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Abstract

This thesis contributes to the fundamental understanding of the physical mechanisms that
take place in pseudo-turbulent particulate flows. Particulate two-phase flows are of particular
interest in great number of environmental, natural and technical processes. Different flow
configurations have been considered in the present work: (i) the settling of a single particle
in a uniform flow, (ii) the flow through an assembly of fixed randomly distributed particles
and (iii) the settling of many particles in an initially quiescent flow field. The particles
under consideration are rigid, heavy, finite-size spherical particles with intermediate Galileo
(Reynolds) numbers of the order of O(100). All considered flows are unbounded in all
three spatial directions, mono-dispersed and in the dilute regime. High fidelity data sets are
generated by means of direct numerical simulation employing an immersed boundary method
for the representation of the fluid-solid interface. The results provide detailed picture of the
particle and fluid motion over long time intervals. The present flow configurations allow the
study of different effects on the particle and fluid motion, such as collective and mobility
effects, effects of the solid volume fraction and the Galileo number.

The results evidence that depending on the particle settling regime (i.e. Galileo number
and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial
distribution. It is found that the particles are preferentially located in regions with downward
fluid motion. The particles inside clusters experience smaller drag coefficient values than the
average and larger settling velocities than the average. The flow in all flow cases is observed
to exhibit characteristic features of pseudo-turbulence, i.e. fluctuations in the flow field are
generated solely by the relative motion of the particles with respect to the fluid. The particle-
induced flow field is found to be highly anisotropic with dominant vertical components. The
magnitudes of the fluid velocity fluctuations are found out to be comparable to those of fully
turbulent particulate flows reported in previous studies. In agreement with previous studies,
the energy spectrum of the flow field is observed to experience −3 decay power law with the
wave number. Conditional average of the flow field revealed that in the particle assemblies
the mean particle wake is significantly attenuated (when compared to the wake of an isolated
particle at the same Galileo numbers) by the motion of the particles and the hydrodynamic
interactions in the inter-wake regions of the flow. The simulations indicate that, in the present
flow configurations, the collective and mobility effects play significant role for the particle and
fluid motion.





Zusammenfassung

Partikelströmungen sind ein oft auftretendes Phänomen in der Umwelt, in der Natur sowie
in vielen technischen Prozessen. Das grundlegende Verständnis der verschiedenen Mecha-
nismen, die in solchen Strömungen vorkommen, sind von besonderem Interesse für viele
Ingenieursanwendungen. Daher ist eine zuverlässige und korrekte Vorhersage dieser Strö-
mungsvorgänge von großer Bedeutung. Trotz der Bedeutung und der breiten Palette von
Anwendungen von Partikelströmungen wurden die grundlegenden Mechanismen in solchen
Strömungen bis heute noch nicht vollständig erforscht und verstanden. Ein möglicher Grund
dafür ist der äußerst komplexe Charakter dieser Strömungsvorgänge. Leider ist die theoretische
Beschreibung der physikalischen Prozesse nur für sehr begrenzte Strömungsbedingungen an-
wendbar. Die meisten der derzeit verwendeten Methoden basieren auf empirischen Annahmen
für die Bestimung von Größen wie die mittlere Sedimentationsgeschwindigkeit der Partikel,
die Widerstandskoeffizienten, die räumliche Verteilung der Partikeln sowie die Amplituden der
Geschwindigkeitsfluktuationen. Die Genauigkeit der Ansätze ist jedoch oftmals unzureichend,
da in der Regel eine große Anzahl von Annahmen und Vereinfachungen der Fragestellungen
benötigt wird. Daher wird der Anwedungsbereich solcher Methoden stark eingeschränkt.

Die vorliegende Arbeit befasst sich mit Fragestellungen wie der Dynamik von schweren
sedimentierenden Partikeln, den Eigenschaften des durch die Partikeln induzierten Strömungs-
feldes sowie den daraus resultierenden Zwei-Wege-Kopplungsmechanismen. Außerdem trägt
diese Arbeit zum grundlegenden Verständnis der Mechanismen in solchen Fragestellungen bei,
indem sie hoch genaue Daten bereitstellt und auswertet. Die Ergebnisse beinhalten die Daten
von verschiedenen direkten numerischen Simulationen von Strömungen mit einer großen
Anzahl von schweren Partikeln endlicher Größe, die unter Einwirkung der Schwerkraft sede-
mentieren. Die Problemstellungen in dieser Arbeit sind vereinfacht, indem die betrachteten
Strömungsgebiete nicht durch Wände beschränkt sind. Dies erlaubt uns, sich ausschließlich
auf die grundlegenden physikalischen Prozesse zu konzentrieren.

Die Oberfläche der Partikel wird dabei mit Hilfe der Immersed Boundary Method dis-
kretisiert. Die verschiedenen Ströungskonfigurationen bestehen im Einzelnen aus: (i) der
Sedimentation eines einzelnen Partikels in einer gleichförmigen Strömung, (ii) der Strömung
durch eine zufällig verteilte feste Anordnung von Partikeln und (iii) der Sedimentation von
vielen Partikeln in einem (zunächst) ruhenden Fluid. Das Hauptaugenmerk liegt dabei auf den
Schwankungen der Strömungsgrößen in der durch die Partikel induzierten Strömung sowie
auf der Charakterisierung der Partikelgeschwindigkeiten, der hydrodynamischen Kräfte, des
Nachlaufs der Partikel sowie der räumlichen Verteilung der Partikel. Die Ergebnisse der drei
Strömungskonfigurationen werden im Folgenden kurz erläutert.



Zusammenfassung

Sedimentation eines Partikels in einer gleichförmigen Strömung.
Die Sedimentation eines einzelnen schweren kugelförmigen Partikels unter dem Einfluss der
Schwerkraft im zunächst ruhenden Fluid wurde mittels direkter numerischer Simulationen
untersucht. Dabei wurde die Sedimentation in zwei verschiedenen Regimen betrachtet. Im
ersten Regime sedimentiert das Partikel auf einer stationären axialsymmetrischen Trjektorie mit
Galileo Zahl Ga = 121. In dem zweiten Regime sedimentiert das Partikel wieder auf einer statio-
nären Bahn, jedoch ist die Partikeltrajektorie unter einem bestimmten Winkel mit der vertikalen
Achse. Die Galileo Zahl berechnet sich in dieser Konfiguration zu 178. Der Dichtenquotient
zwischen dem Partikel und dem Fluid beträgt in den zwei Simulationen ρp/ρf = 1.5. Beson-
deres Augenmerk wurde auf die Bestimmung der entsprechenden räumlichen und zeitlichen
Auflösung der Bewegung der Partikel gelegt.

Der Schwerpunkt liegt hier auf der Charakterisierung der Partikelsedimentationsgeschwin-
digkeit, der hydrodynamischen Kräfte und des Partikelnachlaufs. Die Ergebnisse wurden mit
den verfügbaren Daten aus der Literatur erfolgreich verglichen und wurden in den folgenden
Simulationen als Referenzdaten herangezogen. Die gute Übereinstimmung der Ergebnisse mit
den Vergleichsdaten deutet darauf hin, dass die charakteristischen Strömungseigenschaften
mit hoher Genauigkeit reproduziert wurden.

Strömung durch eine feste Anordnung von zufällig verteilten Partikeln.
Es wurde eine Strömung durch eine zufällig verteilte feste Anordnung von Partikeln mit zwei
verschiedenen Parametersätzen simuliert. Die Größe der einzelnen Partikel sowie die zeitliche
und die räumliche Diskretisierung der Strömung wurden wie in den vorher beschriebenen
Simulationen einzelner Partikel gewählt. Die Anzahl der Partikel wurde so gewählt, dass die
Strömung als verdünnt angesehen werden kann. Die Strömung wurde mit einer konstanten
mittleren Geschwindigkeit angetrieben, mit der die Partikel-Reynolds Zahl sich zu Rep = 141
and Rep = 245 berechnet.

Es wurde beobachtet, daß in beiden Fällen die Fluktuationen der Fluidgeschwindigkeit
stark anisotrop sind, mit einer dominanten vertikalen Geschwindigkeitskomponente. Dies
wurde auf die Wirkung des Partikelnachlaufs zurückgeführt. Dabei ist die Höhe der Aniso-
tropie in guter Übereinstimmung mit den Beobachtungen in der Literatur. Der Verlauf der
berechneten Energiespektren in Abhängigkeit von der Wellenzahl zeigt eine Steigung von
-3, was eine charakteristische Eigenschaft von pseudo-turbulenten Strömnugen ist. Weiterhin
wurde beobachtet, dass die Amplituden der Fluktuationen um den räumlichen Mittelwert
höher sind als die um den zeitlichen Mittelwert. Eine weitere Erkenntnis ist, dass der mittlere
Widerstandskoeffizient der Partikel sehr nah an den Widerstandskoeffizienten eines einzelnen
Partikels ist. Der Widerstandskoeffizient von den Partikeln, die sich im Nachlauf eines anderen
Partikels befinden, ist signifikant kleiner als der Koeffizient des führenden Partikels. Die Größe
des mittleren Partikelnachlaufs wurde im Vergleich zum Nachlauf eines isolierten Parikels
verkleinert.

Sedimentation von vielen Partikeln in einem (anfangs) ruhenden Fluid.
Es wurden drei direkte numerische Simulationen von vielen Partikeln, die in einem anfangs
ruhenden Fluid sedimentieren, durchgeführt. Die drei Strömungsfälle sind eindeutig durch Para-
meterkonfigurationen, bestehend aus dem Dichtequotienten ρp/ρf , der Galileo Zahl Ga und des
Volumenanteils der Partikel Φs, bestimmt. Für die erste Simulation lautet die Parameterkonfigu-
ration (ρp/ρf = 1.5,Ga = 121,Φs = 0.005), für die zweite (ρp/ρf = 1.5,Ga = 178,Φs = 0.005)

iv



Zusammenfassung

Strömungsfall inhomogen verteilt sind. Sie bilden Agglomerationen in der vertikalen Richtung.
In der ersten Simulation jedoch wurden keine Agglomerationen gefunden. Weiterhin wurde
die mittlere relative Sedimentationsgeschwindigkeit der Partikel, bezogen auf den globalen
Mittelwert der Fluidgeschwindigkeit, ausführlich analysiert. Die mittlere relative Sedimentati-
onsgeschwindigkeit im zweiten und dritten Fall war viel höher als die eines isolierten Partikels.
Im ersten Fall andererseits unterschied sich diese Geschwindigkeit zu der eines isolierten
Partikels nur gering. Wenn aber die mittlere relative Sedimentationsgeschwindigkeit auf die
lokale Fluidgeschwindigkeit in der Nähe der Partikel bezogen wird, fällt dieser Unterschied in
allen drei Fällen gering aus. Als Konsequenz befinden sich die Partikel im zweiten und dritten
Strömungsfall überwiegend in den Bereichen mit abwärts gerichteter Strömung. Weiterhin
wurde herausgefunden, dass die Fluktuationen der lokalen Fluidgeschwindigkeit in der Nähe
der Partikel maßgeblich zu den Fluktuationen der Partikelgeschwindigkeit beiträgt. Die Par-
tikelgeschwindigkeit, die hydrodynamischen Kräfte und die Fluidgeschwindigkeit sind hoch
anisotrop. Die Amplituden der Fluktuationen der Fluidgeschwindigkeit in dem ersten Fall
konnten zufriedenstellend mit einem empirischen Modell reproduziert werden. In den anderen
zwei Fällen, in denen Partikelansammlungen beobachtet wurden, führte das empirische Modell
allerdings zu keinem Erfolg. Weiterhin wurde eine Energiebilanz für die turbulente kinetische
Energie für das Strömungsfeld aufgestellt und beobachtet, dass die potentielle Enegie und die
Dissipationsrate die zwei dominantesten Beiträge sind und sich gegenseitig ausbalancieren.
Der mittlere Partikelnachlauf wurde signifikant beeinträchtigt durch die Partikelbewegung und
die Agglomeration. Die Statistik der Strömung steht in allgemeiner Übereinstimmung mit den
Ergebnissen aus der Literatur.

