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Summary

In this paper, sufficient LMI-based conditions for general Quadratic Supply Rate
(QSR) functions, known as QSR-dissipativity of nonlinear systems in Takagi-
Sugeno form are proposed. To determine the stability of negative feedback loops
of two systems, it is sufficient to prove the passivity of each individual system.
This property can be used to ensure the stability of even globally distributed
systems if the individual local systems are passive. This is particularly relevant
for the stabilization of massively distributed power systems, for example. The
passivity can either be a property of non-regulated systems or non-passive
systems becomes passive through feedback controller. Both cases are analyzed
for the class of Takagi-Sugeno fuzzy systems.

1 Introduction

The starting point of this investigation based on the system-theoretical observa-
tion that a negative feedback loop consisting of two passive systems is passive,
which is a sufficient condition for the stability of negative feedback loops.
This means that networked systems comprise passive elements whose negative
feedback loops are successively combined to form a passive system. In contrast,
negative feedback loops can lead to instability if the individual systems are only
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stable. This behavior has been observed since the beginning of mathematical
investigation of feedback systems in the frequency and time domain. A central
concept for passive systems is the consideration of storage functions. Methods
that finds a Lyapunov function to prove stability, can also be used to find a
storage function. The relationship between dissipativity as a generic concept
and Lyapunov stability can be established by employing the storage function
S(x) as a Lyapunov function V (x), where V (x) ≥ 0 for all x ∈ X is a positive
semidefinite function Rn→ R

V (x(t))−V (x(0))≤
∫ t

0
fs(u(τ),y(τ))dτ (1)

with the mathematical formulation of the supply rate fs(u(τ),y(τ)), where
u ∈ Rm denotes the system input and y ∈Rp the system output. The mathemat-
ical formulation (1) is called the dissipation inequality. If the supply rate can
be described with the bilinear form fs(u,y) = uT y, the dissipation inequality
is related to the definition of passive systems. According to (1), passivity is,
therefore, the property that the increase in storage S described mathematically by
a storage function is not larger than the bilinear supply rate. Note fs(u,y) = uT y
requires that the number of system inputs and outputs must be the same. This
indicates the appropriate choice of inputs and outputs is already a part of the
system analysis and controller synthesis. However, the dissipation inequality (1)
is a stronger criterion than the Lyapunov criterion (related to Lyapunov’s second
method for stability) [5], [7]) which has previously been used in the Takagi-
Sugeno (T-S) framework for numerical determination with LMI constraints for
synthesis and analysis [2], [3], and [8].
This paper is organized as follows: Section 2 introduces the definition and for-
mulation of the problem, which are taken from the textbooks [9] and [10]. LMI
criteria to verify the dissipation properties of LTI and T-S systems are proposed
in Section 3. Section 4 deals with the controller design approach to transform
non-passive systems into passive systems through appropriate feedback control.
An illustrating example is proposed and discussed in Section 5.
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2 QSR-Dissipativity and Passivity of Systems

A special form of the supply function in (1) is the general quadratic supply rate
(QSR) also known as QSR-dissipativity defined as

fs(u,y) =

(
y(t)

Tu(t)

)T (
Q S
ST R

)(
y(t)
u(t)

)
. (2)

The choice of the Q-, S- and R-matrices determines the the system category and,
with the specified matrix definitions, leads to

• passive systems with Q = 0p,p, S = 1
2 Ip, and R = 0p,p, where 0p,p denotes

the null matrix and Ip the identity matrix.

• strictly passive systems with Q =−εIp, S = 1
2 Ip, and R =−δ Ip

– a distinction is made between strictly input passive δ > 0, strictly
output passive ε > 0, and very strictly passive with δ > 0 and ε > 0.

• L2-gain systems with Q =−Ip, S = 0p,m, and R = γ Im

L2-gain systems meet the norm criterion for the input/output signal given as
∫

∞

0
yT y dτ

︸ ︷︷ ︸
∥y∥22

≤ γ

∫
∞

0
uT u dτ

︸ ︷︷ ︸
∥u∥22

+V (x0) , x0 := x(t0) . (3)

In the following section, LMI criteria for LTI and T-S systems will be proposed
for analysis and passivity-based controller synthesis.
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3 Criteria for General Dissipativity Analysis of LTI
and T-S Systems

Derivation of the integral form (1) and the substitution of fs(u,y) by the
quadratic supply rate (2) results in

V̇ (x(t))≤
(

y(t)
u(t)

)T (
Q S
ST R

)(
y(t)
u(t)

)
, (4)

where Q = QT and R = RT . The analysis below is done with the quadratic
Lyapunov function candidate

