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1 Introduction

Ultra-High Performance Concrete (UHPC) is distinguished by its exceptional
mechanical properties and durability, offering significant advantages over con-
ventional concrete [1]. However, achieving consistent UHPC quality remains
a challenge, even when following the same formulation [2]. This inconsis-
tency is largely due to the production process’s sensitivity to variations in
raw material properties, environmental conditions, and operational factors (see
Figure 1). Adopting a holistic approach to the entire UHPC manufacturing
process introduces high dimensionality and increases the cost of data generation,
resulting in sparse datasets. To address these challenges, this study presents an
automated modeling pipeline (see Figure 2) specifically designed to tackle high-
dimensional and sparse data issues. The proposed pipeline comprises five layers:
data generation based on a three-phase Design of Experiments (DoE), data
preprocessing, ensemble-based feature importance determination [2], feature
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Figure 1: Ultra-High Performance Concrete (UHPC) Production Process [2]. The diagram shows
key factors influencing UHPC production and testing. (El: Electrical, CS: Compressive
Strength, FS: Flexural Strength)

selection using the Informed Non-Dominated Sorting Genetic Algorithm II
(I-NSGA-II), and a modeling layer. The primary objective is to analyze the
consistency of key mechanical properties, specifically compressive and flexural
strength after 28 days of curing.

2 Modeling Pipeline for the Ultra-High
Performance Concrete Production Process

2.1 Data Generation

Due to resource limitations restricting the number of experiments to 100 in this
study, a feature pool was developed through a literature review and expert input,
ensuring a comprehensive representation of the entire UHPC manufacturing
process. To further manage the dimensionality of the input space, feature
engineering was employed as an initial strategy to reduce the number of features
while preserving critical information.

An effective DoE is crucial for managing complex input spaces. To address this,
a three-phase DoE was developed: Screening, Optimal, and Complementary
Phases. The L-50 Taguchi Orthogonal Array [3] was used in the Screening
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Figure 2: Automated Modeling Pipeline for Ultra-High Performance Concrete Manufacturing: An
End-to-End Framework Covering Data Generation to Model Building. (FID: Feature
Importance Determination, HIE-OD: Human-in-the-Loop Informed Ensemble-based
Outlier Detection)

Phase due to its ability to handle high-dimensional spaces with few observations
and ensure uniform coverage of the input space, resulting in 50 data points. This
phase led to the removal of three non-essential features and the identification of
curing conditions as the most critical feature.

In the Optimal Phase, the goal was to strategically position new data points
relative to those established in the Screening Phase. To achieve this, 50
additional experiments were conducted using S-optimality criteria and Latin
Hypercube Sampling (LHS) [4], refining the experimental design based on
insights gained from the initial phase. Recognizing that curing conditions were
the most influential factors, the Complementary Phase was conducted in parallel
with the Optimal Phase. In this phase, each experiment designed in the Optimal
Phase was replicated under two curing conditions: one based on the Optimal
Phase design and the other informed by expert knowledge. This dual-condition
approach generated two outputs per experiment, resulting in a total of 150
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data points from 100 experiments. This comprehensive dataset ensures robust
coverage of the UHPC manufacturing process for subsequent modeling.

2.2 Data Preprocessing

Given the high dimensionality and limited data size, it was crucial to reduce
dimensionality while addressing missing values to maintain data integrity. Tradi-
tional outlier detection methods were unsuitable for the sparse and uniformly dis-
tributed dataset, necessitating the development of a human-in-the-loop informed
ensemble-based outlier detection (HIE-OD) method. The preprocessing steps
involved using imputation techniques to retain four experiments and remove
two highly correlated features as part of dimensionality reduction Additionally,
11 outliers were identified and removed, resulting in a refined dataset with 16
features and 139 observations.

2.3 Feature Importance Determination & Feature Selection

To effectively handle sparse data, as encountered in this study, feature selection
is crucial. Traditional grid-search methods are unsuitable for exploring such
complex input spaces due to a high risk of converging to local minima, especially
in sparse datasets. Therefore, an evolutionary, multi-objective feature selection
approach is recommended. These methods not only provide a comprehensive
exploration of complex input spaces but also act as a form of regularization.
However, a significant challenge with these methods is the instability of feature
selection in high-dimensional spaces with limited observations, which can lead
to poor predictive performance [5, 6].

To address these issues, we used the Informed Non-Dominated Sorting Genetic
Algorithm II (I-NSGA-II) as a multi-objective feature selector. This approach
effectively tackles both challenges associated with evolutionary multi-objective
feature selection. The I-NSGA-II algorithm incorporates the most important
features, as determined by the prior ensemble-based feature importance de-
termination [2], as part of its initial solution. It then searches for additional
features that are relevant to predicting the mechanical properties of UHPC,
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thereby improving both stability and predictive accuracy. The performance of
the proposed I-NSGA-II was compared to the traditional NSGA-II [7] using ten
different machine learning algorithms [8].