v

und für die dritte (ρp/ρf = 1.5,Ga = 178,Φs = 0.0005). Die räumliche Anordnung der Partikel
wurde eingehend studiert. Dabei wurde beobachtet, dass die Partikel im zweiten und dritten
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Nomenclature

Mathematical symbols
D/Dt material derivative, viz. eq. D.15

· dot product of two vectors

× cross product of two vectors

∇ Nabla operator, i.e. in Cartesian coordinates, ∇ = (∂/∂x, ∂/∂y, ∂/∂z)

∇2 Laplace operator, i.e. in Cartesian coordinates,∇2 = (∂2/∂x2, ∂2/∂y2, ∂2/∂z2)

〈·〉p solid-phase averaging

〈·〉t time averaging

〈·〉z spatial averaging of a fluid quantity in the vertical direction z

〈·〉Ωf fluid-phase averaging

〈·〉Ωf ,t averaging in time and fluid-phase averaging

〈·〉p,t averaging in time and solid-phase averaging

φ′f fluctuations of some flow field quantity with respect to the instantaneous
space phase averaged flow field (cf. eq. 4.1)

φ′′f fluctuations of some flow field quantity with respect to the time averaged
flow field (cf. eq. 4.2)

φ′′′f fluctuations of some flow field quantity with respect to the space and time
averaged flow field (cf. eq. 4.3)

Greek symbols
α angle btw. the particle velocity vector and the vertical axis of the Cartesian

coordinate system

δup,i particle velocity increment

∆t time step used for the temporal discritization

∆x,∆y,∆z width of the computational grid in x-, y- and z-direction



Nomenclature

ε rate of energy transfer from the large scales

η Kolmogorov length scale

θ wake momentum diameter, i.e. (Cdd2
p/8)1/2

κ wave number vector

λ Taylor micro scale

Λ length scale for large structures (integral length scale)

λx, λz ave length in the horizontal (x) and vertical (z) direction

λ2 second largest eigenvalue of the tensor S2 + Ω2

µ dynamic viscosity of the fluid, i.e. µ = νρf

ν kinematic viscosity of the fluid

π transcendental number

ρf fluid density

ρp particle density

σV standard deviation of the normalized Voronoï volumes

σ stress tensor

Σ used to indicate summation
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Chapter 1

Introduction

1.1 Motivation

Particle-laden flows are involved in a large number of environmental, natural and technical
processes. The fundamental understanding of the mechanisms that take place in such flows
and thereby the correct prediction of such flows is of great importance, since they could
have high impact on the everyday life of people and the ecosystem. For example volcanic
eruptions could release high particulate concentrations in the atmosphere where particles are
ejected upwards at high speeds and disperse in large scales causing serious difficulties for
air traffic and in particularly serious cases could influence the global climate. Therefore the
understanding and prediction of the particle concentration and transport for such events is
crucial for assessing the impact on the environment and taking adequate precaution steps.
Another example is the deposition of sand particles in the atmosphere by strong winds. For
example massive Sahara plumes of dust, also known as the Saharan Air Layer play an important
role in decreasing the probability of “cyclogenesis” or hurricane formation. The cloud and
rain formation is another important example for particulate flows in the atmosphere. In this
case the particles are considered to be liquid droplets. The understanding of the controlling
processes for the cloud and rain formation is of great importance for the weather prediction and
climatology. Especially in the context of the recent studies concerning the world climate change
it is considered one of the most urgent scientific problems. The main mechanisms responsible
for the rain and hailstone formation are the condensation of vapor and the coalescence of water
droplets, since the droplets need to reach sufficient size in order to fall. In this context the
droplet collisions play an important role for the growth process and are of particular interest
for the meteorologists.

An important natural phenomenon involving fluid-particle interactions is sediment transport
in rivers and coastal areas. The sediments for example could consist of natural materials,
pollutants, heavy metals and others. Sediment transport could lead for example to silting of
river beds or coastal land erosion which could have devastating consequences for adjoining
structures. In sedimentation processes the gravity acts mostly orthogonally to the mean flow.
This in turn increases the role of the lift force on the particles, which is responsible for the
deposition of the particles and is one of the forces causing erosion by lifting-up of particles.

The emission of small micron particles as result of industrial processes in urban environment
shows another area in which multiphase (particulate) flows have direct impact on our everyday
life. The dispersion process of such particle pollutants is of great interest for the proper design
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of cities, where effects such as “street canyons” between buildings has to be considered. This
has immediate effect upon the human health and as such leads to another important dispersed
multiphase problem, viz. the motion and the deposition of micro particles in the human
respiratory system.

Besides their environmental impact, particulate flows are also important in many engi-
neering applications. For example in the energy producing systems, fluidized beds are typical
example of particulate multiphase flows. In such reactors the particles of solid fuel are sus-
pended by hydrodynamic force of upward gas flows. In this case the drag force on the particles
which keeps them suspended and the particle interaction are of particular interest, since their
knowledge will allow better control of the combustion process. In nuclear reactors the use of
bubbles was studied as control parameter of temperature and flow rates. For example it was
observed that in wall bounded flows the bubbles tend to accumulate in vicinity of the wall,
which could be used to carry vapor away from hot surfaces.

Despite the importance and the wide range of applications of particulate flows, the funda-
mental mechanisms involved in such flows are far from completely understood. One possible
reason for this is the complex character of the flow under consideration. In dispersed par-
ticulate flows usually the number of particles is overwhelming. Additionally, the flow field
introduces hydrodynamic force and torque on the particles, which can lead to complex inter-
action between the particles and the flow field. Moreover, difficulties arise due to the large
range of scales at which the particle-fluid and particle-particle interaction take place. In vast
number of applications the particles are well separated from each other and they have to
be considered separately. In such cases the small scale interaction of the individual particles
with the background flow has to be considered. On the other hand, it is well known that
when the density of the particles is different from that of the fluid they have inertia and do
not follow the flow field exactly. As a consequence, the particles will sample the flow field
inhomogeneously. Such regions with high particle concentration could be orders of magnitude
larger than the particles. As a consequence of the inhomogeneities in the particle spatial
distribution, the particle collision frequencies could be greatly affected. Thus, such phenomena
should be considered in applications where the collision rate of the particles is important, e.g.
particle rain formation, fluidized bed reactors. When the particle velocity is sufficiently large
for particle wakes to develop, the interaction between the particles and the fluid becomes
more complicated. Particle wakes could lead either to enhancement or attenuation of the
turbulence in the flow field and in some cases to complex particle-particle interactions. The
mutual interaction of the wakes of multiple particles could cause complex velocity fluctuations
beyond that of classical turbulence. In case of absence of classical turbulence in the background
flow this phenomenon has been known as pseudo turbulence.

The richness of applications and complexity of dispersed multiphase flows has caused a lot
of difficulties in the process of their study over the years. The present work will try to address
some of the topics involved in the dynamics of particles settling under the influence of gravity,
as well as the characteristics of the flow field induced by the settling particles and its impact
upon the dispersed phase. Furthermore, this study aims at improving the understanding of the
fundamental processes that take place in such flows and also aims at providing a deep and new
insight into this processes by trying to isolate the effects of different key parameters. In order
to do so, the problem is simplified by eliminating influences due to wall effects, while allowing
to focus solely on the fundamental physics involved in the particle-particle and particle-fluid
interactions. The problems are tackled by gradually increasing the complexity of the particulate
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systems in question. First, the forces and dynamics of single particle settling in an ambient
fluid are characterized. Then a random arrangement of fixed particles is considered. Here
the main focus is on the fluctuations in the flow field due to the particle wakes and on the
hydrodynamic forces induced by the flow field. The complexity is further increased by allowing
the particles to move and interact with each other freely. The study of this set-up will represent
the major part of this work. The emphasis of this part is on the characterization of the particle
velocities, hydrodynamic forces and spatial distribution of the dispersed phase, as well as the
flow field induced by the particles.

The present work employs direct numerical simulation with immersed boundary method for
the representation of the fluid-solid interface. This allows the generation of high-fidelity data
for the flow configurations described above and we believe that this data set will contribute to
the research of particulate flows. In the following the challenges and the open questions which
were identified in previous works will be discussed by giving a short literature review of the
most relevant studies.

1.2 Particulate flows: State of the art - challenges and
open questions

1.2.1 Particle settling velocity and hydrodynamic force

One of the most important and most studied aspects of the dynamics of particles immersed in
a (turbulent) flow is the hydrodynamic force exerted by the fluid upon the particles and have
always appealed to the interest of the scientific community. One of the earliest contribution to
the understanding of the physics involved in such problems is the discovery of the Archimedes’
principle, which determines the hydrostatic force acting on an immersed object. Later Galileo
(1612) published short treatise on the subject where he emphasized the implications of the
principle on the dynamics of submerged or partially submerged bodies in water. But, the
fundamentals of the classical mechanics and fluid mechanics were first laid after the publication
of Principia Mathematica (1687) by Newton (1687). He devoted his second book entirely to
the examination of fluid flows and immersed objects. Since then large number of studies were
devoted to the characterization and determination of the hydrodynamic forces exerted by the
fluid upon the particles.

In the early days of the scientific inquiry, the systematic study of the hydrodynamic force was
mostly accessible through theoretical works. Unfortunately, an universal theoretical definition
and description of the hydrodynamic forces was only feasible for flows with very small particle
velocities (creeping flow). In the following century significant advances were made in the
theoretical description of the hydrodynamic force for creeping flows. The works of Poisson
(1831), Stokes (1845), Basset (1888), Oseen (1911, 1913), Faxén (1922), Gatignol (1983)
and Maxey and Riley (1983) contributed significantly to the knowledge and understanding
of the hydrodynamic force in such flows. In his pioneering work Poisson (1831) was the first
who solved the potential flow equation around a sphere. Stokes (1845) described the motion
of a rigid-sphere moving with a very low velocity in a viscous flow. His work is considered to
be a cornerstone in the research of particulate flows and the hydrodynamic drag force and
drag coefficient in such configurations still bears his name. Oseen (1911, 1913) extended the
Stokes’ drag by using a correct asymptotic analysis, which is called Oseen’s drag coefficient.
Faxén (1922) introduced the so called Faxén terms which account for non-uniformity in the
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flow. In a theoretical work Gatignol (1983) used a Faxén formulae for the estimation of the
drag and the torque of a solid particle moving in an unsteady non-uniform Stokes flow. Finally
Maxey and Riley (1983) defined a Lagrangian equation of motion of a solid sphere under
creeping flow conditions, which considers unsteady, non-uniform fluid motion and body forces.