V (x(t)) = xT Px , P≻ 0 , P = PT , (5)

V̇ (x(t)) = ẋT Px+ xT Pẋ . (6)

3.1 Dissipativity Analysis of LTI Systems

As a first step, criteria for the dissipativity analysis of LTI state-space systems

ẋ(t) = Ax(t)+Bu(t) , y(t) =Cx(t)+Du(t) (7)

are derived. The substitution of ẋ in (6) by the right hand side (rhs) of the state
differential equation results in

V̇ (x) =
(
Ax+Bu

)T Px+ xT P
(
Ax+Bu

)
. (8)

For reasons of simplification, the notation of the time dependency of the
variables is omitted. After a brief rearrangement of (8), we obtain

V̇ (x) =

(
x
u

)T (
PA+AT P PB

BT P 0

)

︸ ︷︷ ︸
≺0

(
x
u

)
< 0 . (9)
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With (9) as the left hand side of (4), the dissipation inequality in matrix form is
obtained

(
x
u

)T (
PA+AT P PB

BT P 0

)(
x
u

)
≤
(

y
u

)T (
Q S
ST R

)(
y
u

)
. (10)

Using the output equation of (7), the rhs becomes

. . .≤
(

Cx+Du
u

)T (
Q S
ST R

)(
Cx+Du

u

)

= xTCT QCx+ xTCT QDu+ xTCT Su+uT STCx

+uT DT QCx+uT ST Du+uT DT Su+uT Ru+uT DT QDu

=

(
x
u

)T (
CT QC CT QD+CT S

DT QC+STC DT QD+DT S+ST D+R

)(
x
u

)
.

In combination with the left hand side (lhs) of (10), one obtains

(
x
u

)T (
PA+AT P−CT QC PB−CT QD−CT S

BT P−DT QC−STC −DT QD−DT S−ST D−R

)

︸ ︷︷ ︸
≼0

(
x
u

)
≤ 0 (11)

This leads with (5) to the LMI criterion for the general QSR dissipativity of LTI
systems in state space form

P≻ 0 ,

(
PA+AT P−CT QC PB−CT QD−CT S

BT P−DT QC−STC −DT QD−DT S−ST D−R

)
≼ 0 . (12)

Based on the definitions of Q, S, and R in Section 2, the passive, strictly passive
and L2-gain property can be analyzed by solving for a feasible P.
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3.2 Dissipativity Analysis of T-S Systems

The results for LTI systems are now to be transferred to T-S systems of the
form [8]

ẋ(t) =
Nr

∑
i=1

hi(z(t))
(
Aix(t)+Biu(t)

)
, y(t) =

Nr

∑
i=1

hi(z(t))
(
Cix(t)+Diu(t)

)
,

(13)

where hi(z) : Rl → R fulfill the convex sum condition

Nr

∑
i=1

hi(z) = 1, hi(z)≥ 0 . (14)

The derivation of the quadratic Lyapunov function (6) related to T-S system (13)
is given as

V̇ (x) =

(
x
u

)T Nr

∑
i=1

hi(z)

(
PAi +AT

i P PBi

BT
i P 0

)(
x
u

)
. (15)

Thus the dissipation inequality (4) for T-S systems is obtained as

Nr

∑
i=1

hi(z)

(
x
u

)T (
PAi +AT

i P PBi

BT
i P 0

)(
x
u

)
≤
(

y
u

)T (
Q S
ST R

)(
y
u

)
. (16)

Substitution of y in rhs of (16) by the output equation (13) yields

. . .≤
(

∑
Nr
i=1 hi(z)

(
Cix+Diu

)

u

)T (
Q S
ST R

)(
∑

Nr
j=1 h j(z)

(
C jx+D ju

)

u

)

= xT
Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)CT
i QC jx+ xT

Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)CT
i QD ju

+ xT
Nr

∑
i=1

hi(z)CT
i Su+uT ST

Nr

∑
j=1

h j(z)C jx+uT
Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)DT
i QC jx

114 Proc. 34. Workshop Computational Intelligence, Berlin, 21.-22.11.2024



+uT ST
Nr

∑
i=1

h j(z)D ju+uT
Nr

∑
i=1

DT
i Su+uT Ru+uT

Nr

∑
i=1

Nr

∑
j=1

DT
i QD ju .

