process is identical for SINDy and
I-SINDy, the reader is referred to section 2.1, where a detailed description
is provided. As I-SINDy estimates the integrals of the state equations, the
numerical integrals of the columns of D are used for the estimation. This
ensures that the state equations of the final ODE model are given as linear
combinations of the selected candidate functions and thus makes it easier to
chose candidate functions based on knowledge of the system being modeled.
With D = [d1, d2, . . . , dk ], I-SINDy constructs the the integral library matrix

Dint :=
[
dint

1 dint
2 . . . dint

k

]
∈ Rm×k,

where dint
i ∈Rm is the column vector of data values that was acquired by numer-

ical cumulative integration of the column di. Subsequently, I-SINDy performs
the estimation of model (4) with the Data in Dint. As the remaining estimation
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process is mostly identical to the process within SINDy, the remainder of this
subsection will only provide a brief summary.

Similar to SINDy, I-SINDy aims to recover sparse coefficient vectors. The
general objective of the optimization is just a slightly modified version of (3).

argmin
vi∈S

(χ̃i−Dintvi), i ∈ {1,2, . . . ,n}.

Instead of derivative data, the vector χ̃i := χi− xi(t1)1m ∈ Rm, is used in the
optimization, which modifies the data in χi to represent the integral of χ̇i, with
the condition x(t1) = 0. This step is required since the numerical integration
causes the first value of all dint

i , i ∈ {1, 2, . . . , k} to be zero.

Equivalent to SINDy, the desired ODE model (1) can be composed from the
state equations

ẋi(t) = δ
T(t)vi, i ∈ {1, 2, . . . , n}.

Here δ T(t) is a row vector that contains the symbolic candidate functions
corresponding to the columns of D (not Dint).

2.3 Batchwise Tikhonov Regularized Differentiation

This subsection introduces the batchwise TRD algorithm. First, the concept of
standard TRD is illustrated through an example implementation proposed in [5],
and subsequently the batchwise TRD algorithm is presented.

Given a column vector y := [y1 y2 . . . yn ]
T ∈ Rn that contains discrete data,

collected at the corresponding time instances t1, t2, . . . , tn, TRD defines the
L2-regularized optimization problem

argmin
ẏ
∥Aẏ− ỹ∥2

2 + k∥Bẏ∥2
2. (5)

Solving (5) yields the column vector ẏ ∈ Rn, whose elements approximate the
first time derivative of the data in y at the time instances t1, t2, . . . , tn. To provide
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a foundation for understanding this concept, the individual elements in (5) are
defined in the following passage.

The matrix A ∈ Rn×n is constructed such that calculating the product Aẏ is
equivalent to applying the cumulative trapezoidal rule to ẏ. Assuming a uniform
sample time ∆t := ti+1− ti for all i ∈ {1,2, . . . ,n−1}, this yields

A :=
1
2

∆t




0 0 0 . . . 0
1 1 0 . . . 0
1 2 1 . . . 0
...

...
...

. . .
...

1 2 2 . . . 1



. (6)

Therefore, if ytrap := Aẏ = [ytrap
1 . . . ytrap

n ]T ∈ Rn, then ytrap
i approximates the

definite integral from t1 to ti of a function that is continuous on [ t1, ti ] and
interpolates the first i data values in y. Additionally, since (6) is defined such
that ytrap

1 = 0 for any given y, the column vector ỹ := y− y11n ∈ Rn is used in
(5), as ỹ1 = 0 is guaranteed by definition.

The matrix B ∈ R(n−2)×n is defined such that calculating the product Bẏ is
equivalent to applying the central difference method to ẏ while discarding the
edge values. The scalar k ∈R>0 is a hyperparameter that determines the amount
of regularization.

B :=
1

2∆t




−1 0 1 0 . . . 0
0 −1 0 1 . . . 0
...

...
. . . . . . . . .