On the other hand, for flows with finite or large particle velocities it was not possible to
obtain an analytical expression for the hydrodynamic force. Thus, most of the works were ini-
tially experimental and later with the rise of the computing, numerical. The drag component of
the hydrodynamic force was identified as one of the most important hydrodynamic parameters,
especially for flows with large particle velocity. The drag force is often expressed in form of
the particle drag coefficient. In experiments the drag coefficient is usually computed based on
the particle relative velocity and a balance between the gravity and the drag force. The drag
coefficient of stationary isolated sphere subjected to uniform flow was extensively studied and
a large number of experimental data as well as empirical correlations for the drag coefficient
and the particle relative velocity is available in the literature. A comprehensive review of the
experimental data can be found in Clift et al. (1978) and in a more recent work of Brown and
Lawler (2003). As noted by Lovalenti and Brady (1993), the generation of vorticity on the
particles and its advection in the particle wake needs to be considered in the determination
of the drag coefficient. The various wake structures that may exist behind the particle could
lead to unsteadiness of the hydrodynamic force and also to the onset of lift force and torque
on the particle. For example Bouchet et al. (2006) showed that each change of the wake
structure is accompanied with change of the drag with overall qualitative effect of the wake
instabilities being an increase of the drag. With advance of the measuring and computational
techniques and capabilities several works investigated the wake structures behind a fixed
particle (Natarajan and Acrivos, 1993; Johnson and Patel, 1999; Tomboulides and Orszag,
2000; Ghidersa and Dušek, 2000) and behind a mobile particle (Jenny et al., 2004; Veldhuis
et al., 2005, 2009; Horowitz and Williamson, 2010) in a uniform flow. A recent review on the
wake structures and the resulting changes in the particle trajectories and drag coefficient can
be found in Ern et al. (2012).

The studies mentioned above have focused on particles subjected to uniform flows. It is well
known, that turbulence can have significant effect on the hydrodynamic force exerted upon
the particles. Past experimental measurements on the effect of the carrier-phase turbulence
on the force on a particle have been so far inconclusive. Some authors reporting increase
(Uhlherr and Sinclair, 1970; Brucato et al., 1998), or decrease (Rudolff and Bachalo, 1988) and
others observed insignificant changes (Wu and Faeth, 1994, 1995) of the drag coefficient. The
disagreement of the available data is an evidence of the challenges the turbulent particulate
flow present. A discussion on the subject can be found in the book of Michaelides (2006,
chapter §7.1). Experimental results can be found for example in Tsuji et al. (1991) and more
recently in Doroodchi et al. (2008). A rigorous numerical study of the influence of free stream
turbulence on the particle drag and lift force of an isolated particle can be found in Bagchi
and Balachandar (2003). They considered a particle with size larger than the smallest flow
structures subjected to a frozen isotropic turbulent flow. The authors considered different
free stream turbulence intensities and different particle Reynolds numbers. However, they
did not observed a substantial effect of the free stream turbulence on the mean drag, but
noted that with increasing particle size the accuracy of the prediction of the instantaneous
drag decreased. Later Burton and Eaton (2005) studied numerically the interaction between a
fixed large particle and decaying homogeneous isotropic turbulence. The authors compared
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their results to those predicted by the Lagrangian equation of motion and noted considerable
differences. More recently Kim and Balachandar (2011) performed similar studies as in Bagchi
and Balachandar (2003). The authors compared the hydrodynamic forces obtained from the
simulation with those in the absence of ambient turbulence. They showed that non-uniformity
of the flow can play an important role in the determination of the particle forces and that the
influence on the particle drag force was similar to the Faxén correction. Further, the lift force
of the particles was shown to be influenced by the surrounding turbulence and the self-induced
wake structure.

The complexity increases, when multiple particles are considered. One of the still not fully
understood and unresolved issues considering such applications is the force exerted by the fluid,
on an assembly of particles. For stationary particles, in an early work Kaneda (1986) studied
the drag on a sparse random array of fixed spheres in the creeping flow regime. Recently Hill
et al. (2001b,a) and Tenneti et al. (2011) performed numerical experiments on the subject
and extended the study by considering fluid inertia and high particle volume concentration.
From the simulations the authors derived empirical correlations for the average drag force and
the Reynolds number and showed that the drag force has a more complex dependance on the
Reynolds number. A review on the topic can be also found in Koch and Hill (2001, chapter §6).

For mobile particles on the other hand, it is well accepted that as soon as the settling of
multiple particles is considered and the mean distance between the particles is small enough
for hydrodynamic interaction between the particles to take place, the average settling velocity
of the particles will most probably deviate from the terminal settling velocity of a single
particle in the same conditions. For such flows the dynamical interplay between the particle
hydrodynamic forces and the particle settling velocity is of particular interest. Several studies
were devoted to the correct prediction of the particle settling velocity for the ensemble settling
of multiple particles. In the Stokes regime, Batchelor (1972) theoretically showed that the
average particle velocity depends linearly on the particle volume concentration. In his study
he considered only randomly dispersed suspension of spheres.

On the other hand, when inertial effects are no longer negligible, there is no theoretical
approach to estimate the effect of the particle volume concentration on the average particle set-
tling velocity. A widely used empirical correlation was derived by Richardson and Zaki (1954)
for flows with high particle volume concentrations. Later Smith (1998) proposed a model for
the settling velocity for particles which are randomly distributed in space. The common obser-
vation was that the average settling velocity decreased as the particle volume concentration
was increased. In this context the expression hindered settling velocity is commonly used and
several studies were dedicated to the subject, e.g. Parthasarathy and Faeth (1990b); Felice et al.
(1995); Felice (1999); Yin and Koch (2007). The general accepted mechanism responsible for
the decrease of the average particle settling velocity is that an upward flux of fluid is generated
in order to compensate for the downward flux of fluid generated by the settling of the particles,
which would lead to the net reduction of the average settling velocity.

When the fluid phase exhibits a free stream turbulence which is independently generated, a
number of issues are still not well understood, for example whether turbulence would increase
or decrease the average settling velocity or whether the average drag coefficient is affected.
For small particles in the Stokes regime the effect of several parameters on the settling velocity
were thoroughly investigated (Wang and Maxey, 1993; Yang and Lei, 1998; Aliseda et al.,
2002; Yang and Shy, 2003, 2005; Bosse et al., 2006; Snyder et al., 2008). On the other hand,
for large particles with finite to large Reynolds numbers relatively few studies are available.
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The scarcity of experimental data are most probably due to the difficulties encountered in
obtaining an accurate measurements of the particle settling velocity.

From the above studies, four theories that predict the turbulence effect upon the particle
settling velocity have emerged: vortex trapping (Tooby et al., 1977), non-linear drag (Wang
and Maxey, 1993), loitering effect (Nielsen, 1993) and the preferential sweeping effect (Wang
and Maxey, 1993). The difficulty rises, since the first three effects are mainly responsible for
the decrease of the settling velocity and the fourth leads to its increase. Moreover, several
effects could appear simultaneously and compete with each other. Their relative importance in
turbulent particulate flows is incompletely defined and depend on the controlling parameters
of the flow. The effect of the non-linear drag is important for large particles, whereas the
preferential sweeping effect is dominant for small particles (Wang and Maxey, 1993).

1.2.2 Turbulence modification by the dispersed phase

One of the most fundamental problems related to particulate flows is the effect of the dispersed
phase on the background flow, particularly when the flow is considered to be turbulent. In a
large number of studies it has been observed, that the addition of even a modest amount of solid
particles can significantly affect the statistics of the carrier fluid turbulence. Some investigators
reported enhancement, while others attenuation of the carrier-phase turbulence. Thus, one
of the open questions in turbulent particulate flows is whether reduction or enhancement
of the turbulence should be expected after particles are introduced to turbulent flows. This
phenomenon has been often referred in the literature as turbulence modification or modulation
by the dispersed phase. In the past a significant amount of research was devoted to the
understanding of the physical mechanisms and the identification of the controlling parameters.
Despite their abundance, currently there is no generally applicable theory or model available
that predicts the turbulence modification. The difficulties stem most probably from the
contribution of several mechanisms responsible for the turbulence modulation. For example
Michaelides (2006) lists seven different mechanisms, which could have an impact on the
turbulence. Moreover, multiple mechanisms can act simultaneously and to our knowledge
their relative influence is still not fully understood.

One of the earliest attempts to derive an analytical model for turbulence modulation was
made by Hinze (1971). His model is based on dimensionless and order of magnitude analysis.
He discussed several aspects of the turbulence modulation such as the role of the particle
volume concentration and that precise information of the flow is crucial. First with advances
in the experimental methods in the 1980’s a quantitative investigation was possible. Gore and
Crowe (1989) compiled a large number of experimental data and identified the ratio of the
characteristic particle length scale to the characteristic length of the flow as the controlling
parameter for turbulence modulation. Later Hetsroni (1989) additionally considered particle
inertia and suggested the Stokes number (the ratio of the particle-to-fluid relevant time scales)
as controlling parameter. In the following years a number of phenomenological models were
proposed, e.g. Yuan and Michaelides (1992); Yarin and Hetsroni (1994); Crowe (2000). The
first two models consider turbulence generation in the particle wake and the third one is based
on an averaging of the kinetic energy equation. A comprehensive discussion on the models can
be found for example in Michaelides (2006).

Large number of numerical studies addressed the subject of turbulence modulation and
contributed to the understanding of the process involved therein. Most of the studies, however,
considered small particles with length scales smaller than the smallest length scale of the flow.
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The majority of the numerical research focused on the modulation of homogeneous forced or
decaying isotropic turbulence. Forced isotropic turbulence was investigated in Squires and
Eaton (1990); Eaton (1994); Boivin et al. (1998); Sundaram and Collins (1999); Hwang and
Eaton (2006), whereas decaying isotropic turbulence was studied numerically in Elghobashi
and Truesdell (1993); Druzhinin and Elghobashi (1999); Ferrante and Elghobashi (2003).
The general observation is that the particles modulate the turbulence by altering the inertial
transfer mechanism of turbulent kinetic energy. In the absence of gravity or mean shear, the
energy at the large scales is damped by the particles, whereas the energy at the small scales is
enhanced. This process is usually accompanied by increase of the viscous dissipation rate and
hence increase in the rate of energy transfer from the large scales. This is often referenced
in the literature as the cross-over or pivoting effect. As a result, a net decrease of the total
turbulent kinetic energy is observed in most of the aforementioned numerical studies. On the
other hand, when particles are subjected to the influence of gravity, the particles transfer their
momentum to the small turbulent scales in an anisotropic manner and energy is transferred
from the direction of gravity to the other two directions. This could cause a reverse cascade,
which tends to build up energy at the large scales and reducing the decay rate of turbulent
energy. Depending on the Stokes number this could lead to net enhancement or attenuation
of the turbulence intensity. Several experimental studies, with ambiguous outcomes, were
devoted to the verification of the observations made above, e.g. Schreck and Kleis (1993);
Hussainov and Kartushinsky (2000); Geiss et al. (2004); Poelma et al. (2007). For more
thorough discussion on the numerical and experimental works mentioned above, the reader is
referred to the review in Poelma and Ooms (2006).

Particles with size comparable to or larger than the smallest flow scales have received less
attention, presumably due to the lack of a scale-separation as well as the fact that the local
flow around the particle happens at finite Reynolds numbers (ratio of the inertial-to-viscous
forces) lead to considerable additional complexity. When the particle size is comparable or
larger to the smallest turbulence scales, the numerical approaches in the aforementioned
studies could loose their validity (Eaton, 2009). Only recently direct numerical simulations of
the turbulence modulation by the particles with size comparable to the smallest turbulence
scales were performed, e.g. Ten Cate et al. (2004); Lucci et al. (2010); Yeo et al. (2010); Gao
et al. (2013). Both studies noted that the particles attenuated the turbulence due to enhanced
dissipation rate in vicinity of the particles. This effect and the turbulence attenuation by the
particles was reviewed recently in Balachandar and Eaton (2010).

