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Summary

In this paper, a novel evolving Fuzzy Model Predictive Control based on
Optimization (eFMPC) is proposed. The controller adresses model adaptation
in case of abrupt concept shifts in the system parameters. The model of the
system is evolved during control based on online learning approaches with a self-
monitoring approach to determine the quality of the local models. The control
action is a result of optimization based on the Particle Swarm Optimization
method. The control principle was tested on the real Plate Heat Exchanger pilot
plant.

1 Introduction

Evolving Intelligent Controllers (EIC) can adjust their structure and parameters
online in a recursive manner based on the latest available data, making them
well-suited for real-time applications with changing system characteristics.
This allows the system to condense data into nonlinear dynamic structures
while maintaining transparency and interpretability [35], which is of great
importance in an industrial setting where results must be reproducible and
verifiable. Evolving systems are defined by their ability to add new rules when
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new data becomes available that is not adequately represented by the existing
structure, especially in the case of concept drift [41]. Additionally, such systems
must be able to remove redundant or faulty rules, merge clusters to simplify
the structure when samples coalesce [17,55], and perform splitting of rules
when new concepts appear that conflict with the existing rulebase [40, 41].
Some of the most influential evolving fuzzy and fuzzy systems of the last
decade include: eTS+ [7], FLEXFIS+ [37], AnYa [8], FBeM [34], PANFIS [47],
eFuMo [19], GS-EFS [38], eGauss+ [51], and others. These have been ap-
plied to a variety of distinct problems, showcasing the adaptability of this
framework, e.g., data clustering [6,29,51], classification [20,27,28], nonlinear
system identification [13,22,39,48], system control [1, 10], fault detection and
diagnostics [3,5, 12,19, 24], design of experiments [45, 50], localization and
mapping [33], data streaming [16,23,26,41,53], cybersecurity [30,54,56], image
segmentation [43, 44], federated learning [46], time-series forecast [18, 21],
among others.

Adaptive and predictive control are well established methodologies in the
field of control systems engineering that address the limitations of traditional
controllers by adapting to changes in the system or predicting future system
behavior. These methods rely on an initial model that adapts its parameters
over time. An adaptive Predictive Functional Controller (PFC) for hybrid
continuous and discrete signals, based on the recursive least squares parameter
identification method with exponential forgetting, is presented in [32]. This
approach was examined on an exothermic batch reactor, a time-invariant multi-
variable process. The exponential forgetting factor can lead to an estimator
windup phenomenon when persistent excitation is not available, serving as a
safety mechanism. Here, the recursive least square gain denominator is used as
a measure of proper excitation. A predictive controller with recursive parameter
identification for a time-variant linear system is presented in [14]. This method
is demonstrated on an unstable third-order system and decomposes the system
into an affine linear part and a bias term, which can be quickly adapted when a
parameter shift occurs. This approach requires an iterative method to estimate
the optimal bias compensation at every time step. An adaptive fuzzy model
predictive control (AFMPC) using ant-colony optimization (ACO) is presented
in [11]. Fuzzy Takagi-Sugeno type models describe the nonlinear dynamical
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and static properties of the controlled system. In this approach, recursive least
squares parameter identification is halted when the error between the actual
and estimated output becomes smaller than a threshold. A model reference
adaptive control (MRAC) and a controller output error method (COEM) were
used in [58] to control a heating and cooling system with a fuzzy inverse plant
model. Interval models are used in [31] to model uncertainties for tuning the
parameters of a PID controller with particle swarm optimization (PSO). Closed-
loop stability is ensured if the interval-based constraints are not violated. The
method was examined on a three-tank hydraulic system and a batch reactor.
An unknown nonlinear system was controlled with a data-driven Model-based
Predictive Control (MPC) in [9], where future trajectories were computed based
on a persistent excitation lemma [57].