Utilizing the convex sum condition (14) of hi(z) resp. h j(z) the rhs of (16)
results in
(

x
u

)T Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)

(
CT

i QC j CT
i QD j +CT

i S
DT

i QC j +STC j DT
i QD j +DT

i S+ST D j +R

)(
x
u

)

By using the compact notation proposed in [11], we obtain with the lhs of (16)
the inequality

Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)

(
x
u

)T

Γi j

(
x
u

)
≤ 0 , (17)

where

Γi j(P) =

(
PAi +AT

i P−CT
i QC j PBi−CT

i QD j−CT
i S

BT
i P−DT

i QC j−STC j −DT
i QD j−DT

i S−ST D j−R

)
. (18)

With the upper bound, if

(
x
u

)T

Γi j(P)

(
x
u

)
≤ 0 (19)

for each term i, j = 1, . . . ,Nr holds, this also valid for the total sum (17). Finally,
utilizing the symmetry of the multiplication of the hi-functions, the relaxed LMI
condition [8] to verify the QSR-dissipativity of T-S system is obtained:

P≻ 0 ,

Γi j(P)+Γ ji(P)≼ 0 ,

Γii(P)≼ 0 for all i = 1,2, . . . ,Nr , j = i+1, i+2, . . . ,Nr

s.t. hi(z)h j(z) ̸= 0, ∃z

(20)

Proc. 34. Workshop Computational Intelligence, Berlin, 21.-22.11.2024 115



with Γi j(P) proposed in (18). Based on the definitions of Q, S, and R in
Section 2, the passive, strictly passive and L2-gain properties of nonlinear
systems in T-S form (13) can be analyzed by finding a common P. How to
apply (20) in principle by solving a convex optimization problem is shown
in Section 5 by a toy example. The applicability of (20) to real systems, for
example wind and photovoltaic generator models of power systems in T-S form
proposed in [11], will be investigated in future studies.

4 Passivity-Based Control of T-S systems

To analyze the passive-based control of a T-S system, the state-space model
without direct pass-through is considered:

ẋ =
Nr

∑
i=1

hi(z)
(
Ai +Biu

)
, y =

Nr

∑
i=1

hi(z)Ci x . (21)

The proposed control law

u =
Nr

∑
j=1

h j(z)
(
K jx+Fjv

)
, (22)

consists of a state feedback matrix K j and gain matrix Fj to feed-forward
the reference signal v ∈ Rp in order to achieve a steady-state control error of
zero. The structure of the control law corresponds to the parallel distributed
compensator (PDC) of Takagi-Sugeno fuzzy systems [8], whereby the weighting
functions are identical to those of the model equation (21). Obtaining the closed-
loop system the input in (21) is substituded by the control law (22). Utilizing
the convex sum condition (14) yields to

ẋ =
Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)
(
(Ai−BiK j)x+BiFjv

)
. (23)
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Inserting of (23) into the derivative of the Lyapunov function (6) results directly
in

V̇ (x) =
Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)
(
(Ai−BiK j)x+BiFjv

)T Px

+
Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)xT P
(
(Ai−BiK j)x+BiFjv

)
.

(24)

After few steps, we obtain

V̇ (x) =

(
x
v

)T Nr

∑
i=0

Nr

∑
j=1

hi(z)h j(z)

(
PAi +AT

i P−PBiK j−KT
j BT

i P PBiFj

FT
j BT

i P 0

)(
x
v

)
.

(25)

As in the analysis of Section 3.2, the design criterion is derived by examining
the QSR supply rate in (4):

fs(v,y) =

(
y
v

)T (
Q S
ST R

)(
y
v

)

Substitution of y by the output equation of (21) yields after few calculation
steps

fs(v,y) =

(
x
v

)T Nr

∑
i=1

hi(z)

(
CT

i QCi CT
i S

FT
j BT

i P−ST Ci −R

)(
x
v

)
. (26)

With (25) and (26), the result for the inequality (4) becomes

(
x
v

)T Nr

∑
i=1

Nr

∑
i=1

hi(z)h j(z)

·
(

PAi +AT
i P−PBiK j−KT

j BT
i P−CT

i QCi PBiFj−CT
i S

FT
j BT

i P−ST Ci −R

)

︸ ︷︷ ︸
Γi j(P,K j ,Fj)≼0

(
x
v

)T

≤ 0

(27)
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Note that the matrix Γi j(P,K j,Fj) is not linear in P,K j and Fj. With the
restriction that only systems with directly measurable states y = Ip x are to be
analyzed regard to passive, strictly passive, and L2-gain systems we obtain
Γi j(X ,X2,K j,Fj). The matrix is therefore linear in K j and Fj, but bilinear in
X . Steps required for this are explained below. Application of the congruence
equivalent relation for (27) gives

Γi j(P,K j,Fj)≼ 0 ⇔ WΓi j(P,K j,Fj)W T ≼ 0 (28)

with

W =

(
X 0
0 X

)
, X := P−1, , X = XT (29)

yields

W Γi j(P,K j,Fj)W T =
(

AiX +XAT
i −BiK jX−XKT

j BT
i −XCT

i QCi X BiFjX−X CT
i SX

XFT
j BT

i −XST CiX −XRX

)
.