A more fundamental approach to the turbulence modulation, due to the vortex shedding in
the particle wakes, is to alternatively study the interaction of the free-stream turbulent flow
with a single particle. The effect of free-stream homogeneous turbulence on the particle wake
was investigated experimentally for example in Wu and Faeth (1994, 1995). Later Bagchi and
Balachandar (2004) complemented their study numerically by performing direct numerical
simulation of an isolated particle in an isotropic turbulent flow. The common conclusion was
that the turbulent kinetic energy in the wake of the particle was enhanced due to the presence
of turbulence in the background flow, causing faster recovery than in a uniform ambient
flow. The streamwise velocity fluctuations in the wake were more enhanced than the velocity
fluctuations in the cross-stream direction. Similar observation were also made in Mittal (2000).
Recent studies on the particle wake in turbulent environment were performed in Legendre
et al. (2006) and on the wake attenuation of a sphere was performed by Risso et al. (2008);
Amoura et al. (2010).
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The wake generated by particles with finite Reynolds numbers can contribute significantly
to turbulence production. Thus, the characterization of the mechanisms and the characteristics
of the particle-induced turbulence is essential. Parthasarathy and Faeth (1990a) theoretically
and experimentally investigated the continuous-phase properties of the flow induced by
the sedimentation of spherical particles in a nearly stagnant water bath in the very dilute
regime. In their configuration all turbulent properties were solely due to the effects of
turbulence modulation by the particles. They used the principle of superposition to predict
the fluid velocity fluctuations and yielded reasonable predictions for many properties of the
flow. Later Mizukami et al. (1992) extended the experiments by considering the settling
of particles in stagnant air. More recently Chen et al. (2000); Chen and Faeth (2000); Lee
et al. (2003) considered similar experimental setup and parameter range as Parthasarathy
and Faeth (1990a) and drew analogies between the turbulent inter-wake region and the
grid-generated turbulence. Kajishima and Takiguchi (2002); Kajishima (2004a) studied
numerically the interaction between the particles and the particle-induced turbulence and
observed enhancement of turbulence due to inhomogeneous particle distribution.

The flow field induced by the rise of light particles or bubbles in an otherwise quiescent
fluid was investigated extensively in the past and large body of literature on the subject exist.
The flow field turbulence induced by the bubbles is often referred to as pseudo-turbulence
to distinguish it from the classical turbulence, such as for example homogeneous isotropic
turbulence. An interesting feature of the turbulent like motion observed in such flow configura-
tions is that the particles may influence the inertial transfer of turbulent kinetic energy, hence,
changing the slope/shape of the turbulent energy spectra from the well known Kolmogorov
scaling exponent −5/3 to more steep exponent. However, the results from the literature have
been so far inconclusive. For already turbulent flows, Lance and Bataille (1991) observed in an
experimental study that with increasing volume concentration of the bubbles the Kolmogorov
exponent was substituted by −8/3. In contrast the experiments of Mudde et al. (1997); Rensen
et al. (2005) and the numerical study of Mazzitelli et al. (2003) found the classical −5/3 power
law. Lance and Bataille (1991) suggested the ratio of the bubble-induced kinetic energy and
the kinetic energy of the flow without bubbles as an appropriate parameter to characterize
the type of the bubbly flow. Rensen et al. (2005) later called this parameter bubblance and
used it to parametrize the relative influence of the turbulent fluctuations induced by the
bubbles. A theoretical study of the velocity fluctuations induced by bubbles moving in an
isotropic homogeneous turbulence based on the potential flow theory can be found in van
Wijngaarden (1998). For flows which are not a priori turbulent, recent investigation showed
that the energy spectrum of the bubble-induced liquid velocity fluctuations follows −3 power
law (Bunner and Tryggvason, 2002; Martínez-Mercado et al., 2010; Riboux et al., 2010, 2013).
In a theoretical work Risso (2011) obtained −3 power law for the turbulent kinetic energy
spectra. The spatial distribution of the bubbles was identified as the main reason for the power
law. It is interesting to note that the same decay rate could be observed in other two-phase
flows regardless if particles or bubbles are considered. Recently, the experimental work of
Mendez-Diaz et al. (2013) confirmed the results of Risso (2011). They concluded that the
specific details of the hydrodynamic interactions among the bubbles didn’t affected the way
in which the pseudo-turbulent fluctuations were produced. Despite the recent effort on the
subject, surprisingly little is known about the flow field generated by the settling particles and
to what extent the results already obtained in the context of homogeneous bubbly flows apply
to the case of heavy solid particles.
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1.2.3 Spatial distribution of the dispersed phase

It has been known for a quite some time that particles suspended in turbulent flows might be
dispersed inhomogeneous manner and can form regions with high particle concentrations. This
phenomenon is commonly referred to as preferential concentration or clustering and correlates
the instantaneous particle concentration field with the turbulent flow field. Particle clustering
can have a significant effect on both the properties of the particles and the turbulent flow field.
The knowledge of the mechanisms leading to clustering and the parameters controlling the
process have received a lot of attention from the scientific community and significant amount
of studies were devoted to the subject. Substantial amount of experimental (Maxey, 1987;
Fessler et al., 1994; Eaton and Rouson, 2001; Yang and Shy, 2005; Eaton et al., 2005; Wood
et al., 2005; Saw et al., 2008) and numerical (Squires and Eaton, 1991; Wang and Maxey,
1993; Rouson and Eaton, 2001; Bec et al., 2007; Dejoan and Monchaux, 2013) studies were
dedicated to the subject. A review of the clustering of small particles can be found in Eaton
and Fessler (1994). The preferential particle concentration was also reviewed recently by
Balachandar and Eaton (2010). In all of the aforementioned investigations the Stokes number
was identified as the major parameter determining the degree of preferential concentration
and the strongest clustering occurred at Stokes number near unity. Moreover, the general
observation is that as the Stokes number approaches zero, particles tend to follow streamlines
precisely, whereas at very large values of the Stokes number the particles tend to follow
ballistic trajectories. In both cases uniform distribution of the particles was observed. On the
other hand for intermediate values of the Stokes number, inertia prevents the particles from
following exactly the streamlines and heavy particles are centrifuged away from regions with
high vorticity and leads to an accumulation of particles in the straining flow regions. For light
particles on the other hand the opposite was observed. This mechanism is also called inertial
clustering, since it is caused by the different inertia of the particles and the fluid.

A consequence of the particle clustering is that the probability of finding pairs of particles
is enhanced. A measure of this probability and thus of the degree of clustering is the so called
radial distribution function and as identified by Sundaram and Collins (1997) if evaluated
at contact provides precise correction to the collision kernel. Reade and Collins (2000)
demonstrated that the radial distribution function grows as a power-law of the inverse of the
separation distance for separations smaller than the Kolmogorov scale. In an analytical work
Chun et al. (2005) developed a theory to predict the radial distribution function in turbulent
particulate flows with small Stokes numbers. Recently Saw and Salazar (2012); Saw and
Shaw (2012) compared numerical and experimental results with the theoretical model of
Chun et al. (2005) confirming the power-law of the radial distribution function. Salazar et al.
(2008) investigated the inertial clustering in homogeneous isotropic turbulence by performing
detailed comparison between numerical predictions and experimental measurements of the
radial distribution function. Later De Jong et al. (2010) extended the study by investigating
the temporal development of the radial distribution function.

Recently a new particle clustering mechanism, the so called sweep-stick mechanism, was
proposed (Goto and Vassilicos, 2006, 2008). The main concept is that in contrast to low
Reynolds number flows, where the clustering was attributed to the action of the smallest scale
eddies, at high Reynolds number flows, the turbulence owns large range of multiscale coherent
eddies, which all can affect the preferential concentration of the particles. Thus, at high
Reynolds numbers the clustering is not a single scale phenomenon, but rather has a multiscale
nature (Boffetta et al., 2004) and therefore clustering could differ from the high-strain regions
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of the flow (Goto and Vassilicos, 2008). The sweep-stick mechanism relates the particle
clustering to the multiscale coherent eddies in the turbulent flow. Yoshimoto and Goto (2007)
showed that the clustering of heavy particles in homogeneous turbulence have self-similar
multiscale nature and that particle clustering take place even at moderate-to-large Stokes
numbers. Later Coleman and Vassilicos (2009) investigated the preferential concentration in
the inertial range of Stokes numbers and concluded that the sweep-stick mechanism was more
prominent than the inertial clustering.

Considering particle with size similar or larger than the smallest length scales of the flow
(finite-size), the experimental results of Monchaux et al. (2010) showed particle clustering
behavior consistent with the sweep-stick mechanism and maximum preferential concentration
for particles with Stokes numbers near unity. Furthermore, the authors also observed self
similarity of the particle clusters similar to the results of Yoshimoto and Goto (2007). A
review on the inertial clustering, the sweep-stick mechanism and another different clustering
mechanisms can be found in Monchaux et al. (2012). The authors also provide a comprehensive
review of different numerical and experimental configurations and different techniques for
the cluster identifications. In the majority of the works considering small particles, the
Kolmogorov time scale was usually used for the calculation of the Stokes number. Guala
et al. (2008) investigated experimentally the clustering of large particles in homogeneous
isotropic turbulence. Preferential concentration of the large particles was observed on scales
comparable with the Taylor microscale and they suggested the replacement of the Kolmogorov
time with the time scale corresponding to the Taylor microscale in the calculation of the Stokes
number. They concluded that the clustering mechanism for large particles is similar as for
sub-Kolmogorov size particles.

Recently, Fiabane et al. (2012) studied the effect of the Stokes number on the preferential
concentration of finite-size neutrally buoyant particles. The authors did not observe any
preferential concentration of the particles. They suspected that the pressure distribution at the
surface of the particles was the dominant factor in the dynamics of the particles. Nishino and
Matsushita (2004) performed experiments of finite-size heavy particles with high Reynolds
number in homogeneous turbulence and observed anisotropic clustering of the particles. The
particles formed streamwise elongated structures, columnar like structures. They noted that
even in extremely dilute regime the distribution of the particles deviated from the homogeneous
distribution. Similar columnar like structures were also observed in the numerical works of
Kajishima and Takiguchi (2002); Kajishima (2004b). They considered, however, dilute pseudo-
turbulent flows. The formation of the clusters was particle Reynolds number depended and the
clusters persisted over long time intervals. The authors concluded that the clusters are formed
due to the particle wakes.
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Figure 1.1: Overview of some possible flow configurations for dispersed phase flows with selected
papers from sections §1.2.1 - §1.2.3. Black straight arrows indicate uniform flow. Black curved arrows
indicate turbulent flows.
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1.3 Objectives of the thesis

The objective of this thesis is to extend the existing knowledge base and understanding of the
fundamental mechanisms and processes involved in dilute, high Reynolds number particulate
flows. More specifically, a unique data set is generated by means of direct numerical simulations
(DNS) with immersed boundary method for the representation of the fluid-solid interface. This
facilitates the generation of high-fidelity data set with high spatial and temporal resolutions
for both the fluid and the particle properties. Here we consider incompressible flow around a
large number of heavy rigid spherical particles of finite-size with particle Reynolds numbers
of several hundreds. The simulated system will be dilute, mono-dispersed and will include
gravity. For such configurations, the interaction of the (turbulent) carrier flow and the particles
can lead to a number of coupling mechanisms, such as particle clustering, modulation of the
flow field due to the particles and modified particle settling velocity. The thesis aims to address
the knowledge gaps related to the dynamics of such fluid-particle systems with respect to the
coupling phenomena. In particular we will address the following open questions:

• Do finite-size particles exhibit clustering and what is the exact mechanism of clustering?

• What are the characteristics of the particle-induced flow field?

• How does the particle clustering affect the hydrodynamic forces and the settling rate of
the particles?