However, model-based (indirect or direct) controllers are more challenging to
implement because they require an initial model. Evolving systems can identify
and adapt a model over time by changing the model’s structure in addition to
adapting its parameters. Several control algorithms based on evolving systems
have been proposed in the literature, with a popular choice for the base model
being the evolving Takagi-Sugeno type, as used in the adaptive controller
with leakage in the control law [10], the two degrees-of-freedom control with
feedforward and feedback components [59], self-tuning predictive control [60],
and evolving PID control [15]. Most similar to our approach is the Robust
Evolving Adaptive Controller (ReCCo) proposed in [1,2], which is based on
the AnYa [8] evolving system with a low number of a priori parameters and
several safety mechanisms but lacks a splitting and merging mechanism for the
evolving law. This controller starts from scratch without any initial fuzzy rules.
However, the aforementioned approaches lack cluster merging and removal
mechanisms, which are crucial for handling drifting data, as outdated rules
can become inaccurate and detrimental to control performance. In addition,
our method uses self-monitoring to detect anomalies in the system and remove
erroneous clusters.

In this study, we examine an evolving fuzzy predictive functional control with
fault detection of a nonlinear dynamical system in a changing environment. The
proposed EIC methodology is illustrated in Fig. 1. The main contributions of
the proposed eFMPC are:

Proc. 34. Workshop Computational Intelligence, Berlin, 21.-22.11.2024 79



W)

v §
MPC with PSO
Model simulation

Model structure evolution

Abrupt
change?

Merging
mechanism Model structure

evolution

Removing
mechanism

Adding
mechanism

Gaussian
Clustering

S A

Filtered recursive
least squares

R S J

Figure 1: Software flow diagram of the proposed evolving intelligent control.

* An evolving fuzzy model identification method that can identify a model
online during predictive functional control of a nonlinear dynamical
system. The algorithm uses evolving mechanisms like rule addition,
merging, and removal.

e Detection and compensation of abrupt system shifts with a
self-monitoring approach, including recursive computation of the Fuzzy
Mean Square Error (fMSE).

In this study, we assume that the controlled system is stable, the model operates
in discrete-time and is nonlinear, and the disturbance is additive. The reference
signal is limited to step changes, and the system experiences both slow drifting
and abrupt shifts in operating conditions. The time horizon is small enough that
the system can be approximated with a linear model. The evolving fuzzy
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system used in this study is based on [4, 45] with two notable additions:
the Bhattacharyya overlapping measure and the self-monitoring rule removal
mechanism. This method was chosen because it is specifically designed for
online identification with single-step signal excitation.

2 Evolving fuzzy model identification

Evolving Neuro-Fuzzy Inference Systems (ENFIS) incorporate fuzzy logic
within a network structure [55]. They consist of sub-models in the form of
Takagi-Sugeno fuzzy rules R;, where i = 1,2, -, c. Each rule is characterized
by a membership function defined by a multivariate Gaussian cluster in the
antecedent and a local linear model (LLM) in the consequence. The multivariate
Gaussian clusters are chosen to represent the input variables in the antecedent
structure due to their demonstrated universal approximation capability and their
ability to describe correlations between variables [42,51]. The membership
function u;(k) € (g,1] for a clustering sample z(k) € R at time step k =
0,1,2,... is computed as

k) = exp (= (k) —vi) TE (2K~ v,) ) +e, ()

where v; € R™ and £; € R"*"= represent the center and covariance matrix of
the cluster, respectively, and € € R is a very small constant ensuring sufficient
support throughout the input space.