...
0 0 . . . −1 0 1




Given these definitions, the term ∥Aẏ− ỹ∥2
2 in (5) can be interpreted as the

requirement to find a ẏ whose approximated integral matches the data ỹ as
closely as possible. The term ∥Bẏ∥2

2, on the other hand, can be interpreted as
the requirement that the values of the approximated first derivative of ẏ are as
small as possible. This latter requirement reduces high-frequency noise in ẏ, as
∥Bẏ∥2

2 would become large when such noise is present. The combination of both
requirements results in the objective of finding a derivative approximation that
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is accurate while containing minimal noise. The tuning of k can be interpreted
as adjusting the relative weight of each requirement in the overall objective. In
particular, large k prioritize smoothness, whereas small k emphasize accuracy.

Even though a general analytical solution to (5) is given by

ẏ = (ATA+ kBTB)−1ATỹ, (7)

numerical solvers are preferred for solving (5) because they are more robust than
the numerical matrix inversion required in (7). In practice, however, constraints
on memory and computational resources make TRD unsuitable for large y, as (5)
is posed as a single optimization problem. To address this issue, the following
batchwise TRD algorithm is proposed, which splits larger datasets into batches
for the differentiation and merges the individual segments back into a single
derivative.

3 Results

This section illustrates the results of the performed comparison between SINDy
and I-SINDy. In 3.1, the sensitivity of both variants to measurement noise
is compared using noise-contaminated simulation datasets from two different
models. In 3.2, both methods are applied to the data of a real tank system, and
the quality of the estimated models is compared.

3.1 Robustness to Noise

In this subsection, two models are considered. The Lotka-Volterra model, which
describes the dynamics of interacting predator and prey populations, and the
Duffing model, which describes a nonlinear oscillator. The governing equations
of both models are listed in table 1. Simulation data for each model is generated,
using scipy’s solve_ivp method with a Runge-Kutta 45 solver. A time span of
10 seconds is simulated, with a uniform step size of 1ms. This results in each
simulation dataset containing 103 values per state. For convenience in notation
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Algorithm 1.: Batchwise TRD

Voraussetzung: Dataset to be differentiated: data, number of samples that the batches
should overlap: overlap, uniform sample time: ∆t, regularization parameter: k,
tolerance value for merging derivative batches: tol

Abschlussbedingung: An array containing the derivative values: reg_derivative
1: function TRD(y, k, ∆t)
2: n← Number of elements in y
3: A,B← Initialize matrices of size (n,n) and (n−2,n)
4: ỹ← Subtract first element of y from all elements of y
5: for i = 0 to n−2 do
6: A[i+1, : i+2]←

[ 1
2 ,1,

1
2
]
·∆t

7: Set B: main diagonal (−2∆t)−1, and 2nd diagonal (2∆t)−1

8: ẏ← Solve least square: [ A,
√

kB]Tẏ = [̃y,0]T
9: return ẏ

10: Initialize empty derivative_list, set data_len and batch_num to 0
11: while batch_num < ⌈data_len/batchsize⌉ do
12: start_idx← batch_num ·batchsize−overlap · (batch_num > 0)
13: end_idx←min(start_idx+batchsize+overlap,data_len)
14: Append TRD(data[start_idx : end_idx],k,∆t) to derivative_list
15: batch_num++
16: for i = 0 to length(derivative_list)−2 do
17: Find overlap between derivative_list[i] and derivative_list[i+1]
18: Trim derivative_list[i] and append relevant part of derivative_list[i+1]
19: Set reg_derivative to the final merged batch

q := 103 within this section. The simulation data is then contaminated with zero-
mean normally distributed noise and subsequently used as training data for both
SINDy variants. This yields the general relationship xtrain

i := xsim
i +di, where

xtrain
i , xsim

i ∈ Rq are vectors containing the training and simulation data for
the i-th state variable, respectively. The vector di := [di(t1) di(t2) . . .di(tq) ] ∈
Rq contains the corresponding noise values, which are drawn from a normal
distribution.

di(t)∼N(0,σ2
i )

64 Proc. 34. Workshop Computational Intelligence, Berlin, 21.-22.11.2024



Table 1: Models used for generating the training and test data

Model Governing Equations

Lotka-Volterra
ẋ1(t) = 1.5x1(t)− x1(t)x2(t)

ẋ2(t) = x1(t)x2(t)−3x2(t)

Duffing
ẋ1(t) = x2(t)

ẋ2(t) =−0.2x2(t)− x1(t)− x3
1(t)

The intensity of the noise relative to the simulation data is defined in terms of
the noise level NL, which itself is defined as the ratio of the energies of the
noise and the simulation data.