In order to study the fundamentals of the coupling mechanisms, the problem is simplified
by considering simple flow geometries, hence, eliminating inhomogeneities due to wall effects.
We performed a series of simulations with gradually increasing the complexity of the settling of
single and multiple heavy finite-size particles in an initially quiescent flow field. Additionally
we simulated the flow through a random arrangement of fixed spheres. This will allow to
study the different processes by isolating and assessing several different aspects, such as the
effect of particle mobility, particle volume concentration and particle Reynolds numbers. The
emphasis here is on providing (i) characterization of the flow field induced by the particles and
turbulence modulation by the particles, (ii) detailed statistical description of the hydrodynamic
forces exerted by the fluid upon the particles and its implications on the particle dynamics,
(iii) characterization of the spatial distribution of the dispersed phase and detailed analysis
of the statistical consequences for both the flow field and the particles. This analysis is by no
means meant to be a conclusive study of dispersed two-phase flows. It is mainly meant to
contribute to the understanding of the complex mechanisms of the fluid-particle interaction.
In particular we anticipate that the main impact of the present results will be in the following
areas: (i) providing high-quality statistics of significant physical quantities, (ii) providing
deep and new insight into the dynamical processes driving fluid-particle interaction and (iii)
laying the foundations for the improvement of engineering-purpose models, in particular the
point-particle approach.

1.4 Outline of the thesis

The outline of the thesis is as follows. In chapter §2 an overview on the governing equations and
the most common fundamental aspects of multiphase fluid dynamics is provided. Chapter §3
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presents the numerical results for the single particle settling in an ambient fluid for two different
Galileo numbers. Here statistics of the particle wakes, settling velocity and hydrodynamic
forces are evaluated and presented. Chapter §4 provides the results of two direct numerical
simulations of the flow through a random arrangement of fixed particles. The main focus
in this chapter is on the fluctuations in the flow field due to the particle wakes and on the
hydrodynamic forces induced by the flow field upon the particles. A detailed analysis of the
mean particle wake is presented as well. In chapters §5 - §8 detailed discussion of the results
from three direct numerical simulations of freely moving large number of particles is presented.
The emphasis of this part is on the characterization of the particle velocities, hydrodynamic
forces and spatial distribution of the dispersed phase as well as the flow field induced by the
particles. The effects of particle clustering and the particle volume concentration are discussed
as well. Chapter §9 provides a general conclusion and summary of the thesis, recommendations
for future work and outlook are provided as well. Extended discussion and additional materials
are provided in the appendices.
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Chapter 2

Particulate flows - Fundamentals

The main objective of this chapter is to review in detail the state-of-the-art and the most
common physical aspects involved in dispersed two-phase flows. The chapter is structured
as follows. First in §2.1.1 we provide the basic assumptions which limits the physical scope
of the present work. As next, a short heuristic introduction on turbulent flows is given in
§2.1.2. Based on this, the most important physical parameters and the various length, velocity
and time scales common to (turbulent) particulate flows are introduced in §2.1.3. This then
allows us to classify the various regimes existing in particulate flows, providing more precise
characterization of here considered dispersed flows (§2.1.4). After the physical introduction,
the mathematical description of the physical processes is introduced in the form of governing
equations in §2.2. Finally, in section §2.3 the numerical treatment of the equations introduced
in section §2.2 along with the numerical methods used in the thesis are presented.

2.1 Physical background

2.1.1 Basic assumptions

Particulate flows are involved in a large range of applications and are characterized by very
wide spectrum of important time and length scales. Depending on the specific parameters of
the two-phase flow, the physical properties of the flow may vary significantly and this could
affect the methodology and the techniques used for their investigation. In order to limit the
scope of the present work, a number of assumptions need to be made. The objective of this
section is to introduce the assumptions made in the present study along with few essential
definitions of dispersed phase flows which apply specifically to particulate flows.

For the mathematical description of the flow, the concept of the continuum is important for
the development of conservation equations for the carrier-phase. In the continuum approxima-
tion, individual molecules and molecular interactions are neglected and it is assumed that the
fluid consists of continuous matter. The continuum hypothesis, further allows for a meaningful
definition of the fluid density. This assures that at each point of the continuous fluid there is a
unique value of the fluid properties, such as density, velocity and pressure, and that they vary
continuously from point to point. The continuum assumption is often parametrized by the
magnitude of the Knudsen number, Kn, which is the ratio of the mean-free path of molecules
to some characteristic flow length scale. Commonly the smallest length scales in the flow field,
which are usually called the macroscopic length scale, are employed. In general, the continuum
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approximation is justified for small values of the Knudsen number, Kn � 1. For Knudsen
numbers of order of unity and larger, a molecular flow regime is established and the flow can
not be considered as a continuum (Pope, 2000; Currie, 2002).

In the present study the particles in general will be referred to as dispersed-phase and
are assumed to be rigid solid unattached bodies of spherical shape immersed in a fluid for
which the continuum hypothesis holds and will be referred to as continuous-phase. The term
rigid-body implies non-deformable body with constant shape. The present work is limited
to one dispersed-phase and one continuous-phase. Such flows are also often referred to as
monodispersed. No mass and heat transfer between the phases are considered in the present
work.

The density of the particles is assumed to be homogeneous across the volume occupied by
the particles and to be larger than the density of the fluid. Regarding the continuous-phase, the
flow is assumed to be incompressible and only Newtonian fluids are considered. The former
assumption constrains constant fluid density and the later is the linear relation between the
viscous stresses and the rate-of-strain tensor (Batchelor, 1967, § 3.3, p. 146)

τij = µ

(
∂uf,i
∂xj

+ ∂uf,j
∂xi

)
, for i, j = 1, 2, 3 (2.1)

In the above equation τij is the viscous stress tensor, µ = νρf is the dynamic viscosity of the
fluid, defined as the product of the fluid density ρf and the kinematic viscosity of the fluid ν,
uf = (uf , vf , wf )T is the fluid velocity vector defined on a Cartesian coordinates (x, y, z). In
the present work the fluid and the particle phases are distinguished by the subscripts ”f” and
”p” respectively. Accordingly the continuous-phase and dispersed-phase quantities are defined
in a different frame of reference. The continuum density and fluid velocity fields are Eulerian
fields and are defined in a Eulerian frame of reference, x = (x, y, z)T . The x and y axis denotes
the horizontal directions perpendicular to the direction in which gravity g acts, while the z axis
is aligned with the direction of gravity. The dispersed-phase related quantities on the other
hand are defined in the Lagrangian frame of reference, xp = (xp, yp, zp)T . Throughout the
thesis bold symbols are used to denote vector and tensor quantities and the indices x, y, z or
1, 2, 3 denote vector components in the Eulerian frame of reference, e.g. uz or u3 denotes the
vertical component of the vector u.

2.1.2 Turbulent flows

Most flows under consideration in this thesis are assumed to be either uniform or pseudo-
turbulent flows. Pseudo-turbulent flows are often defined as instantaneous flows in which the
fluctuations in the continuous-phase are generated solely due to the presence of immersed
bodies, i.e. in the present work rigid spherical particles. However, we will also consider
multiphase-flows with instantaneous homogeneous turbulent flow field (initially isotropic), that
is homogeneous turbulent flows with no external turbulence forcing except for the dispersed-
phase. In order to better characterize and quantify the pseudo-turbulence, the statistical
description of both the classical turbulence and the pseudo-turbulence are compared. The aim
of the present section is to provide a brief description and characterization of turbulent flows
from somewhat a heuristic viewpoint. This section is by no means an exhaustive qualitative
description of turbulent flows and we refer the reader to the excellent textbooks of Tennekes
and Lumley (1972); Hinze (1975); Frisch (1995); Pope (2000).
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Turbulent flows are omnipresent in our every day life, from the smoke from the chimney,
or the flow in steered cup of coffee to turbulence in the atmosphere. Despite the widespread
occurrence of turbulence, the physical phenomenon is still not completely understood and is
considered as one of the most challenging and perhaps frustrating topics in fluid mechanics.
The problem of turbulence has been studied for long time and yet there is no deterministic
(complete) and precise definition of turbulence. Many of the researchers were in favor of giving
a rather intuitive characterization of turbulence, which however provides some description of
the physical attributes of turbulence. For example Richardson (1922) stated:

“Big whorls have little whorls,
which feed on their velocity.
And little whorls have lesser whorls.
And so on to viscosity.”

This reflects on the multiscale nature of turbulence and the cascade of energy, whereby energy
is transferred from the large scales to successively smaller scales until it is dissipated on
molecular scales. Hinze (1975) provided yet another definition which reflects on the irregular
and random nature of turbulent flows:

“Turbulent fluid motion is an irregular condition of the flow
in which the various quantities show a random variation with
time and space coordinates, so that statistically distinct
average values can be discerned.”

In the past the description of turbulence comprised a number of characteristic features. A few
of them are (i) chaotic, random behavior; (ii) three dimensional, rotational; (iii) large range
of length and time scales and (iv) diffusion and dissipation of energy (Tennekes and Lumley,
1972).

Today it is well accepted that the turbulent flows are characterized by a single non-
dimensionless control parameter, the Reynolds number:

Re = LU/ν, (2.2)

where L and U are some relevant length and velocity scale of the flow and ν is the kinematic
viscosity of the fluid. The Reynolds number expresses the relative importance of inertial and
viscous forces and provides a good measure of the strength of turbulence. At small Reynolds
number the viscous terms dominate the fluid motion and the flow is commonly found to be
laminar.

The above definition of turbulence given by Richardson (1922) revealed two dominant
processes, the transfer of energy to successively smaller scales and the dissipation of energy.
The energy cascade is one of the most important characteristic phenomenon of turbulent flows
and large number of physical aspects relates to it. The mechanisms related to the transfer
of energy from large to small scales is best studied in the context of homogeneous isotropic
turbulence. The flow is said to be homogeneous, if all statistics are invariant under shift in
position. As a result, the mean flow field is uniform and under appropriate choice of frame
of reference,it can be taken to be zero. When the flow is also statistically invariant under
rotations and reflections of the coordinate system, then it is said to be isotropic. The concept
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of homogeneous isotropic turbulence is extremely important in the turbulence research and
most of the turbulence theories relies on it.

The theory introduced by Kolmogorov (1941) is certainly the most famous theory of
isotropic turbulence. Based on the cascade theory of Richardson (1922), Kolmogorov was the
first to incorporate the multiscale nature of turbulence in a phenomenological theory, which
is stated in form of three hypothesis. Kolmogorov argued that the directional information of
the large scales is lost as the energy passes down the cascade. As a consequence the small
scale motions are assumed to be statistically isotropic and universal for high Reynolds number
turbulent flows. He also identified that the rate at which energy is dissipated is extremely
important parameter which controls the energy flux from large scales where energy is injected
to the small scales where it is dissipated. Consequently, he hypothesized that the statistics
of the small scales are determined by the rate of net energy transfer from the large scales ε
and the kinematic viscosity of the fluid ν. Given this two parameters, there are unique length,
velocity and time scales that can be defined:

η ≡ (ν3/ε)1/4, (2.3)

uη ≡ (εν)1/4, (2.4)

τη ≡ (ν/ε)1/2. (2.5)

These scales were identified by Kolmogorov and are assumed to be the smallest scales in
turbulence and now they bear his name. The Reynolds number based on the Kolmogorov
scales is unity, i.e. ηuη/ν = 1.