The output of the evolving fuzzy model is calculated as a weighted sum of the
outputs ¥;(k) € R of all fuzzy rules R; based on the normalized activation of
each membership function ¥;(k) € (0,1]:

c Yo ui(k)oT (k)6

$h) = Y E RS = ==5e @

where $i(k) = ¢ (k); is the consequence LLM of the rule R;, and @(k)" =

[u(k—1),-- u(k—m),y(k—1),--- ,y(k—n),1] € R""+! serves as the shared
Tegressor.
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The evolving fuzzy model identification uses a clustering method and a param-
eter identification method independently with different input signals. During
the identification process, each training sample is used solely to identify the
most recently added fuzzy rule, which enhances robustness and reduces compu-
tational complexity by eliminating the need to compute membership functions
at every time step. The incremental multivariate Gaussian clustering is based on
Welford’s online algorithm for calculating variance [51]:

1

Vi(ni+1) = v;(n;) + - 1

(k), 3)

Si(ni+1) = 8;(ni) + e (k) (2(k) = v;(mi + 1)), )

where the clustering error is computed as ¢;(k) = z(k) — v;(n;), and the number
of samples belonging to the i-th cluster is incremented as n; = n; + 1. The nor-
malized covariance matrix is computed as X; = S;/n; only when it is required.

Evolving fuzzy systems commonly use the Fuzzily-Weighted Recursive Least
Squares (WRLS) optimization method for the identification of the parameter
of the consequence models [1,36,55]. However, the error formulation of this
method results in the ARX model formulation, which is defined as A(q)y(k) =
B(q)u(k) + r, while we would prefer an OE model y(k) = %u(k) +r. This is
because the ARX model assumes a colored noise at the output of the system
due to the auo-regression of the system output, while the OE model works in
parallel to the system and assumes a more realistic white output noise. The OE
model can be identified by filtering the regression signals with the denominator
of the transfer function of the LLM as A(q) @ f(k) = limy_,1 A(q) (k) [45]. The

Filtered Recursive Least Squares method (fRLS) is then computed as [52]

0.(k) = 8. (k— 1)+ (k) (v (k) — 9/ (K)8c(k— 1), )
1

10~ grmeE— g w1 Ve ©

P(k) = (1= (k)@ (k) P(k—1), ()
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where P(k) is an information matrix. The filter is updated online when enough
data is collected, i.e. when the confidence interval of the identified model falls
under a threshold value [45].

2.1 Rule addition mechanism

A new rule is added when the control error e(k) = w(k) — y(k) € R changes
abruptly |e(k) —e(k—1)| > k,. With this approach, a new rule is added when the
reference signal changes, a large disturbance occurs, or the system experiences
a shift in characteristics. The rule base is updated with ¢ = ¢+ 1 and initialized
with a new antecedent multivariate Gaussian cluster:

v.=z(k), E =0, ®)
and a new consequence OE-LLM as:

0, =Y | ¥ik)e;, P(k) =Py, ©)
where P, = apl € R"0*"¢ is the initial information matrix, with a large constant
ap € [1037 107], used to ensure fast parameter convergence. The newly added
rule is immediately used in the control law to enable a quick reaction to
changes in the process. This requires setting the initial parameters of the
rule’s consequent linear model to the fuzzily weighted average of the existing
rules at the time of creation.

2.2 Rule merging mechanism

Due to drifting data, a merging mechanism is required in cases of overlapping
clusters, which can cause irregularities in rule activation and differences in
the consequent OE-LLM. Overlapping clusters are detected based on the
Bhattacharyya distance between two clusters. For multivariate Gaussian clusters,
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it is defined as [42]:

1 1 det(X
dpy =5 (V=) Zp (v, = v,) 4 5n B )
det(Z,)det(Z,)

where £, = %(;p +Z,) is the average covariance matrix of the two clus-
ters. The consequent OE-LLMs are compared based on the similarity of their
transfer functions, which is simplified to the comparison of the steady-state
variables [45]:

dk — | (n

where dllfq and d;}’q respectively represent the dissimilarity in steady-state gain
and bias between the two compared systems.

The rules R, and R, are merged if the conditions for antecedent proximity and
consequence similarity (dgq < Kz, dfq < Ky, and dﬁ)’q < K,) are satisfied. The
antecedent clusters are merged based on the method proposed in [51], and the

consequent parameters 6, are merged as:

1p (k)8 (k) +1q (k)8 (k)

0 ;
Mg (k)

0,,(0) =

12)

where np, (k) = n, (k) +ny(k).