NL :=
∥di∥2

2

∥xsim
i ∥2

2
=

σ2
i

∥xsim
i ∥2

2

Since all noise values are drawn from a zero-mean normal distribution, the
energy of the noise, that is added to the i-th state variable, can be approximated
by the variance σ2

i . This relationship is used for the simulation data of each state
variable individually, to calculate the variance that yields a desired noise level.
In particular, 4 noise levels are considered for the comparison. The intensities
of these levels relative to the simulation data are illustrated in figures provided
in the Appendix: Supplementary Figures for Section 3.

NL ∈ {10−4,10−3,10−2,10−1}

For the comparison of both SINDy variants, 4 training datasets, corresponding
to the 4 noise levels are constructed for each model in table 1. These datasets
are provided to the SINDy software package [3], and the standard and weak
form integral variants are used. All models are estimated with the Sequential
Threshold Least Squares optimizer, and the derivatives required by SINDy are
approximated with batchwise TRD. The training data are not preprocessed or
smoothed in any way. In all scenarios, integer powers of the state variables up
to the tenth power and products of both state variables, with one variable also

Proc. 34. Workshop Computational Intelligence, Berlin, 21.-22.11.2024 65



Table 2: Initial conditions used for the generation of training and test datasets.

Model Training data Test data

Lotka-Volterra
x1(t0) = 10
x2(t0) = 5

x1(t0) = 1
x2(t0) = 10

Duffing
x1(t0) = 5
x2(t0) = 2

x1(t0) = 1
x2(t0) = 4

going up to the tenth power, are used as candidate functions. A bias is also
included in the library. The accuracy of each model is then measured through
cross validation. Test datasets are generated by creating simulation data with
different initial conditions than used for the training data. All initial conditions
employed in this comparison are listed in table 2. The estimated models are
simulated with identical solver settings as those used for the training and test
data. The accuracy of the models is quantified using the root mean squared
error ε between the model trajectories and the noise free training and test data,
respectively. This yields

ε
train
i :=

∥xsim
i − x̂i∥2√

q
, ε

test
i :=

∥xtest
i − x̂i∥2√

q
.

Here xtest
i , x̂i ∈ Rq are vectors, containing the test and the model data for the

i-th state variable, respectively. For each model, only the highest error value
in the state variables is considered for the evaluation of the model accuracy.
Since both models in table 1 have two state variables, the following errors are
defined

ε-Train := max(ε train
1 , ε

train
2 ),

ε-Test := max(ε test
1 , ε

test
2 ).

Another metric used to quantify the accuracy of the estimated models is the
Maximum Coefficient Error MCE. For a general definition of the MCE, the
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absolute coefficient error ∆cabs is first defined for a model with o coefficients.

∆cabs
i :=

∣∣cref
i − cmod

i
∣∣, i ∈ {1,2, . . . ,o}

Here cref
i is the i-th coefficient of the reference model that was used for the

generation of training and test data, and cmod
i is the corresponding coefficient of

the estimated model. Given this definition, the MCE is then defined as

MCE :=
max(∆cabs

1 , ∆cabs
2 , . . . ,∆cabs

o )∣∣cmod
max
∣∣ ·100%. (8)

The term cmod
max refers to the coefficient of the reference model, which has the

biggest absolute coefficient error. If, for example, the numerator of (8) yields
∆cabs

2 , then cmod
max = cmod

2 .