The range of scales at which energy is dissipated is referred to as dissipation range with
dominating viscous effects, whereas the range of large scales at which energy is injected is
referred to as energy-containing range. The large fluid scales are often characterized by the so
called integral length scale Λ, which is a measure for the size of the largest fluid structures. For
high Reynolds numbers the separation between the energy containing range of the large scales
and the dissipation range of the small scales becomes more distinctive and the intermediate
range increases. The intermediate range of scales at which the effective energy transfer
takes place is referred to as inertial subrange. As the name imply, motions in this range are
determined by inertial effects with viscous effects being negligible. Kolmogorov demonstrated
that the inertial subrange is universal and uniquely determined by the dissipation rate ε and is
independent of the kinematic viscosity ν. From dimensional analysis, in the inertial subrange
the energy spectrum E(κ) can be written as:

E(κ) = Cε2/3κ−5/3, (2.6)

where C is a universal constant and κ is the wave number. The spectrum is also known as the
Kolmogorov −5/3 spectrum and is for high Reynolds numbers universal. A schematic diagram
of the energy cascade and typical energy spectrum at very high Reynolds number are illustrated
in figure 2.1.

The Kolmogorov’s theory is considered to be one of the milestones in the turbulence
research. A detailed discussion of the Kolmogorov’s theory will go beyond the scope of the
present work and the interested reader is referred to the comprehensive review in the excellent
textbook of Frisch (1995).

The random nature of turbulence, which originates from the chaotic nature of the flow,
poses strong limitations on the methods used for studying turbulent flows. However, the
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Figure 2.1: A schematic diagram of the energy cascade and energy spectra at very high Reynolds
number. The diagram was inspired by Pope (2000). The wave numbers corresponding to the various
length scales introduced above are depicted on the x-axis. The length scales lEI und lDI indicate the
demarcation lines between the energy containing and dissipation ranges.

the development of rich set of statistical quantities for description and characterization of
turbulence. For example Tennekes and Lumley (1972); Pope (2000) provide good entry point
into the statistical description of turbulent flows. In the course of this work several statistical
quantities are introduced and will be defined in the following sections on the fly as they
are needed.

2.1.3 Relevant parameters

In studying two-phase flows usually one is confronted with a large set of physical properties and
parameters of the flow making the characterization of (turbulent) particulate flows extremely
difficult. Several parameters could lead at the same time to number of competing mechanisms
with completely opposite effects on both the dispersed- and carrier-phase. Even for single-phase
turbulent flows there is a wide range of physical properties that describe the flow. One reason
is the separation of scales originated from the energy cascade mechanism. Combined with
the stochastic nature of turbulence and physical properties of the dispersed phase as well as
the random distribution of the particles, it makes the parametric description of particulate
flows a formidable challenge. At this point, we will provide a summary of all relevant physical
properties and scales related to particulate flows. Using these, a number of dimensionless
parameters controlling the properties and regime of the two-phase flow are introduced as well.
For clarity some of the specific definitions of the here presented quantities are omitted and will
be introduced later in course of the work. We would like also to refer the interested reader to
the appendices where detailed definitions of all parameters used in the thesis is presented.

The physical properties of the carrier-phase are the already introduced fluid density ρf
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of length, velocity and time scales. The smallest scales of the flow are determined by the
kinematic viscosity of the fluid ν and dissipation rate ε and are called Kolmogorv’s scales
η, uη, τη (s. section 2.1.2). The large scales inherent to the energy containing range in the
energy cascade are determined by the turbulence generation mechanism and are mostly based
upon the flow geometry. The large scale structures can be characterized by a length scale Λ,
velocity scale uΛ and and time scale τΛ. These scales are often referred to as integral length
and time scales. The Reynolds number ReΛ based on this scales is in general large in value
and is comparable to the Reynolds number Re in equation 2.2, so the direct effects of viscosity
are negligibly small. Most of the complexity of turbulence lie in the inertial range with scales
between the dissipative and the integral length scales. A prominent representative of this
length scales is the Taylor micro-scale λ which is much larger than the Kolmogorov length scale
and much smaller than the integral length scale. One may define another Reynolds number
based on the Taylor micro-scale, the well known Taylor micro-scale Reynolds number Reλ
which is traditionally used to characterize isotropic turbulence and is defined as:

Reλ =
u′fλ

ν
, (2.7)

where u′f is the characteristic velocity of the eddies with size λ.
In the present study only spherical rigid particles with constant density are considered.

Thus, the presence of the particles introduces only three additional physical parameters, the
particle density ρp, particle diameter dp and the volume load of the particles per unit total
volume Φs. The volume load is defined as the ratio of the volume occupied by all particles Vp
and the volume occupied by the two-phases VΩ and is often referred to as the solid volume
fraction:

Φs = Vp
VΩ

with Vp = Np
1
6πd

3
p. (2.8)

In the above equation Np is the number of particles in the volume VΩ. Given the solid volume
fraction and the particle diameter, a number density can be calculated as:

np = 6Φs

πd3
p

. (2.9)

The particles introduce also various time and velocity scales. Commonly, the motion of the
particle in the flow is described by the particle relative velocity, defined as the difference of the
particle and fluid velocities up,rel = up − uf . Here we would like to note that the choice of
the fluid velocity used to calculate up,rel is not trivial, especially for particles with sizes larger
than the smallest flow length scales, and will be discussed in more details in section 7.1.1.
For the discussion in the current and the following sections of this chapter, we will assume
single particle in an uniform flow with clearly defined incoming velocity U∞, viz. uf = U∞,
except otherwise stated. Based on the particle relative velocity a particle Reynolds number can
be defined:

Rep = |up,rel|dp
ν

. (2.10)

The particle Reynolds number characterize the flow in vicinity of the particle and can be
interpreted as the non-dimensional ratio of fluid inertial forces to viscous forces with respect
to the flow around the particle. The particle Reynolds number is an important and widely used
parameter for the characterization of the particle motion.
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A commonly used particle velocity scale is the so called particle terminal settling velocity,
wp,∞. The velocity wp,∞ measures the maximum settling velocity a particle can attain settling
under the influence of gravity in quiescent conditions before drag balances gravitational forces.
Another velocity scale, ug, can be also obtained from the effective gravitational acceleration,
ag = |1 − ρp/ρf ||g|, resulting from the balance of buoyancy and the weight of the particles.
This velocity scale is also known as gravitational velocity scale and is calculated as:

ug =
√
|1− ρp/ρf ||g|dp, (2.11)

A Reynolds number can be defined based on the gravitational velocity scale, to obtain a
dimensionless parameter known as the Galileo number:

Ga = ugdp
ν

=

√
|1− ρp/ρf ||g|d3

p

ν
(2.12)

Together with the density ratio of both phases ρp/ρf , the Galileo number plays an important
role in the characterization of the settling regime of particles, which will be discussed in more
detail in section §3.2.

Similar to the carrier-phase, a various time scales for the dispersed-phase can be derived.
The time scales for the particles are important for the establishing of non-dimensional parame-
ters to characterize the response of the particles to changes in the velocity and the acceleration
of different flow scales. By far the most prominent time scale is the Stokes time scale or particle
relaxation time, which relates to the time required for a particle to respond to a change in
velocity. The Stokes time scale is defined as:

τp = ρp
ρf

d2
p

18ν . (2.13)

As the name implies, the Stokes time scale holds for particulate flows in the Stokes regime with
densities much larger than the fluid density, i.e. Rep < 1 and ρp/ρf � 1. The particle relaxation
time is the time required for a particle released from rest in a uniform flow with velocity U∞
to achieve 63% of the free stream velocity U∞. The Stokes time scale is independent of the
particle relative velocity and depends entirely on the physical properties of the fluid (ρf , ν) and
the particle (ρp, dp). This is especially advantageous, since it allows an a priori calculation of τp.
Even though the relation 2.13 holds for flows with low Reynolds number, it is still widely used
even for flows with finite particle Reynolds number. Besides the Stokes time scale, different
time scales based on the gravitational forces and a particle velocity scale can be defined. Based
on the gravitational velocity and the particle terminal settling velocity, a particle gravitational
time scales can be derived:

τg = dp
ug
, (2.14)

τg = wp,∞
|g||1− ρp/ρf |

. (2.15)

Alternatively, a purely viscous time scale can be defined as τν = d2
p/ν.

Based on the above definitions a number of non-dimensional quantities can be formed.
Some of them have been already introduced, the solid volume fraction (Φs), the various
fluid and particle Reynolds numbers (Re, Reλ, ReΛ, Rep), the Galileo number (Ga) and the

23



Chapter 2. Particulate flows - Fundamentals

particle-to-fluid density ratio (ρp/ρf). Considering the length scales of the flow field and the
particles, the particle size is often compared to different length scales of the flow field. The
expressions point-particles or finite-size particles are related to the ratio of the particle diameter
to the Kolmogorov length scale, dp/η. For values larger than unity the particles are considered
to have finite-size and effects related to their size need to be accounted for, while for values
smaller than unity the particles are considered as point source of mass. For finite-size particles,
additionally, the particle size is often compared to the size of the large flow structures or the
size of flow structures from the inertial range, i.e. dp/Λ, dp/λ. This is especially important
in the context of the filtering effect of the flow by the particles and is closely related to the
acceleration statistics of the particles, the preferential sampling of the flow by the particles and
the sweep-stick mechanism.

To compare the response time of a particle τp and a typical flow time scale τf , the ratio of
these two is introduced. This ratio is known as the particle Stokes number

St = τp
τf
. (2.16)

The Stokes number is an important parameter for determining whether, and to what degree,
the particle and fluid velocity field are correlated for given fluid time scale. As for the length
scales, different time scales for the fluid as well for the particles can be used for the calcu-
lation of the Stokes number. In such a way, the relative importance of different flow scales
corresponding to the time scale used in St can be estimated. For example the Stokes number
based on the Kolmogorov time scale, Stη = τp/τη can provide a good estimation of how well
the particles will follow the continuous-phase streamlines. This is for example important for
the measurement techniques. For a very small values of the Stokes number (St → 0), the
time for the particle velocity to react to the changes in the fluid velocity is negligible and the
particles can be considered as tracers. As the Stokes number increases, the particles will take
longer to adapt to the changes in the surrounding fluid velocity field. For Stokes number of
the order of unity (St ∼ 1), the particle is susceptible for large scale motions. For very large
Stokes number (St� 1) the particle inertia is large and the effect of the flow field upon the
particles accordingly decreases. By using different flow time scales (any of the above defined
particle and fluid time scales), the effect of the flow structures related to this scales upon the
particles can be studied. Finally, one of the most important application of the Stokes number is
the classification or characterization of particulate flows based on its value.

Dimensional considerations
As can be seen (turbulent) particulate flows are characterized by a large set of scales and
physical parameters. Depending on the particulate flow under consideration a number of
non-dimensional parameters can be identified that characterize the two-phase flow. The num-
ber of parameters vary with the flow configuration. In the following, based on dimensional
considerations (Buckingham, 1914), we will present a set of non-dimensional quantities, for
which we believe they represent the mechanisms of the flows under consideration in this study.
We start first with the simplest configuration, the settling of single particle in an otherwise
ambient fluid. As next, we present the controlling parameters for similar configuration, but
with large number of particles and finally, we consider the sedimentation of multiple particles
in a turbulent flow field.

Given the fluid density ρf , the kinematic fluid viscosity ν, the vector of gravitational
acceleration g on the one hand, and the particle diameter dp and particle density ρp on the
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other hand, dimensional analysis shows that the problem of single particle settling in an
otherwise quiescent fluid is governed by two non-dimensional parameters. Both of which were
already introduced, the particle-to-fluid density ratio ρp/ρf and the Galileo number Ga. When
considering multiple particles, one additional parameter come into play, the solid volume
fraction Φs. When additionally the background flow is turbulent, the parameter space increases
by two additional non-dimensional groups, yielding total of five parameters, e.g. the Reynolds
number of the background turbulence and a particle-to-fluid length scale ratio. Commonly
the Taylor micro-scale Reλ is considered in homogeneous turbulence and for the length scale
ratio, the particle diameter and the Kolmogorov length scale are considered dp/η. These
non-dimensional parameters are by far not the only possible. Depending on the application
or the objectives, a range of alternative options exist, one can choose for example different
length and/or time scales from the pool of scales defined above. For example one may consider
the ratio of the particle diameter to the Taylor micro-scale λ or to the integral length scale
Λ. Instead of the Galileo number, the particle Reynolds number can be considered. However,
the parametrization of the problem by the Galileo number is in particular useful, since the
determination of Ga requires only the physical properties of the particles and the fluid and can
be calculated a priori. Analogously, a different definition of the flow Reynolds number can
be used.