Utilizing the new variables M j := K jX , N j := FjX , where MT
j = XT KT

j = XK j

and NT
j = XFT

j , we obtain for Ci = Ip the relaxed bilinear matrix inequalities

X ≻ 0 , Γ
α
i j(X ,M j,N j)+Γ

α
ji(X ,M j,N j)≼ 0 ,

Γ
α
ii (X ,M j,N j)≼ 0 for all i = 1,2, . . . ,Nr , j = i+1, i+2, . . . ,Nr

s.t. hi(z)h j(z) ̸= 0, ∃z
(30)

with α = {a,b,c}. The passivity-based controller synthesis for the three types
of passivity introduced in Section 2 is formalized by (30) for

• passive systems: Q = 0p,p, S = 1
2 Ip, R = 0p,p with

Γ
a
i j(X ,M j,N j) =

(
AiX +XAT

i −BiM j−MT
j BT

i BiN j− 1
2 X2

N jBT
i − 1

2 X2 0

)
(31)

118 Proc. 34. Workshop Computational Intelligence, Berlin, 21.-22.11.2024



• strictly passive systems: Q =−εIp,S = 1
2 Ip,R =−δ Ip with

Γ
b
i j(X ,M j,N j) =

(
AiX +XAT

i −BiM j−MT
j BT

i + εX2 BiN j− 1
2 X2

NT
j BT

i − 1
2 X2 δX2

)

(32)

• L2-gain systems Q =−Ip,S = 0p,m,R = γ Im with

Γ
c
i j(X ,M j,N j) =

(
AiX +XAT

i −BiM j−MT
j BT

i +X2 BiN j

NT
j BT

i −γX2

)
(33)

Note the state feedback gain K j and feed forward gain Fj for j = 1,2, ..,Nr of
the PDC control law (22) are calculated by K j = M jX−1 and Fj = N jX−1.

5 Illustrating Example

Finally, after formal consideration of the QSR-dissipativity applied to T-S
systems, an illustrative mechanical toy example is examined. This was selected
in such a way that an analytical solution is also available. Given is a mechanical
oscillator with one degree of freedom shown in Figure 1. The displacement of
the rigid body with m = 2 (kg) is restricted to the direction x (m), whereby the
stiffness in the mechanical system is described via the spring c = 2 (N/m) and
the damping is described with the constituent formula

d(ẋ) = d0 +d1 ẋ2 (34)

with the parameters d0 = 0.1 (N/m/s) and d1 = 0.05 (N/m2/s2). The state space
model

ẋ1 = x2

ẋ2 =−
c
m

x1−
d0

m
x2−

d1

m
x3

2 +
1
m

u , x0 = x(0) ,

y =C x

(35)
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m F

xc

d1d , 0

Figure 1: Mechanical Oscillator with nonlinear damper as an illustrating example

with x = (x1 , x2)
T := (x , ẋ)T and u := F provides a complete description

of the system dynamics. Let us first examine the passivity property of (35)
analytically by using the dissipation inequality (1) directly i.e. without the
proposed LMI formulation. The following Lyapunov function candidate is used
for the example:

V (x) =
1
2

cx2
1 +

1
2

mx2
2 > 0 for x1,x2 ̸= 0

V̇ (x) = cx1 ẋ1 +mx2 ẋ2

Substituting the derivatives with the right hand sides of (35) results in

V̇ (x) = cx1 x2 +mx2
(
− c

m
x1−

d0

m
x2−

d1

m
x3

2 +
1
m

u
)
=−d0 x2

2−d1 x4
2 + x2u .

Note, if u = 0 then V̇ (x) < 0 for all x2 ̸= 0 holds, this means that V (x) is a
Lyapunov function and the eigen-motion of (35) is asymptotically stable [5].