2.4 UHPC Manufacturing Process Modeling

The UHPC manufacturing process was modeled and evaluated using the leave-
one-out cross-validation technique in the final step. This followed the generation
of datapoints in the Design of Experiments step, the cleaning of data in the Data
Preprocessing step, and the selection of the most important features and the best
algorithm in the Feature and Algorithm Selection step.

3 Results and Future Work

The proposed framework was validated on two experimental datasets, proving
its effectiveness in addressing challenges related to data dimensionality and
limited sample size. Future work will focus on advancing the modeling phase
by incorporating more complex and innovative algorithms, as well as testing
the framework with additional benchmark functions.
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Abstract

Stochastic optimization algorithms have been successfully applied in several
domains to find optimal solutions. Because of the ever-growing complexity of
integrated systems, novel stochastic algorithms are being proposed, which makes
the task of the performance analysis of the algorithms extremely important. This
paper provides a novel ranking scheme to rank the algorithms over multiple
single-objective optimization problems. The results of the algorithms are
compared using a robust bootstrapping-based hypothesis testing procedure
that is based on the principles of severity. Analogous to the football league
scoring scheme, we propose pairwise comparison of algorithms as in league
competition. Each algorithm accumulates points and a performance metric of
how good or bad it performed against other algorithms analogous to the goal
differences metric in the football league scoring system. The goal differences
performance metric can be used not only as a tie-breaker but also to obtain a
quantitative performance of each algorithm. The key novelty of the proposed
ranking scheme is that it takes into account the performance of each algorithm
considering the magnitude of the achieved performance improvement along
with its practical relevance and does not have any distributional assumptions.
To demonstrate the advantages of the proposed ranking scheme, we compare
the expected run-time metrics of three hyperparameter optimization (HPO)
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procedures, namely, Irace, a mixed-integer parallel efficient global optimization
(MIP-EGO), the mixed-integer evolution strategy (MIES), along with (1+1)EA
and grid search(GS) on a genetic algorithm framework for Pseudo-Boolean
Optimization (PBO) Suite of 25 problems. The proposed ranking scheme is
compared to classical hypothesis testing and the analysis of the results shows
that the results are comparable and our proposed ranking showcases many
additional benefits.

1 Introduction

Numerous new meta-heuristic algorithms are being proposed to solve vari-
ous complex problems. This makes the analysis of the performances of the
algorithms to a relevant set of problems an inevitable task. Generally, the
performances of the stochastic optimization algorithms are evaluated based
on solution quality or utilized budget [1]. Here, the solution quality measures
how close the solution obtained by an algorithm is with respect to the global
optimum or the best-known value. This is referred to as the fixed-budget
measure, where the achievable solution quality for a fixed budget is obtained.
In the fixed-target perspective, the time required by an algorithm to hit the
desired solution quality is measured. The time required can be CPU time or
function evaluations. Typically, the CPU time can be dependent on many factors
like computing environment, hardware resources, etc. Hence, the Function
Evaluations (FE) is considered as an alternative time measure, where the number
of times the objective function evaluated is measured. To test the robustness of
the algorithm’s performances, the algorithms are tested under uncertainty, noise,
etc. The scalability measures the ability of the algorithm as the dimension of
the problem increases. Be it the fixed-target or fixed-budget measure, due to the
stochastic nature of the algorithm, there exists randomness in the performance
of algorithms. Executing the same algorithm repeatedly can produce different
solutions for the same inputs. Hence, there is a need for rigorous analysis of the
performances of stochastic optimization algorithms.

In recent years, descriptive analysis (e.g. mean, median, best, worst and standard
deviation) has turned out to be necessary but not sufficient metrics in analysing
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the performances of the algorithms. Statistical analysis plays a crucial role in
comparing the performances of the algorithms [1]. A commonly used statistical
tool over several years is hypothesis testing [15]. In order to compare the
performances of algorithms, the null hypothesis can be formulated as There is no
statistically significant performance difference between a pair of algorithms vs
the alternative hypothesis as There exists a statistically significant performance
difference between a pair of algorithms. Hypothesis testing can be broadly
classified into parametric and non-parametric tests. While the former assumes
a specific type of probability distribution of the data and makes inferences
about the parameters of the distribution, the latter do not make any explicit
assumptions about the data or its underlying distributions. The non-parametric
tests are used when the assumptions for the safe use of parametric tests are not
met. In both procedures, the p-value be the measure for deciding whether to
retain or reject the null hypothesis. Since the statistical significance is decided in
the form of a yes or no fashion that is based only on the p-value, the hypothesis
testing procedure is criticized as black and white thinking [3]. Considering these
criticisms, in [20], the American Statistical Association (ASA) explains the
scope of p-value, wherein it emphasizes on considering additional appropriate
measures along with p-value for a scientific decision. In [7], this issue is
addressed using a measure, severity, which is a form of attained power [14].
More precisely, the concept of using severity as a tool for single pairwise
comparison is proposed in [7], where both the statistical significance and also
the practical relevance of the algorithms performances are measured. Also, the
concept of severity is utilized for the analysis of the performances of hyper-
parameter tuning in machine and deep learning algorithms [2].