In the present work all flows include gravitational effects. In order to estimate this effects,
the dimensionless parameter based on the ratio of a typical fluid fluctuation, such as the root-
mean-square value of the fluctuating velocity u′f , to the particle terminal velocity, Ir = u′f/u∞
is considered. For large values of Ir the background flow is dominant and gravitational effects
can be neglected, whereas for small values of Ir gravity will dominate the motion of the particle.
In turbulent flows additionally the Stokes number plays an important role in determining the
effect of the background flow upon the particles.

The above introduced physical properties and various scales are summarized in table 2.1.
As can be seen, due to the vast number of parameters the parametrization of particulate flows
is not trivial task. This probably could be one of the reasons for the difficulties in predicting
turbulent particulate flows.

2.1.4 Classification of particulate flows

Dispersed multiphase-flows incorporate complex interactions between the particles and the
fluid. The interaction between the two phases could lead to a number of complex mechanisms,
as detailed in section §1. Depending on the flow properties, the relative influence of this
mechanisms can vary and have strong impact over the equations governing the physical
processes and the numerical or experimental techniques used for their study. The difficulties
stem most probably from the large set of parameters present in turbulent dispersed flows, as
shown in the previous section. Thus the correct estimation of the characteristics and regime
of the multiphase flow is of great importance. To help better estimate the expected type of
interactions, the dispersed flows are classified based on number of dimensionless quantities
(section §2.1.3), which express the relative importance of different interaction mechanisms.
The aim of this section is to provide a brief overview over the different classifications and
related terminology, which one usually encounters in the context of dispersed flows.

Using the above introduced non-dimensional groups, dispersed flows can be classified
based on the:
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continuous-phase dispersed-phase
Physical properties
density [ML−3] ρf ρp
kinematic viscosity [L2T−1] ν −
dissipation rate [L2T−3] ε −
Length, time and velocity scales
length scales [L] η, λ, Λ, L dp
time scales [T] τη, τλ, τΛ τp, τg, τν
velocity scales [LT−1] uη, uλ, uΛ, U∞, U up, u∞, ug
Dimensionless groups
Reynolds number [∼ UL/ν] Reλ, ReΛ Rep, Ga
particle-to-fluid density ratio ρp/ρf
particle-to-fluid length scale ratio dp/η, dp/λ, dp/Λ
solid volume fraction Φs

number density np
relative turbulence intensity Ir
Stokes number St, Stη

Table 2.1: Physical properties for (turbulent) particulate flow. Additionally, various length, time and
velocity scales introduced in section §2.1.3 are presented. Dimensionless groups involved in particulate
flows are also listed. For detailed definition of the different parameters the reader is referred to
section §2.1.3.

• particle size compared to the smallest flow length scales (Kolmogorov length scale),
i.e. dp/η. When the ratio is large the particles are assumed to have finite-size and
effects such as boundary layer effects on the surface of the particle and wake shedding
need to be considered. For small values on the other hand the particles are considered
as point-particles. In most of the point-particle flow configurations, the particles are
assumed to have small Reynolds numbers (Rep � 1) and this has, for example, a great
impact on the equation of motion, the forces exerted by the fluid upon the particles
(e.g. analytical expression for the drag force and coefficient, the so called Stokes drag),
or on the requirements of the numerical techniques. In the case of finite-size particles,
there are no analytical expressions neither for the particle equation of motion nor for the
hydrodynamic forces. Additionally, numerical simulations of finite-size particles impose
stronger requirements on the numerical methods as well on the computational costs.

• particle-to-fluid density ratio ρp/ρf . The particles are assumed to be light for ρp/ρf < 1,
heavy for ρp/ρf > 1 and neutrally buoyant for ρp/ρf = 1. Neutrally buoyant particle are
of particular interest for experimentalists, since they tend to follow the flow streamlines
exactly (note, this apply only for small particles). The particle trajectories for the light
as well for the heavy particles deviate from that of the fluid. Light and heavy particles
differentiate each other for example on the effect of turbulent eddies upon the particles.
Heavy particles are centrifuged out of the turbulent vortices and accumulate in regions
with hight strain rates, whereas the opposite is true for light particles. Particles with
density different from that of the fluid are also known as inertial particles.

• solid volume fraction Φs. Based on Φs, dispersed phase flows are classified as dilute or
dense flows. In dense flows the particle-particle interactions (particle collisions) dominate
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the particle motion, whereas in dilute flows this effects are negligible and particles
interact with each other through the hydrodynamic interactions in the flow field. With
increasing Φs the mean inter-particle distance decreases and the likelihood of particle
collisions increases respectively. When the solid volume fraction is small, the effect
of the particles on the flow field is negligible. We would like to note that there is no
definitive scaling parameter that defines the boundaries between dilute and dense flows.
Commonly for values of Φs in the order of O(10−3) and smaller the flow is assumed to
be dilute. The number density np or the mean time between particle collisions could also
be used as classification parameters between dilute and dense flows.

An important concept in the analysis of dispersed flows (and multiphase flows in general) is
the phase coupling. The phase coupling describes how both phases interact with each other and
which interaction mechanisms are dominant in a particular configuration. In general coupling
can take place through mass, momentum and energy transfer between the phases. In the
present work only momentum coupling is considered. The particles considered in the present
study are assumed to be rigid, thus no mass and energy exchange between the phases are
present. Energy coupling is used here in the context of heat transfer and is not considered. The
interested reader is referred to the textbook of Crowe et al. (2011) for more detailed discussion
on mass and energy coupling. The momentum coupling is mainly due to the presence of the
particles and results from the hydrodynamic force on the dispersed- and continuous-phase. As
a result of this type of coupling, a variety of interactions between the phases could occur, which
may lead to changes in the turbulence and net momentum of the continuous-phase. Based
on the particle concentration, the coupling between the dispersed- and continuous-phase can
be further differentiated on the basis of the degree of coupling, which tends to increase as Φs

increases. By order of increasing particle concentration, dispersed flows can be classified in
three coupling regimes:

• one-way coupling: in these flows the effect of the particles on the continuous-phase
is negligible. However, the particle motion is affected by the fluid phase. In case of
numerical investigation this type of coupling is particularly advantageous, since it allows
the calculation of the flow-phase in an a priori step and the subsequently integration of
the particle equation of motion. The one-way coupling is estimated to apply for particle
concentration in the range of 10−6 to 10−5 (Elghobashi and Truesdell, 1993; Elghobashi,
1994).

• two-way coupling: at higher particle concentration the dispersed-phase could also affect
the fluid flow by changing the momentum or effective density. The effect of two-way
coupling is particularly important in the context of turbulence modulation (section §1),
an attenuation or enhancement of the turbulent fluctuations in the flow can be observed
depending on the particle characteristics. Here the particles can interact implicitly with
each other through fluid-dynamic interactions, e.g. particle wake attraction. In contrast
to the case of one-way coupling the fluid- and particle-phase equations should be solved
simultaneously. Two-way coupling is found to be most prominent for solid volume
fractions in the range of 10−5 to 10−3.

• four-way coupling: at even higher concentrations, the particle-particle interactions and
dynamics becomes more important and dominant. For such flows the collisions between
the particles become increasingly important and need to be taken into account. This type
of coupling occurs for solid volume fractions larger than 10−2.
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We would like to note that the definition of the boundaries between the various coupling
regimes can be subjective and there is no definitive demarcation value which will divide
distinctive coupling regions. More detailed discussion of the coupling effects and especially the
implications on the numerical approaches can be found in Elghobashi and Truesdell (1993);
Elghobashi (1994, 2006); Balachandar and Eaton (2010).

2.2 Governing equations

After defining the assumptions and thus the physical scope of the present work, we are now
able to present the mathematical formulation of the physical problem in the form of governing
equations. The aim of this section is to introduce the equations governing the continuous-phase
as well as the dispersed-phase. We first derive the equations for flows without interfaces in
relatively standard manner. The issues of boundary and initial conditions required for the
solution of introduced equations are then shortly addressed. Next the equations of rigid body
motion are presented. The forces acting upon a particle suspended in a viscous flow are also
briefly elaborated.

2.2.1 Navier-Stokes equations

It is well accepted that the Navier-Stokes equations describe accurately the motion of a fluid.
Before we proceed with the introduction of the equations, the assumptions made in the
present work are for convenience shortly summarized. In the present work we assume that the
continuum hypothesis holds and we deal with incompressible flows and Newtonian fluids. The
following governing equations are then derived with this constraints in mind.

The governing equations are derived on the principle of mass and momentum conservation.
The principle of conservation of mass states that mass is not created or destroyed. For
incompressible flows the mass conservation equation reads in integral form:∮

∂Ωf
uf · n = 0. (2.17)

In the above equation ∂Ωf denotes the boundary of a general domain occupied by the fluid, n
is the normal unit vector to the surface ∂Ωf and · is the dot product between two vectors. The
above equation states that the volume of any fluid element cannot change and is also called
continuity equation. The differential form of the above equation can be simply written as:

∇ · uf = 0, (2.18)

where the ∇ is the so called Nabla operator defined as ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ). The above condition

on the fluid velocity field is also known as divergence-free condition.
The equation of motion is derived by using the momentum conservation principle specifying

that the rate of change of fluid momentum in the volume occupied by the fluid Ωf is the
difference in momentum across the boundary ∂Ωf plus the net force acting on the volume:

∂uf
∂t

+∇ · (ufuf ) = ∇ · σ + f (2.19)

In the above equation t denotes the time, σ is the stress tensor and f the volume force acting
on the fluid. The stress tensor σ may be decomposed into a pressure and viscous part and can
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be written as:
σ = − 1

ρf
(pI + τ ) , (2.20)

in which I is the identity tensor, p the pressure and the viscous part τ of the tensor is given by
equation 2.1.

The set of equation 2.18 and 2.19 is known as the Navier-Stokes equations. A detailed
derivation of the Navier-Stokes equations along with properties of the equations and some
special cases of the equations can be found for example in Batchelor (1967); Pope (2000). To
this date, these equations are the gold standard in the mathematical description of fluid flows
and, unfortunately, no general analytical solution is available.

The Navier-Stokes equations are coupled system of non-linear second order equations in
four independent variables and their numerical solution present formidable challenges. From
mathematical point of view, for the problem to be well posed, a set of initial and boundary
conditions (b.c.) need to be prescribed. A various number of different boundary conditions
could be specified. In the following a short description of the relevant boundary conditions
will be presented.

For impermeable surfaces, as in the present study, the so called kinematic boundary condition
is enforced for all positions at the fluid-solid interface:

n · uf (x, t) = n · u(xp, t) at x ∈ ∂Ωf . (2.21)

The kinematic b.c. ensures that there is no mass transfer between the phases. Usually in
viscous flows at the solid-fluid interface the so called no-slip boundary condition is imposed.
The no-slip b.c. requires that the tangential velocity matches that of the boundary, i.e. the
particle:

n× (uf (x, t)− u(xp, t)) = 0 at x ∈ ∂Ωf , (2.22)

In combination with the kinematic boundary condition the no-slip b.c. reads then:

uf (x, t) = up(x, t) at x ∈ ∂Ωf . (2.23)

The no-slip b.c. is a Dirichlet boundary condition, which specifies the value of a given flow
variable at certain position, e.g. the fluid velocity at the particle surface.