The introduced metrics for all estimated models are listed in the tables 3 through
6, where each table holds the results for one noise level. The additional column
"Structure" holds information about whether the structure of the reference
model could be recovered. A "No" entry is therefore equivalent to a failed
system identification. For these cases no metrics are listed, as some of the
incorrect models where unstable or completely unable to match the dynamics
of the reference model. In Addition, supplementary figures, which illustrate the
trajectories of the training and test data as well as the achieved model accuracy
are provided in the Appendix: Supplementary Figures for Section 3.

Table 3: Results with NL = 10−4

Model Method Structure MCE ε-Train ε-Test

L.-V.
SINDy

I-SINDy
Yes
Yes

0.5%
0.2%

0.38
< 0.01

0.57
0.03

Duffing
SINDy

I-SINDy
Yes
Yes

10.3%
0.2%

0.26
0.19

0.11
0.02
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Table 4: Results with NL = 10−3

Model Method Structure MCE ε-Train ε-Test

L.-V.
SINDy

I-SINDy
Yes
Yes

2.7%
0.3%

1.70
0.03

2.49
0.04

Duffing
SINDy

I-SINDy
Yes
Yes

23.7%
1.8%

0.33
0.05

0.31
0.02

Table 5: Results with NL = 10−2

Model Method Structure MCE ε-Train ε-Test

L.-V.
SINDy

I-SINDy
No
Yes

−
0.2%

−
0.03

−
0.04

Duffing
SINDy

I-SINDy
Yes
Yes

158%
33%

2.86
0.87

1.69
0.28

Table 6: Results with NL = 10−1

Model Method Structure MCE ε-Train ε-Test

L.-V.
SINDy

I-SINDy
No
Yes

−
3.0%

−
1.75

−
2.32

Duffing
SINDy

I-SINDy
No
No

−
−

−
−

−
−

3.2 Tank System

In this subsection, SINDy and I-SINDy are used on measurement data collected
from a real-world tank system, as it is shown in figure 1. Two scenarios are
considered. In the first, the drain valve connected to tank two is open, and the
flow valve connecting the tanks two and three is closed. In this case the system
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Tank 1 Tank 2 Tank 3

Supply Pump

Valve

DrainDrain with valve

Figure 1: Schematic of the tank system that measurement data was taken from. If the drain valve
from tank two is opened and the flow valve connecting tanks 2 and 3 is closed, then the
third tank is inactive, yielding a two-tank system. If the drain valve from tank two is
closed and the flow valve is opened, then the system operates as three tank system.

operates as a two tank system. In the second scenario, the drain valve from tank
two is closed and the flow valve between tanks two and three is open. In this
case, all three tanks are active. In both scenarios, the supply pump is always
active, providing a continuous inflow into the the first tank. The state variables
of the system are the water levels in the tanks. From measurements of the
water levels, two training datasets are constructed. One for the operation as two
tank system, and another for the operation as three tank system. Each dataset
contains measurements sampled with a uniform step size of 1s. Both datasets
contain approximately 1,400 values for each state variable. The training datasets
are provided to the SINDy software package, and the standard as well as weak
form integral variant are used for estimating a model. Since a model based on
Torricelli’s law is commonly used for describing similar systems, terms from
this model are added to the library. In particular,

√
hi(t),

sign(hi(t)−h j(t)) ·
√∣∣hi(t)−h j(t)

∣∣,
with i, j ∈ {1,2,3}, i ̸= j,
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where h1(t),h2(t), and h3(t) are water levels in the corresponding tanks. In
addition, integer powers of the state variables up to the tenth power and products
of both state variables, with one variable also going up to the tenth power, are
used as candidate functions. A bias, as well as the sine and cosine of the state
variables are also included in the library.

The training data and the achieved model quality are illustrated in figure 2. Only
I-SINDy was able to estimate a model that resembles the general dynamics of
the two tank system (see fig 2a). For the three tank system, I SINDy was not
able to estimate a stable model, as it could not be simulated for the time span of
the training data. SINDy was not able to estimate an applicable model for either
configuration. The water levels simulated with SINDy’s two tank model did not
deviate from the initial conditions, and the three tank model shows seemingly
unstable behavior (see fig. 2b). The two tank model estimated by I-SINDy is
given by

ḣ1(t) =−0.164
√

h1(t)+0.132
√

h2(t)+6.035 sin(h1(t)) . . .