The purpose of this paper is to propose a novel ranking scheme, that ranks the
algorithms in a robust statistical fashion based on their performances considering
the statistical significance, practical significance and magnitude of the achieved
performance improvement. The resulting ranking scheme is analogous to the
football league ranking system which has both the points scored and goal
differences metric. Considering Multiple Algorithm Multiple Problem design
(MAMP), each pairwise comparison of algorithms is treated similarly to a
football game between two teams in a football league competition. The outcome
of each game can be a win, a draw, or a loss for each algorithm on each problem
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based on which the points and goal difference are obtained. To the best of
our knowledge, this may be the first statistical ranking scheme, which takes
into account the win or loss of an algorithm along with the magnitude of
the corresponding win or loss, i.e, in terms of the positive or negative goal
differences. At the end of the league competitions, the algorithms are ranked
based on the points and goal difference(GD).

In [7], the severity for various values of discrepancies is evaluated. The choice
of evaluating varied discrepancies can be a little time-consuming. To overcome
this issue, in this proposed paper, we have introduced a simple yet very effective
concept, where the user needs to choose the desired severity, S € [0, 1] (same as
desired power). Note, this is the same as the desired power and not an explicit
additional parameter. Then, the supported discrepancy for the chosen severity is
obtained as an outcome. Based on outcome each algorithm attains two scoring
as points and goal differences.

The paper is organized as follows: Section 2 explains the existing ranking
frameworks to evaluate the performances of the optimization algorithms. Sec-
tion 3.1 explains the concept of severity. Section 3.2 summarizes the proposed
football based ranking scheme. In Section 4, a specific set of hyperparameter
optimization techniques are evaluated for a family of genetic algorithms and
are tested using the PBO Suite of 25 problems. Section 5 concludes with a
summary and outlook.

Reproducibility: The source code is made available at https://github.
com/sowmyachandrasekarani7/algRanking. The data and results of the
experiment are available in [6].

2 Related Works

There exist some ranking schemes in the literature which were proposed to
compare the performances of the optimization algorithms as in [5,9, 10, 16, 18].
In [18], an empirical chess rating system for evolutionary algorithms using
Glicko-2 rating is proposed. Here, the evolutionary algorithms are treated as
chess players, and a pairwise comparison of two algorithms is considered as
one game. Each game outcome can be a win, a draw, or a loss. At the end of
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the tournament, each algorithm is represented by rating(R), rating deviation
(RD), and rating volatility(c). Despite not being statistically analyzed, this
rating system suffers from other issues. Firstly, the ordering of the games affects
the final rating, though it is randomly selected. Furthermore, the overlapping
of the confidence intervals might lead to statistical inconsistency as explained
in [9]. Finally, the magnitude of the win or loss is not considered in the rating
system.

More recently, different variants of deep statistic-based comparison (DSC) tool
have been proposed [9, 10]. The advantage of this [10] ranking scheme is that
it is based on the whole distribution rather than comparing mean or medians.
In MAMP design, multiple pairwise comparisons of algorithms are performed
using the non-parametric Kolmogorov-Smirnov or Anderson-Darling test and
only the p-values determine the win or loss. Though the practical significance
is addressed in DSC, the magnitude of the win or loss is not considered. Also,
since the practical significance is directly included in the hypothesis formulation,
the approach can be more conservative.

In [5, 16], the statistical comparison of the performances of the evolutionary
algorithms is performed using Bayesian inferences. Though the identification
of prior probabilities is an issue [11], the ranking of the algorithms is only
based on the Bayesian probability of an algorithm being the best performer. The
magnitude of the performance differences cannot be obtained.