2.3 Rule removal mechanism

The proposed evolving system employs self-monitoring to determine the va-
lidity of the model online using the interleaved test-then-train or prequential
approach [25], meaning that the samples used for model identification are first
used to validate the existing model. Since the RLS method aims to minimize
the MSE of the output, we use a fuzzy MSE (fMSE) to determine the quality
of the local models online. It is computed recursively based on the fuzzy error
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proposed in [49] as:

M;j(k—1)MSE;(k— 1) +e3 (k)
M;(k)

MSE; (k) = ; 13)

M;(k) = Mj(k—1)+¥5(k), (14)

where e;(k) = W;(k)(y(k) — $;(k)) is the fuzzy error of the jth rule. The
estimation is initialized with the creation of the rule as MSE; = 0 and M; = 1.
The fuzzy MSE is only computed if the rule membership activation is large
enough, as this indicates that the sample should be represented by the rule:
ui(k) > x,. For samples that are far from every cluster, it is better not to
attribute the error to any clusters, as we are not interested in samples that are
distant from the rule base and they might even be detrimental to the model
accuracy. Rules are removed if they have low accuracy (MSE; > Kkusg) or are
overlapping (dgq > Kp) but p and g could not be merged, in which case the rule
with the higher error is removed.

3 Model-based predictive control based on
Predictive functional control concept

In general, a Model-based Predictive Controller (MPC) is a type of controller
that uses a model of the controlled process (y,(k)) to optimize a specified
criterion function in order to obtain the finite-horizon control law. The criterion
function J is generally given as:

Ny Ny

=y (ym<k+i>—yr<k+i>)2+l§(A“<’<+’">)2

i=N,

where y,, (k + i) represents the prediction of the process model output, y,(k + i)
represents the prediction of the reference model, Ny and N, are the lower and
upper prediction horizons, Au(k + i) is the change in the control signal in the
future, N, is the control horizon (i.e., the number of future time instants where
the control signal is taken into account), and A is the weighting factor.
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The solution in the form of a control law can be obtained analytically if the
variables in the function are not subject to constraints. However, when dealing
with constraints, the optimal solution should be obtained through optimization
as follows:

min J (15)

Au

subject to:

Umin < u(k+1i) < tmax, i=1,...,N,
Attin < Au(k+1i) < Aupax, i=1,...,N,
Ymin < Ym(k+1) <ymax, i=1,...,N>

3.1 Predictive functional control concept

The concept of predictive functional control is based on the rule of equilibrium,
given by the following equation:

yr(k+h)_yp(k) :yrn(k+h>_ym(k) (16)

where / stands for the coincidence horizon. This means that the change between
the current value of the process output and the predicted reference model at
the coincidence horizon should be equal to the difference between the current
model output and the predicted model output at the coincidence horizon. The
left side of the equation is called the process increment A, (%), and the right side
is called the model increment A,, (). By comparing the change in the output of
the identified model with the change in the output of the reference model, an
integrating controller is achieved that can compensate for steady-state bias in
the system model.

This means that at every time step k, a prediction of future model and reference
model outputs (y,,(k+i), y,(k+i), i = 1,..,h) is computed. This requires a
dynamical model of the process, and some assumptions to easily calculate
the predictions. We assume that the system is linear time-invariant during the
prediction horizon, the reference signal is assumed to be constant w(k), i =
1,---,h, it is assumed to deal with mean level control law, which assumes
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a constant, the mean control signal, u(k), i = 1,---  h, and the output of the
reference model at time step y, (k) is set to the measured output of the system
yp(k). The output of a first order reference model at a time step k+# is defined
as [32]

yr(k+h) = d'y(k) + (1 - alw(k), (17)

where a,, 0 < a, < 1 stands for the reference model pole in the discrete domain,
which is selected by the control design. The reference model should have
a faster time constants that the uncontrolled process and its order should be
smaller or equal to the order of the system [1].