−160.315 sin(h2(t))+0.016 cos(h1(t))−5.750h1(t) . . .

+159.828h2(t),

ḣ2(t) =0.002
√

h1(t)−9.322 sin(h2(t))+9.300h2(t).

Even tho this model is able to qualitatively match the dynamics in the training
data, the model structure is notably more complicated than for models of
equivalent tank systems, that can be found in the literature. Moreover, the
presence of the sine and cosine terms in both state equations, does not seem to
depict any underlying physical laws, as no oscillatory behavior is observed in
the tank system. The complicated model structure as well as the presence of
several trigonometric terms seems to indicate overfitting.
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Figure 2: Training data (solid) and simulated trajectories (star-dash) for the two-tank system (a) and
the three-tank system (b). The simulated trajectories in (a) were generated from the model
estimated by SINDy, and in (b) from the model estimated by I-SINDy. The legend in (a)
applies to both figures.

4 Summary and Discussion

The results acquired with the synthetic datasets have shown, that weak form
integral SINDy is significantly more robust against noise in the training data
than standard SINDy. Even tho batchwise TRD was used, weak form I-SINDy
showed a higher estimation accuracy at high noise levels. These results were
observed for the Duffing and the Lotka-Volterra model, with weak form I-SINDy
being able to estimate relatively accurate models at noise levels where SINDy
was not able to correctly identify the structure of the model.

While I-SINDy also yielded better results for tank system data, none of both
methods was able to estimate an applicable model. This result shows, that it may
not always be possible to create the conditions, which are needed for the general
SINDy framework to perform reliably. Especially the choice of candidate
functions poses a significant limitation, since the structure and relevant terms
of a model, that is to be identified, are not always known. Contributions, that
provide an alternative to manually selecting the library terms, do therefore have
a great potential for making the general SINDy framework more suitable for
real world applications.
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Appendix: Supplementary Figures for Section 3

Appendix
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(a) Noise level = 10−4
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(d) Noise level = 10−1

Figure 3: Data corresponding to state variable x1 from the Lotka-Volterra model. The initially
generated simulation data is shown in black and the added noise in light gray. The sum of
both signals is used as training data.
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Figure 4: Test data (solid) and simulated trajectories (star-dash) for the Lotka-Volterra models, that
where estimated using I-SINDy (a and b) and SINDy (c and d). Figure (a) is representative
of the model accuracy with the noise levels 10−4, 10−3, and 10−2, as there was no
significant visible difference between the corresponding model trajectories. Figure (b)
shows the model accuracy with a noise level of 10−1. Figures (c) and (d) show the model
accuracy for the noise levels 10−4 and 10−3, respectively.

Proc. 34. Workshop Computational Intelligence, Berlin, 21.-22.11.2024 75



Time

x 1
,

x 2

x1
x2

(a) I-SINDy, noise level = 10−4

Time

x 1
,

x 2

x1
x2

(b) I-SINDy, noise level = 10−2

Time

x 1
,

x 2

x1
x2

(c) SINDy, noise level = 10−3

Time

x 1
,

x 2

x1
x2

(d) SINDy, noise level = 10−3

Figure 5: Training data (solid) and simulated trajectories (star-dash) for the Duffing models that
where estimated using I-SINDy (a and b) and SINDy (c and d). The training data is shown
because the models performed worse compared against the training data than against the
test data (see tables 3 through 6). Figure (a) is representative of the model accuracy with
the noise levels 10−4 and 10−3, as there was no visible difference between these model
trajectories. Figure (b) shows the model accuracy with a noise level of 10−2. Figure (c)
is representative of the model accuracy with the noise levels 10−4 and 10−3. Figure (d)
shows the model accuracy for the noise level 10−2.
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