3 Proposed Ranking Scheme

3.1  Concept of Severity

In order to explain the concept of hypothesis testing and severity, let us assume
Normal, Independent, and Identically Distributed (NIID) datal. Let us consider
algorithm A, say a = (ay, ..., a,), representing the function evaluations required
by Algorithm A to achieve a specific target solution for »n runs. Similarly,

! In the proposed ranking scheme, we do not assume the normality of the data. Here it is assumed
to simplify the explanation of the concept and without the loss of generality, the concept can be
adapted to the cases where the distribution is not known.
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algorithm B, say b = (b1, ..., b,), represents the function evaluations required
by Algorithm B to achieve the same target solution for n runs. We evaluate the
performance of the algorithms repeatedly for n runs to handle the randomness
in the evaluation metric and to obtain a reliable estimate of the metric.

The hypothesis testing is performed as an upper tail test of the mean differences
as it is an optimization minimization problem. The difference vector x can be
defined as x = (x1, ..., x,), where x; = a; — b;,Vi={1, ..., n} and X denote the
mean of the vector X.

Hy : B does not achieve less FE thanA — X <0 — Loss for B.

H; : B achieves less FE than A =— X >0 =— Win for B.

Hy:x<0;vs.H;:X>0,
o {not-RejectHo7 if d(X) <uj_q,
decision =

Reject Hy, otherwise,

where u;_¢ is the upper tail cut-off point of the normal distribution, which cuts
the upper-tail probability of ¢, and the test statistic d(X) can be represented
as

where standard error ¢, = % and U is the hypothesized mean under Hj.
If a test statistic is observed beyond the cut-off point, we reject the Hy at a
significance level a. Here, the values for &, 3, and hence power (1 — 3) are pre
specified before the experiment is performed.

In the context of ranking the algorithms based on the results of parametric
or non-parametric hypothesis testing, based only on the p-value, i.e, if a test
statistic is observed beyond the cut-off point, the Hy is rejected and hence B
wins and is declared of achieving less FE than A. Also, B gains a point just
based on this decision. This is criticized as black and white thinking.

Severity, a form of attained power [14], is a probability analogous to the p-value
under the alternative hypothesis rather than one under the null. In case of win
or loss, the magnitude of the performance improvement is measured in terms of
severity as S, and S, respectively. The loss S, values increase monotonically
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from O to 1. The won S, values decrease monotonically from 1 to 0. The closer
the value is to 1, the more reliable the decision made with the hypothesis test.
Generally, a severity value of 0.8 is considered reliable support. The differences
between o, p-value, power, and severity is provided in Table 1 in [7].

The importance of severity representation of won is shown in Figure 1. In a
similar fashion, the severity representation of loss can also be visualized. In
Figure 1, only one value for the alternate hypothesis is visualized. However, in
practice, we evaluate the severity for specific possible values under the H;. The
different values under the alternative hypothesis for which the compatibility is
assessed will henceforth be called discrepancy, 6. It measures how discrepant
is the performance improvement when compared to the null improvement. In
the context of algorithm ranking, since we consider the FE as the metric, we
can evaluate if B won over A with 1000 FE or 10 FE, thereby quantization the
magnitude of the victory.

. :
oo —oo Ho Ciq oo

(a) Won Scenario 1 :Severity to Reject HO (b) Won Scenario 2 :Severity to Reject HO

Figure 1: Illustration of two scenarios of S, under the alternate hypothesis. In both cases, the actual
test statistic d(x), falls outside the u;_¢, the decision is to reject the null. The S, is the
area under the H; that is within the d(x) (shaded area). Though in both cases, the decision
is the same, severity sheds light in understanding the actual attained power of the test. In
(), less support for the decision won (shaded area) as d(x) is closer to the cut-off point
and in (b), more support for the won (shaded area) as d(x) is way more from the cut-off
point.
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3.2 Proposed Algorithm

The football league scoring system has been designed to provide a fair and
objective method for ranking teams based on their performances. Each football
match between two teams, has three possible outcomes: win, loss or draw.
Based on the outcome the teams get points, 3 for winning, 1 for drawing and 0
for losing. The points earned by each team from matches played over a season
are cumulatively added and the final rankings for the season is obtained. In
addition, the goal difference, which is the difference between the number of
goals scored minus the number of goals conceded in matches is calculated. Goal
difference serves as a tiebreaker if two or more teams have the same points.