Taking into account that y,(k) = y.(k), the control error is defiend as e(k) =
w(k) —y,(k), and the prediction of control error at the coincidence horizon, with
the assumption of constant reference w(k) the following condition for the error
is obtained

e(k+h) =d'e(k). (18)

which describes the exponentially decreasing control error. This implies that the
process difference A, (1), where w(k) = w(k+h), and y, (k-+h) = w(k) —al'e(k),
becomes equal

Ap(h) =y (k+ ) = (k) = (1=al) e(k) (19)

From the basic rule of equilibrium given in Eq. 16 (A, (h) = A, (h)), the required
value for the predicted model output is obtained. With this value of predicted
model, the required dynamic of the whole closed-loop control system will be
obtained. This is given as follows

ylk+h) = (0 + (1 - al) (k) 0)

The dynamic of the controlled signal can be defined with the pole of the closed-
loop system, and can be limited as a, — 0, to get the fastest possible response,
ie.

Ym(k+h) = ym(k) +e(k) 2D
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3.2 Particle Swarm Optimization to obtain control value

The prediction of the model output at the coincidence horizon, y,,(k + ), is now
denoted as yy, g+ (ux), indicating that it depends on the control signal applied
at time instant k. The required value for the predicted model output at the
coincidence horizon, given in Eq. 20, is now written as yfn‘?Zih. The Particle
Swarm Optimization (PSO) method is used to compute the control action, i.e.,
ug or u(k), to find the solution for y,, x4;(ux) that is closest to y‘fno.Zih. PSO is
used here because it is easy to implement and flexible enough to add additional
constraints to the control law if needed [11]. The idea is to evaluate a number
of different values, i.e., particles u};, as possible solutions, and to find the one

that is optimal in the sense of the following simple criterion function:

2
. . goal i
m}nJ = min (ym7k+h - ym,k+h(uk))
uy, iy,

If the process variables have constraints, i.e., Upin < Uy < Upgy and Auyiy <
Auy < Auygy, then the criterion function should be extended as follows:

2
. . 1 i
minJ = min (yfnozw - )’m,k+h(”;c)) +
uy, g ’
+)~cons (1 + Slgn(ui - umax)) +
+lc()ns (1 + Sign(umin - M;()) +

FAeons (1 +sign(u), — Au))

where Acons > 1, to heavily penalize solutions that violate the constraints.

The complete controller is presented in Algorithm 1. In order to adapt the
model online the identification must be reliable and have a low number of
problem-specific parameters.
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Algorithm 1.: Evolving Neuro-Fuzzy Model-based Predictive Control with Particle
Swarm Optimization

Input: upyin, Umax. Po. Ku» KB, Kk. KN, Kf, Ko KMSE
Initialize:
2+ initial value, ¢ <~ 1, <= 2(0), S <= 0, nc <= 1, P <= Py, 0. ¢ 0, Af(z) < 1

k< k+1
Perform MPC with PSO
Perform measurement and signal filtration
: Compute regression vector ¢ f(k) and clustering vector z(k)
10: Compute model error (Egs. (1) and (2))
11: if |e(k) —e(k—1)| > x, then

1:
2:
3
4:
5: repeat
6.
7
8
9

12: repeat

13: for p=1tocdo

14: Compute measure (Egs. (10) and (11)) for g < argmin(dgq)
15: Find argminp’q(dgq) subject to (d;fq < Kg)A (dgq < KN)A (dgq < KB)
16: if (df, < Kp) then

17: Perform rule merging mechanism (Eq. (12))

18: until no rules can be merged

19: Perform rule removal mechanism (Eqs. (13) and (14))

20: Perform rule addition mechanism (Egs. (8) and (9))

21: Perform incremental clustering (Eqgs. (3) and (4))

22: Perform recursive parameter identification (Eqgs. (5), (6), and (7))

23: Adapt filter A ¢(z)
24: until end of control

4  Simulation study

In this study, we examined the proposed control algorithm on the control
problem of a Plate Heat Exchanger (PHE). In the experiment, the control valve
of the inlet cold water was abruptly closed, resulting in a shift in the parameters
of the system. This allowed us to evaluate the capability of the evolving system
to quickly adapt to a shift in parameters and assess the robustness of the proposed
controller. The experiment on the PHE was conducted using a theoretical model
of a plate heat exchanger as defined in [45], with the same parameters.

