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Introduction

Contemporary nonlinear system identification applications leverage powerful
machine learning techniques to a great extent. The effectiveness of these
data-driven approaches is significantly influenced by the quality of the input
or excitation signals employed to generate training and validation datasets.
Consequently, alongside the selection of an appropriate model architecture and
parameter estimation strategy, the methodologies for input signal design are of
paramount importance.

The fundamental objective of input signal design methodologies is to ob-
tain precise and comprehensive information concerning the process behaviors
intended to be modeled. Especially considering real-world limitations like
time and process constraints as well as high measurement costs [1], designing
input signals becomes a highly application-specific challenge. This challenge
inherently involves a tradeoff between acquiring information in unknown
operational areas (exploration) and refining knowledge in established areas
(exploitation).

This contribution presents a novel strategy for generating excitation signals
tailored to nonlinear dynamic processes. Drawing inspiration from receding
horizon control (RHC), the excitation signal is optimized in an iterative manner,
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with each iteration focusing solely on a finite time horizon. In the optimization
process, a newly introduced criterion is pursued, enabling user-defined adapta-
tions of information acquisition to align with relevant process behaviors while
also accommodating real-world limitations. This flexibility enables the method
to respond effectively to application-specific challenges.

The proposed approach aligns with a recent research field focused on optimizing
the distribution within the input space of a nonlinear dynamic process [3–5].
These approaches are grounded in the principle that the information collected
by an excitation signal about a process is inherently linked to its generated
distribution within the process’s input space. Consequently, the challenge of
"gathering information about the process behavior intended to be modeled" can
be reframed as the task of "exciting the relevant regions in the process’s input
space". The underlying assumption is that, if all relevant regions of the input
space are sufficiently represented in the training (and validation) datasets, a
model can be trained that will be able to accurately describe the process behavior
of interest. This is particularly applicable to Markovian processes, which can
be fully predicted given knowledge of the current process states [6].

Excitation Signal Design Strategy

In this section, the proposed excitation signal design methodology is presented,
emphasizing its key contributions: (i) the development of a RHC-like iterative
approach, drawing inspiration from [2] and (ii) the introduction of a novel
optimization criterion, calculated in the input space of a nonlinear dynamic
model and designed to flexibly respond to application-specific challenges.

Receding Horizon Control-Like Algorithm

The main idea of the RHC-like excitation signal design is rooted in its iterative
optimization, which is performed only within the finite time horizon L each
iteration. As optimized data points Ûopt become available through the optimiza-
tion (cf. Eq. 1), the optimal data point ûopt(k) is appended to the existing signal
U . The time horizon is then shifted forward and the optimization process is
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repeated until the entire signal is designed. Constraining the controllable inputs
and the model input space through U and X, respectively, is highly advantageous
for real-world applications [7].

The core aim of the optimization is to generate data points in the relevant regions
of the process’s input space, thereby facilitating the collection of information
about its behavior intended to be modeled. Typically, prior knowledge regarding
the process is however limited, rendering direct access to the input space
infeasible. Consequently, a surrogate model Mθ is employed that substitutes the
process input space distribution X with the model input space distribution X̃
and thus allows for the calculation of J.

Algorithm 1.: The RHC-Like Optimization Using Simulated Annealing
Parameters: Number of data points N, weight coefficients q, time horizon L.
Initialization: Constrained space of the controllable inputs U, constrained
model input space X, distance metric dataset Ψ, surrogate model Mθ , initial
model state x̃(0), dimension p of the model’s input space.

for k = 1,2, . . . ,N do ▷ Timesteps

Ûopt = argmin
Û

J
(
X̃ ,Ψ,q

)

with X̃ =Mθ (Û ,U , x̃(0))

s. t. û( j) ∈ U ∀ j = {k,k+1, . . . ,k+L−1}
u( j) ∈ U ∀ j = {1,2. . . . ,k−1}
x̃( j) ∈ X ∀ j = {0,1 . . . ,k, . . . ,k+L−1}
ψ( j) ∈ Rp ∀ j = {1,2, . . . ,NΨ}
q( j) ∈ R ∀ j = {1,2, . . . ,NΨ}

(1)

Apply U ←U ∪ ûopt(k). ▷ Append optimal data point
Optimize Mθ with data from U . ▷ Only for active learning approach
Go to k = k+1.
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Novel Optimization Criterion

The optimization criterion can be mathematically formulated as follows:

J(X̃ ,Ψ,q) =
NΨ

∑
j=1

q( j) ·dNN
(
ψ( j), X̃

)

with dNN
(
ψ( j), X̃

)
= min

1≤o≤NX̃

|x̃(o)−ψ( j)| .
(2)

In this formulation, Ψ represents a distance metric dataset, uniformly distributed
within the region of X̃ , dNN denotes the nearest neighbor-distance, and q contains
user-defined weighting coefficients. Hence, J can be interpreted as the weighted
sum of the nearest neighbor distances from each point in Ψ to X̃ . By adjusting
the values within q, different regions of the model input space can be emphasized
with varying intensities.

It is crucial to recognize that minimizing the discrepancies between X̃ and
X is essential for optimal performance. Encouragingly, Heinz et al. (2017)
demonstrated that even a linear time-invariant (LTI) surrogate can produce
satisfactory outcomes. However, for processes characterized by substantial
nonlinear behaviors that lead to significant divergences between the LTI and
the real input spaces, a more sophisticated active learning methodology may be
employed, wherein Mθ is continually refined using data derived from U .

Evaluation

This section sheds light on the effectiveness of the proposed method in adapting
to application-specific requirements by concentrating the information acquisi-
tion on process behavior intended to be modeled. Specifically, it is demonstrated
how adjusting the weighting coefficients enables targeted emphasis on different
regions of the process input space, thereby facilitating a flexible balance between
exploration and exploitation.

Figure 1 illustrates excitation signals and their corresponding distributions
in the process input space, generated using distinct weighting schemes. The
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test process employed is a nonlinear first-order Hammerstein system. Hence,
xT (k) = [u(k− 1),y(k− 1)] and X = [x(1),x(2), . . . ,x(N)] with N data points.
A first-order LTI system is used as surrogate model. In Fig. 1 (d), an equal
weighting of the nearest neighbor distances to each point in Ψ is applied,
resulting in a high-quality space-filling design. This approach is suitable when
minimal prior knowledge about the process is available, and the goal is to
explore unknown operational regions [5]. However, if the application requires
an intensified information acquisition in regions of higher interest, this can be
achieved by increasing the weights of the nearest-neighbor distances calculated
to the points of Ψ in these regions. An example of such targeted exploitation is
shown in Fig. 1 (e) and (f). The progressively increased weighting, illustrated
by the red dots, results in a greater concentration of data points in the region
of higher interest. This is accompanied by enhanced information acquisition
regarding the process behavior in this area.

(a) (b) (c)

(d) (e) (f)

Figure 1: Excitation signals and below the corresponding process input space distributions
employing the example of a nonlinear first-order Hammerstein system. When calculating
distances to the red-dotted points of Ψ, an increased weighting was applied.
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Conclusion

A novel excitation signal design strategy based on a receding horizon control-
inspired optimization has been presented. The proposed method has been shown
to effectively generate space-filling designs within the input space of a nonlinear
dynamic process, thereby enabling sophisticated acquisition of information in
previously unexplored operational areas. Additionally, the strategy can intensify
the exploitation of specific operational areas during information gathering,
offering flexibility in meeting application-specific requirements.
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