Analogous to the football league scoring scheme, we propose a novel ranking
scheme for ordering the performances of several stochastic algorithms on a
set of well-known bench-marking test functions (J) as Algorithm 1. Let A :=
{A;,Vi € {1,...,k}} denote the set of all algorithms that must be ranked and
F:={F,Vl €{l,...,m}} denote the set of all test functions. An experiment is
performed where each algorithm A; € A is evaluated on each of the test functions
F; € J for n runs. Let C represent set of all possible pair-wise algorithm
comparisons, Y represent the set of all corresponding solutions and are defined
as

C:={(AnA)), Vi, je{l,... .k} i#jVIe{l,...,m}}, (1)
Y= {(yi,y), Vi, j € {1,... .k}, i # VI €{1,....m}}, )

where y; € R” denotes the solution of i algorithm A; for n runs for a given
function in &F. The ranking scheme requires each pairwise comparison defined
in € and set Y should be obtained and this results in a total of k x k— 1 x m
comparisons. For each (A4;,A;); € C, bootstrapping-based t-test is performed.
Sampling with replacement is done to attain a better estimate of the metric. This
procedure also eliminates the dependence of the outcome on the ordering of the
optimization runs. For a given value of i,j € {1,... .k}, 1 € {1,...,m},i # j,
the following steps are performed.
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Algorithm 1.: Proposed Ranking Scheme

D — —m e o e s e s e e
S % ® DN RN 2O

21:
22:
23:

R A T

: for each pair-wise comparison (4;,4;); € C do

Require: (v;,y;); = (0}, -, Y1), ks o YD)is @, Somp, 8
Formulate Hypothesis Hy : X < 0vs. H :X >0
Evaluate observed sample mean difference 7,55 = ¥; — ¥,
Combine I = y;y;
repeat
Draw a bootstrap sample of 2n observations with replacement from I
Let the mean of the first n observation be y;*
Let the last n observations be y;*
*bs _ ﬁ* _ W*
Evaluate ;% =y;* —y;* — §

Evaluate ¢

until n;, times
#(Fbsztubs)
np
Obtain ad justed — p based on BH correction

if ad justed — p < o then
decision: Reject Hy and 6" = ming S — %}?"’“)
if 5 < , then
points =1 and GD =0
else
points =3 and GD = L‘;—pj

Calculate p ~

if ad justed — p > o then
+bs
decision: not-Reject Hy and 6* = maxg S — #("nift"’”)
points =0 and GD = L?j
»

24: Obtain cumulative points and GD
25: Rank based on points and GD

. Merge the results of the algorithms to obtain I :=y;y; of size 2n and

compute the observed sample mean difference z,ps :=¥; — ¥ ;.

. Draw a bootstrap sample of 2n observations with replacement from I and

+bs

evaluate the bootstrap test statistic />° =y; —y.

. Repeat the procedure based on the bootstrapping re-sample size np, and

estimate p-value as the number of times the bootstrap test statistic #*°

#(t*bs Ztobs)

was found to be greater than the 7,,, in n;, samples. Le., p = m
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4. Adjust the p-value using Benjamini-Hochberg (BH) correction [4].

5. When the adjusted p-value is found to be significant, i.e., less than the
specified a, then reject Hy, else do not reject Hy. Based on the decision
and the chosen severity requirement, S, obtain the supported &.

The significance level a, the desired severity, S € [0, 1], (same as desired power)
and the practically relevant §, should be chosen by the user. As the power of the
test is usually chosen as 80 percent or 95 percent based on the problem domain,
similarly, the recommended severity is chosen at 80 percent or 95 percent and
a of 95 percent. Based on the performance metric and the problem domain, to
identify if the achieved performance improvement is better than the practical
relevance, the 8, shall be chosen carefully. In case of FE as the metric where the
available budget is 100000 FEs, minimum of 100 FE improvement at desired
severity can be considered as a practically relevant improvement. In case of
CPU time as the metric, depending on the application, meaningful time can be
chosen. E.g., for an optimization algorithm implemented in an autonomous car,
this value can be in centiseconds, and for offline scheduling problems, it can be
in several minutes to hours. The supported & obtained from the algorithm gives
a measure of change in statistics required to achieve the expected severity. The
rounded-down value of the ratio of 6 and J,, provides the goal difference metric
in each match, thereby quantifying the size of a win or a loss.

The points scored for each algorithm are similar to the football league scoring
system and are obtained based on the decision of the bootstrapped hypothesis
testing, the statistical significance of the result, i.e. supported J at desired
severity and the practical relevance of the win or loss, whether, supported
0 < 0p or 8 > §,. The goal difference measures how much the performance is
better/worse in terms of practical relevance. The points and goal difference are
calculated as

points=3, GD=|8/6,| > 0, if RejectHy and  if § > §,,
Outcome = { points=1, GD=|6/3,] = 0, if RejectHy and  if & < &,
points=0, GD=|6/6,] <0, if not-Reject Hy.
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Upon completion of all pairwise comparisons in C, the cumulative points and
the cumulative goal differences are calculated and the algorithms are ranked
based on the points. In addition, the mean and standard deviations of the points
for each algorithms among all functions can be obtained. The points awarded to
algorithms that performed well with practical significance are weighted more
than twice (three times to be precise) the points awarded to algorithms that
performed only statistically significant. This takes into account the fact that
practical significance is more relevant in real-world applications and therefore
provides a better estimate of the overall performance of the algorithms. On the
other hand, weighting practical significance more than three times may skew the
results more towards practical significance and therefore statistical significance
will have less influence on the final result.