The examined theoretical system was sampled with a sampling time of ¢, = 4s
and had a dead time of 7; = 4¢,. A heteroscedastic white Gaussian noise
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Figure 2: A schematic of the PHE pilot plant. The solid line represents the primary hot water flow
circuit, while the dashed line represents the secondary cold water circuit.

v ~ N(0,0.04K) was added as output error, where K € R, is the steady-state
gain of the system in the observed operating point. The antecedent clustering
vector was selected as z' (k) = [u(k),y(k)] and the consequence regression
vector was selected as @ ' (k) = [u(k —4 —1),x(k—4—1),y(k—1),1].

The experiment began with an initial model consisting of 5 rules that were
identified using the proposed evolving methodology and a staircase excitation
signal. The reference signal was changed every k; = 300 samples to values
in the range w € [8,48], selected to ensure that the input signal does not reach
saturation when the output reaches the reference value. The step height of 10
formed a staircase signal. At the beginning of the seventh step k=6k;, the cold
water valve F, was partially closed from a value of 0.53 to 0.4 to simulate a
shift in the environment, i.e., a fault of the inlet flow rate.

5 Real PHE Pilot plant study

The proposed eFMPC was used to control a nonlinear dynamical system in
a changing environment. The plate heat exchanger pilot plant is subject to
changes in the temperature of the inlet cold water and room air throughout the
day [1]. The evolving model used for the PFC was built from scratch, with the
system creating the first rule based on the first recorded sample without any
prior knowledge, to examine the plug-and-play aspect of the proposed approach.
However, note that even though the model identification starts from scratch with
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a single cluster, the meta-parameters of the algorithm were still selected based
on expert knowledge of the system.

6 Discussion

Self-monitoring during online learning present a dilemma in the sense that it
is hard to determine whether the error is due to high parameter variance or
actual bias. The proposed approach determines the local error of each rule, and
only adapts the rule added last in order to avoid creating outlier rules due to
large changes in the input signal and to maintain the number of rules as low
as possible. This enables the adaptation of the evolving model while detecting
low model accuracy, conceptual shifts and disturbances. The phenomena of
drifting parameters is commonly addressed with a forgetting factor in the
fRLS method, however we omitted it from this implementation as it requires
persistent excitation [32] and relied rather on the self-monitoring approach as
an alternative that does not suffer from this limitation. Another observation is
that the Battacharyya distance works well for detecting overlapping clusters
of similar size but can have some difficulties detecting overlapping clusters of
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different sizes. In general, this can result in small clusters becoming "trapped"
inside larger clusters. However, this problem can easily be addressed with
removal mechanism based on rule age. For practical application, additional
robustness measure could be easily implemented as proposed in [1]. The PSO
method is a reliable global optimization method that can find a solution in case
of several local minima and it is very flexible to include additional constrains in
the control law. However, if the number of particles of the PSO method is not
large enough the global minima of the control action might not be found, which
results in frequent changes of the input signal.

7 Conclusion

In this study, we proposed an Evolving Fuzzy Model Predictive Controller
(eFMPC) that evolves the system model during control. The main benefit is that
the model can be used for monitoring, detecting shifts in system parameters, and
identifying disturbances as they occur, all while maintaining reference tracking
and disturbance regulation. The model was validated through simulations and
a real-world study on a plate heat exchanger. A downside of the proposed
method is that the evolving identification procedure models every change in
the system, including disturbances. Although these are eventually eliminated
in the long term, they can affect the controller in the short term. Future work
should examine the persistent excitation condition or an information criterion to
selectively identify only informative samples.
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