With an input u ̸= 0 the derivative of dissipation inequality (1) results in

V̇ (x)≤ fs(u,y) = uT y . (36)

Choosing the supply rate of fs(u,y) = uT y, the fulfillment of the inequality
(36) directly results in the evidence of system passivity. Let us consider two
orthogonal cases to investigate the passivity of the mechanical oscillator. In
the first case only the position x and in the second case the velocity ẋ can be
measured, i.e. the output matrix C in (35) is

• Case 1: C = (1 , 0) ⇒ y = x1 = x , fs(u,y) = ux1
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• Case 2: C = (0 , 1) ⇒ y = x2 = ẋ fs(u,y) = ux2

Thus, for the first case the dissipation inequality (36) for passive systems is

−d0 x2
2−d1 x4

2 + x2u ≤ ux1 ⇒ infeasible problem for x1,x2 ∈ R

and for the second case

−d0 x2
2−d1 x4

2 + x2u ≤ ux2

−d0 x2
2−d1 x4

2 ≤ 0⇒ feasible problem for x1,x2 ∈ R

The results are independent from the values of d0 and d1. Furthermore, the
choice of output has a significant influence on the system characteristics. This
means that the system properties of passivity not only depend on the input to
state mapping but also on the effect of internal systems states on the output.
After the analytical investigation, the LMI-based criteria is now implemented
by numerical convex optimization. First the nonlinear system is presented as
T-S system. For this purpose, the nonlinear sector approaches is used, where
T-S models exactly represent nonlinear systems in a bounded state space. In
the case study, the nonlinearity is determined by the interval of z ∈ [zmin,zmax]

with z := ẋ2, zmin = 0 and zmax = ẋ2
max. The damping function d(z) = d0 +d1z

proposed in (34) with the new coordinate z can therefore be substituted by the
following sector function

d(z) =
dmax−d(z)
dmax−dmin

dmin +
d(z)−dmin

dmax−dmin
dmax = h1(z)dmin +h2(z)dmax (37)

with d(z) ∈ [dmin,dmax], where dmin = d0 and dmax = d0 +d1 zmax. The member-
ship functions of the T-S models result from the z-dependent weightings of the
sector bounds in (37)

h1(z) =
dmax−d(z)
dmax−dmin

, h2(z) =
d(z)−dmin

dmax−dmin
. (38)
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The state space model of the mechanical oscillator (35) then results as follows

ẋ =

(
0 1
− c

m − d(z)
m

)
x+

(
0
− 1

m

)
u

=

(
0 1
− c

m −h1(z)
dmin

m −h2(z) dmax
m

)
x+

(
0
− 1

m

)
u .

Utilizing the convex sum property (14), here with h1(z)+h1(z) = 1 ∀z, we get
the final T-S representation of (35) to

ẋ = h1(z)

(
0 1
− c

m
dmin

m

)

︸ ︷︷ ︸
A1

x+h2(z)

(
0 1
− c

m
dmax

m

)

︸ ︷︷ ︸
A2

+

(
0
− 1

m

)

︸ ︷︷ ︸
B

u . (39)

and in the standard sum form with the output equation

ẋ =
2

∑
i=1

hi(z)Ai +Bu, y =C x . (40)

Note that B, C, D are common and D = 0. That significantly reduce the number
of LMIs to verify the QSR-dissipativity by (20) of T-S systems. With the
specification Q = 0p,p, S = 1

2 Ip, R = 0p,p, which is used to examine only the
passivity as in the analytical analysis, we obtain the reduced condition to be
verified

P≻ 0 ,

Γi(P)≼ 0 for all i = 1,2, . . . ,Nr ,
(41)

where

Γi(P) =

(
PAi +AT

i P PB− 1
2CT

BT P− 1
2C 0

)
. (42)

Using the numerical values of the model parameters given above, the following
results for (41), (42) were obtained with the SDPT3-4 solver within the YALMIP
toolbox (version 20210331), Matlab R2020a:
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• Case 1: C = (1 , 0) ⇒ Infeasible problem (SDPT3-4)

• Case 2: C = (0 , 1) ⇒ Successfully solved (SDPT3-4)

The result refers to the sector limit zmax = ẋ2
max with upper bound ẋmax = 2.

But could also be confirmed for larger values such as ẋ = {2,4, . . . ,18,20} i.e.
the distance between the linear models in the parameter space is up two orders
larger.

6 Conclusion

The QSR-dissipativity for the class of T-S fuzzy systems was investigated. An
LMI-based verification and a BMI-based design approach for passive-based
control were presented. Studies on synthesis with BMIs have yet to be carried
out. A two-step procedure could convert the latter BMI into an LMI formulation.
First, a Lyapunov function is calculated with the left hand side of the standard
dissipation inequality, and in the second step, X2 is calculated using an auxiliary
variable. What could be shown in closing is that the proof of passivity in
T-S fuzzy systems is numerically possible by means of convex optimization
algorithms as implemented in [6]. Furthermore, because only simple test models
have been used to date, more realistic physical process models [11], such as
those used to verify the stability of distributed power systems, are also being
investigated using the proposed approach.
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