3.3 Properties of the Ranking Scheme

The proposed ranking scheme demonstrates a weak order since it satisfies the
comparability, reflexivity, transitivity, anti symmetry properties and it allows for
ties, if goal difference does not differentiate the algorithms [2]. Let us define
a relation R(Ai,Aj) such that for any two algorithms A; and A; in A, P, P;
denote the points and GD;, GD; denote the goal difference of algorithm A; and
A respectively. Note that the symbols >, <, = represent that one algorithm is
ranked higher than, lower than, equal to the other algorithm respectively. Then
relation R(A;,A ) between two algorithms can be formally defined as

A; >Aj, if ( P> Pj)OI‘ (P, = Pj and GD; > GD]‘),
R(Ai,Aj) =S Aj > Ay, if (P; > P) or (Pj = P and GD; > GD),
A;=Aj, if P, = Pj and GD; = GD;.
Comparability: Every pair of algorithms (A;,A;); € C are comparable by the
definition of R(A;,A;)

Reflexivity: For every algorithm compared, it is equivalent to itself. Outcome
gives unique value associated with each algorithm. For any A; € A,

A; = A;, since P, = P, and GD; = GD;
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Transitivity: Since the ranking scheme is based on total Outcome, for any
A Aj A e A A; > Ajand A > Ay, then A; > A because of the following.

if P, > P; and P; > P, then P, > Py

if (P, =P; and GD; > GD;) and (P; = P, and GD; > GDy)
then P, = P, and GD; > GDy.

Anti symmetry: The anti-symmetry property is defined by the following
relationship.
if A; >Aj andAj >A = AZ’ZAJ

This can be proven directly from the definition of R(A;,A ;) because the condition
can be satisfied only when the algorithms are ranked equal.

4 Case study

We compare the expected run time metrics of three hyper parameter optimization
techniques along with (1+1)EA and grid search for a family of genetic algo-
rithms on PBO Suite of 25 problems obtained from [21]. The 25 PBO functions
include from onemax, leadingones, a linear function with harmonic weights,
various W-model-transformes of onemax and leadingones, low autocorrelation
binary sequences, ising models, maximum independent vertex set, N-queens
problems. The compared HPO techniques include Irace [13], a mixed-integer
parallel efficient global optimization [17], the mixed-integer evolution strategy
[12].

As (1+1)EA has shown good performance for PBO in [8] it is considered a
baseline. The goal is analysing the impact of mutation, crossover, and its
combination on a family of (¢ + A) GA algorithms, which results in four
tuning parameters: Parent population size, p € [100], Offspring population
size ,A € [100], mutation rate, P, € [.005,.5], cross over probability P € [0, 1].
Each of the HPO techniques is allocated a budget of 5000 target runs, where
each target run refers to 10 independent runs of the (1 +2A) GA configuration
suggestion by the HPO techniques. Two different performance metrics are
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considered, namely, minimizing the expected runtime (ERT) and maximizing the
Area under the empirical CDF curve of running times (AUC). This results in 9
algorithms to be compared: (1+1)EA, GS.AUC, GS.ERT, Irace.AUC, Irace.ERT,
MIES.AUC, MIES.ERT, MIP.EGO.AUC, MIPEGO.ERT. The (u + 1) GA
configurations provided by each of the HPO technique are evaluated for a budget
of 50000 function evaluations and the ERT values are obtained for the PBO
problems with respect to the targets defined in Table 1 in [21]. And for AUC,
set of 100 equally spaced targets ranging from O to the targets defined in Table 1
in [21] is considered. Upon identification of the best tuning parameters by each
HPO technique, 100 independent runs for these tuned settings are performed
and used for further analysis. For each of the algorithm, results of these 100 runs
at desired target defined in Table 1 in [21] is used as performance data of this
case study and is obtained using IOHanalyzer [19] as explained in [21]. In all
runs, values are capped at the budget 50000 function evaluations if the algorithm
cannot find the target. The experimental setup for our ranking scheme is as
follows: the significance level ¢ is chosen as 0.05, and the desired severity is at
recommended value of 0.8. Since the function evaluation is the performance
metric in our fixed-target perspective and the total allocated budget is 50000
function evaluations, the practically significant performance improvement, J,,
can be chosen as minimum of 500 function evaluations. The re-sample size ny,
is chosen as 10000. The classical bootstrapped-based hypothesis testing (HT)
is also performed for same o and n,. Each algorithm scores one point for the
decision RejectHy or zero otherwise. The resulting ranking results are shown in
Table 1.

Without going into the details of the performance of the algorithms for each
function, we can understand the quantitative performance of each algorithm
from the table provided. For example, (1+1)EA clearly outperforms all the
other algorithms and tops the table. However, looking at the GD metric, it
can be observed that (1+1)EA has performed really poorly for the cases where
it failed to win leading to a big negative goal difference at the end. Though
MIES.ERT, MIES.AUC, Irace.AUC lags behind (1+1)EA in the points, they
have not performed really poorly for the cases it lost against other algorithms.
If one would like to minimize the worst-case scenarios to achieve robustness,
MIES.ERT can be chosen to be applied instead of (1+1)EA. In this case, we
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may not achieve the optimum the fastest. However, the results will not be the
slowest for some classes of problems either.

Also, our scheme does not suffer from the problem of aggregating results in
ranking as function-wise ranking metrics for each algorithm are analyzed as
explained in Figure 2. The (1+1)EA algorithm was outperforming MIES.ERT
for functions 6,7, 15-17, 19-21 and 23 as shown in Figure 2. However, the
positive GD in these functions was very low. For functions 8-10,14,18, and 24,
where the (1+1)EA could not outperform, the GD was negative. The MIES.ERT
was able to outperform (1+1)EA in functions 2,3,8-14,18,24, and 25 with
positive GD for the majority of the functions. The worst GD for MIES.ERT is
approx. -100 for function 6 compared to the value of approx. -580 for function
14 in the case of (1+1)EA. This helps us make informed decisions for a given
application. A complete picture of which algorithm was best/worst for which
set of functions is made available, which is a major strength of the scheme.
Considering page restrictions, function-wise ranking metrics is discussed only
for the top 2 algorithms. However, the results for all other algorithms are made
available online in [6].

(1+1)EA MIES.ERT

0 5 10 20 25 0 5 10

15 15
Functions Functions
(1+1)EA MIES.ERT

200 200

D
D

S_200 °
400

600
20 25 0

10 15 10 15
Functions Functions

Figure 2: Function-wise ranking metrics of (1+1)EA and MIES-ERT Algorithms

Considering the average mean, median and SD statistics of the points,
MIES.ERT, MIES.AUC and Irace.AUC exhibits similar performances. Also, the
performances of Irace. ERT, MIP.EGO.ERT and MIPEGO.AUC are comparable.
The ranking produced by the classical boostrapped based HT is the same with the
only exception of MIP.EGO.AUC outperforming MIP.EGO.ERT by one point. It
is also evident that the performances of both algorithms in our proposed ranking
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scheme are comparable. Again, this highlights the importance of GD metric,
which clearly showcases a very high positive goal difference for MIP.EGO.ERT
and very large negative goal difference for MIP.EGO.AUC. This explains the
order that is provided by the proposed algorithm which gives a larger weight for
practical significance (i.e., 3 points).

Table 1: Proposed Ranking Scheme Results(S=0.8,5,=500) vs classical bootstrapped-based HT.
The points and GD obtained are the cumulative points and GD obtained by each algorithm
for all the 25 PBO problems. The position change (PC) in ranking positions is indicated
for classical HT with (T, ]).

Algorithm Proposed Ranking classical HT
points | Goal Difference | points | PC
1+1 EA 259 -755 107 -
MIES.ERT 251 889 103 -
MIES.AUC 240 899 100 -
Irace. AUC 227 804 89 -
Irace.ERT 169 -207 67 -
MIP.EGO.ERT 161 368 59 J1
MIP.EGO.AUC 144 -788 60 T1
GS.ERT 113 -544 41 -
GS.AUC 91 -820 35 -

4.1 Sensitivity analysis of J, and S

The sensitivity of input parameters on the ranking solutions are validated at de-
sired severity levels of S = 0.5,0.65,0.8,0.95. Similarly, the practically relevant
function evaluation is evaluated for a very wide range of 6, = 50, 100,250, and
the results of the ranking scheme for the resulting 16 experiments are compared.
Table 2 presents the influence of severity on the algorithm ranking for §, of
500. As expected, as the severity values increase from 50% to 95%, the test
becomes more stringent and this is evident in the decreasing trend of points.
The order of the algorithm rankings is consistent even for various values of
severity. Note, however the magnitude of the change is a function of statistics of
the solution of the algorithms and cannot be adjudged prior to the experiments.
Considering page limitations the detailed results of the influence of , parameter
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Table 2: Sensitivity analysis of parameter severity in Ranking Results (8,=500). Given a &, the
points achieved by each algorithm decreases monotonically with respect to the increase in
severity. As severity increases, the algorithms that pass a more stringent hypothesis test
decreases and accordingly scores less number of points. However, no prior statement can
be given for the trend in GD for this case because it is a function of §,. It is important to
note that the sequence of the rankings of the algorithms remains unaltered with various
severity levels.

Alorithm S 50% S 65% S 95%
& points | GD | points | GD | points | GD
1+1 EA 271 -855 | 263 -806 | 249 | -669

MIES.ERT 257 952 251 926 241 806
MIES.AUC 246 949 242 930 232 836
Irace. AUC 229 864 227 834 223 736
Irace. ERT 171 -205 171 -205 167 | -224
MIP.EGO.ERT 165 344 161 355 159 375
MIP.EGO.AUC 148 | -934 146 | -865 142 | -673
GS.ERT 113 | -608 113 | -578 109 | -494
GS.AUC 95 -975 93 -903 91 -693

on the outcome of the rankings is published in [6]. The order of the algorithm
rankings remains consistent for &, ranging from 100 to 500. Only when J,,
is 50, the MIP.EGO.AUC secures 178 points with -7877 GD and is ahead of
MIP.EGO.ERT which secured 177 points with 3685 GD. However, this is not a
significant improvement for MIP.EGO.AUC, which is evident with the highly
negative goal differences. It is to be noted that choosing extreme values for J,,
might influence the sequence of ranking and that is intentional. However, the
comparison for all algorithms is performed using the same J,, and the relative
performance improvement is obtained. Even in the existing ranking schemes,
the practically relevant improvement parameter is defined as a user-defined
variable [9, 10, 18], and extreme choice of this parameter will alter the results.
Considering the page restrictions, only certain experiments are presented in
Table 2. However, the resulting order of the rankings remained unaltered for
the other set of experiments as published in [6]. In addition, repeating the same
experiment for several times always produced the same results, convincing of
the robust and stable outcome of the proposed ranking scheme. The CRS4EAs
ranking scheme as proposed in [18], is used to compare the results obtained
by our proposed ranking scheme. The results of the same 9 algorithms for 25
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Table 3: Results of CRS4EAs ranking scheme for 2 random runs but for the same input settings.
The algorithms are ranked as per the proposed ranking scheme and the position change
(PC) in rankings based on CRS4EAs is indicated.

Aleorith Trial 1 Trial 2
gorithim R |[RD] o |[PC| R | RD| o |PC
1+1 EA 1586 | 12.7 | 0.04 1578 | 12.7 | 0.04 | J1

MIES.ERT 1569 | 13.5 | 0.04 | |1 | 1574 | 13.8 | 0.04 | |1
MIES.AUC 1586 | 149 | 0.06 | 11 | 1604 | 14 | 0.05 | 12
Irace. AUC 1563 | 13.1 | 0.04 | - 1559 | 147 | 0.05 | -
Irace.ERT 1457 | 13.5 | 0.04 | J2 | 1451 | 127 | 0.04 | |2
MIPEGO.ERT | 1479 | 12.8 | 0.04 | 11 | 1495 | 13.5 | 0.04 | 11
MIPEGO.AUC | 1473 | 134 | 0.04 | 11 | 1480 | 13.1 | 0.04 | 11
GS.ERT 1377 | 142 |1 005 | | 1| 1371 | 142 | 0.05 | |1
GS.AUC 1410 | 13.1 | 0.04 | +1 | 1400 | 139 | 0.04 | 11

PBO problems are provided as input and in total 5000 games were played. The
implementation available in [19] is used for the experiments with the default
suggested input parameter settings. The results are shown in Table 3. It is
evident that for the same input, the resulting ranking and the ratings keep
varying when the same experiment is repeated. Hence, consistent ranking is not
observed even with the same inputs.

5 Summary and Outlook

A user-friendly novel ranking scheme based on football league system is
proposed that takes into account the statistical significance, the practical sig-
nificance, and the magnitude of the win or loss of the compared algorithms
to determine the final ranking of the algorithms. The proposed scheme has
the advantage that the order of comparison has no impact on the results along
with there is no necessity of knowing the prior statistics of the compared
algorithms. Since the practical significance is used separately from hypothesis
testing, the resulting scheme does not make the test more conservative. The
proposed scheme shows potential also for comparing machine learning, artificial
intelligent(AI), and explainable AI algorithms. For didactic purposes, the HT is
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formulated considering the mean performance differences among algorithms.

Nevertheless, the scheme can be used to compare the median and related

performance measures as well.
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