In the context of homogeneous (isotropic) flows the domain is often assumed to be
unbounded, i.e. a periodic boundary conditions in all three space directions are enforced. For
a flow field variable φ(x, t) the periodic boundary condition is defined as:

φ(x, t) = φ(x+mL, t), (2.24)

where L = (Lx, Ly, Lz) is the period of the domain and m = (mx,my,mz) are some inte-
ger numbers. The use of periodic boundary conditions allows a maximum symmetry. The
unboundedness of the space does, however, lead to some mathematical difficulties (Frisch,
1995). In the textbook of Frisch (1995) the reader can find also a more detailed discussion on
periodic b.c.. The periodicity in all three directions is particularly beneficial, since it reduces
the complexity of the calculation of statistical quantities and number of samples is increased at
the same time. However, when the length L of the domain is insufficient, the resulting flow
field could be substantially influenced, since the largest scales present in the flow field are
limited to the length of the periodicity.
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For time dependent problems, one needs additionally to specify the initial conditions of
the system. In most of the applications, however, one is interested in statistically stationary
solutions of the Navier-Stokes equations. Statistically stationary solutions have the property
that the statistics of the flow become independent of time and of the initial state of the system.
When statistically stationary solution is found, then the flow is called to be in statistically
stationary state. Thus, the initial state is often not specified explicitly and often the solution
procedure is initialized from a random initial state. Although the statistically stationary state is
expected to be for all initial configurations the same, the transition time to steady state may
strongly vary depending on the initial state. Thus, a careful choice of the initial configuration
needs to be made and different approaches to shorten the transition period exist.

2.2.2 Equations of the dispersed phase

As introduced in section §2.1.1, the scope of the present study is limited to monodispersed
flows consisting of rigid heavy particles of spherical shape. The particles are further assumed
to be of finite-size, thus for each particle the continuum assumption holds. This allows, among
others, the meaningful definition of boundary conditions, e.g. no-slip boundary condition.
These assumptions simplify the equations of motion for the particles and the resulting analysis
by reducing the parameters that describe the configuration of the system (e.g. no surface
deformation and surface tension), to the translation and rotation reference frames attached to
the particles.

The dynamics of a system of rigid bodies is determined by its equations of motion, which
can be derived from the Newton’s second law of motion for linear and angular momentum:

d(mpup)
dt

= FV + Fσ + Fcoll (2.25)

d(Jp · ωp)
dt

= T (2.26)

In the above equations mp is the mass of the particle, FV , Fσ, Fcoll are forces exerted by
the fluid upon the particle and will be discussed in more detail below, Jp is the moment of
inertia tensor, ωp is the angular velocity of the particle and T is the torque on the particle.
For mono-dispersed suspension of rigid and homogeneous spherical particles the equations
can be simplified by taking advantage of the fact that particles have constant mass (i.e.
mp = ρpVp = ρp1/6πd3

p), then the moment of inertia tensor reduces to a scalar quantity, viz.
Jp = 2

5mp(dp/2)2. The above quantities are defined with respect to the center of mass of the
particles. The position of the particles xp and the orientation of the particle with respect
to the Coordinate axis Ωp, are functions of time and can be calculated according to the
kinematic conditions:

dxp
dt

= up, (2.27)

dΩp

dt
= ωp, (2.28)

The solution of the set of equations 2.25 - 2.28 describes the temporal evolution of the particles
and a unique solution can be found when the system of equations is completed by a set of
initial conditions for the particle linear and angular position and velocity. The force and torque
on the particle supplement the system as homogeneous forcing terms which are provided at
each time instance.
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Forces exerted upon a particle
In the context of the present work the total force exerted on the particle is linear superposition
of the volume forces FV , such as the gravitational force, the hydrodynamic forces Fσ, due to
pressure and hydrodynamic stress σ and the forces due to particle-particle collisions Fcoll.

Volume or body forces are forces which are proportional to the particle mass and is defined
as integral of a body force fV over the volume of the particle:

FV =
∫
V

(ρp − ρf )fV dV. (2.29)

In this text the particle and fluid densities are assumed constant and the volume forces are as-
sumed to be represented solely by the gravitational force. Other forces such as electromagnetic
forces are neglected. Thereby, the body forces simplify to:

FV = (ρp − ρf )Vpg, (2.30)

with Vp being the volume of the particle.
The hydrodynamic forces Fσ are probably the most important and challenging forces in

the present work. The hydrodynamic forces are forces which act on a surface element of the
fluid-particle interface. Thus, only surface forces contribute to Fσ. The fluid exerts a net force
on the particle consisting of two sources, the pressure and the shear stress that results from
the friction between the particle and the flow. Then the hydrodynamic force can be written in
terms of the pressure p and the viscous stresses τ :

Fσ =
∮
∂V
σds, (2.31)

where ∂V is the particle-fluid interface and ds is a infinitesimal surface element. Supplementing
equation 2.1 into the above equation results:

Fσ =
∮
∂V
τ · nds−

∮
∂V
pnds. (2.32)

To determine the force Fσ, one needs to calculate or estimate the pressure and the shear stress
distribution on the fluid-particle interface. From historical point of view, the pressure part of
the hydrodynamic force was less problematic than the shear stress, since for the evaluation
of the hydrodynamic forces the flow field in vicinity of the particles is required, whereas the
pressure was more accessible for measurements. The calculation of the shear stress distribution
requires the inclusion of friction and viscous flow. That is one needs to solve the Navier-Stokes
equations in order to obtain the shear stress distribution on the particle surface. Now days this
is still a significant challenge for the numerical as well as experimental techniques.

Torque on a particle
Due to the the no-slip boundary condition on the particle surface, the fluid can formally grasp
the particles and similar to the force on the particle the hydrodynamic stresses at the particle
surface can generate particle torque. Then the particle torque can be written as:

T =
∫
∂V
lp × (τ · n)ds, (2.33)

where lp is the distance from the center of the particle to the surface element ds on the surface
of the particle. The cross product between the two vectors in the above equation is marked
by ×.
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The particles considered in the present study have spherical shape (i.e. |lp| = rp) with
constant density across the particle cross section. Thus, due to the symmetry of the particle
shape, the pressure acting on the particle surface does not contribute to the particle torque,
since the pressure force acts always perpendicular to the surface element of the particle
surface. Additionally the here employed collision force Fcoll is also not contributing to the
particle torque.

2.2.3 Coupling of fluid and particle equations

The Newton’s second law1 incorporated into the equations of particle motion showed that
the particle motion is controlled by the forces acting on the particles at the particle-fluid
interface. Further, the no-slip boundary condition imposed constraints on the fluid velocity
field. From the above definitions it is evident that the interaction i.e. the coupling between
the solid and fluid phase takes place at their boundary and is established over the boundary
conditions. Then the set of equations for the continuous-phase (equations 2.18, 2.19) and for
the dispersed-phase (equations 2.25 - 2.28) completely defines the problem of the motion of
solid particles suspended in (turbulent) fluid flow.

2.3 Numerical model

In section §2.1 the physical scope of the here considered problem of solid heavy finite-size
particles immersed in a fluid flow was defined. Then in section §2.2 the mathematical
description of the physical problem was introduced in form of governing equations. In this
section we will present the numerical methods applied in the present work in order to solve
the governing equations for the continuous- and dispersed-phase. This is done in three steps.
First we introduce the concept of direct numerical simulation and the numerical methods to
solve the equations for the flow field. Then we present the numerical tools to solve for the
particle motion and finally in a third step we introduce the numerical methods employed in
this study to simulate the dispersed flow.

2.3.1 Direct numerical simulation of the carrier phase

In section §2.2.1 the Navier-Stokes equations were introduced and showed to describe the
motion of the fluid. Their complexity restricted their applicability for the turbulence research
for long time. Analytical solutions of the Navier-Stokes equations were only accessible for
simplified configurations. First with the birth of computers in the 1950s researchers were
able to provide solutions of the Navier-Stokes equations for more generic applications. Since
then, the interest in numerical techniques and the development of numerical methods has
increased at a spectacular rate. Although many of the ideas for the numerical methods used
for the solution of the equations of fluid dynamics were established decades even centuries
before computers appeared, their full potential was first harnessed with the introduction of
computers. In this section we will discuss the numerical approaches to solve the system of
equations for the flow field.

1“The change of motion of an object is proportional to the force impressed and is made in the direction of the straight
line in which the force is impressed”, Newton (1687)
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The numerical approaches to solve the Navier-Stokes equations are commonly classified
based either on their accuracy or their simplicity. In most of the configurations the accuracy
is directly proportional to the simplicity of the numerical approach, viz. the more exact the
numerical approach, the more simple is the numerical ansatz. Here simple is used in the
context of conceptual simplicity, i.e. the degree of numerical modeling required to obtain
a solution.

Based on the degree of modeling, the numerical approaches can be divided in three groups.
The first group is based on some type of averaging of the Navier-Stokes equations, either
temporal or spatial. This approach leads to the so called Reynolds averaged Navier-Stokes
equations (RANS). The second group solves the Navier-Stokes equations for the large scale
motion of the fluid, and models the effect of the small flow scales. This group of simulations
are known as Large Eddy Simulations (LES). The third group solves the governing equations
for all scales of the fluid motion and avoids any use of modeling. The simulations of this
group are referred as Direct Numerical Simulations (DNS). The simulations in the present thesis
employ the method of DNS. In the following we will provide a short introduction and overview
on DNS.

The most accurate of the above numerical approaches is the direct numerical simulation,
whereby all scales of fluid motion, even the smallest length and time scales, are fully resolved.
The Navier-Stokes equations are solved without any averaging or modeling other than the
numerical discretization. In the past couple of decades, DNS proved to be valuable research
tool and have provided a significant impact in our understanding of turbulence. This was
acknowledged in a large number of works (see Moin and Mahesh (1998) for review).

As aforementioned, turbulent flows contain a large range of length, velocity and time scales.
The use of DNS to solve the Navier-Stokes equations assures that all scales from the smallest
Kolmogorov scales to the largest integral scales are captured and resolved. This places some
numerical difficulties and constraints on the numerical methods and especially on the discrete
representation of the Navier-Stokes equations, i.e. the spatial and temporal discretization. As
result the computational domain should be large enough to accommodate the large scales
of the fluid motion, while the numerical resolution should be as small as at least the half
of the size of the smallest flow structures presented in the flow (e.g. for Fourier methods
Nyquist-Shannon sampling theorem2, Shannon (1998); Nyquist (2002)). The fine resolution of
the flow field assures that the dissipation processes at which the effect of viscosity is dominant,
are captured. Thus, the bigger the ratio Λ/η is, the higher is the number of discrete points
needed for the correct representation of the flow. Dimensional considerations shows that this
ratio is proportional to Re3/4 (Tennekes and Lumley, 1972). This considerations apply for
each spatial direction increasing the resolution requirements by making the number of discrete
points proportional to Re9/4. Considering the temporal resolution, the time step is related to
the spatial resolution by the so called Courant-Friedrichs-Lewy (CFL) condition (Courant et al.,
1928). When one is interested in the statistically stationary solution, the flow field needs to
evolve long enough in time to assure the time independence of the flow statistics. Commonly
direct numerical simulations require run-times of several months up to several years on high
performance supercomputers. This in combination with the large number of discrete points
makes the use of DNS extremely costly and this is one of the main limitation of DNS. Thus,
direct numerical simulations are employed only for relatively small Reynolds numbers and

2“If a function x(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates
at a series of points spaced 1/(2B) seconds apart”, Shannon (1998); Nyquist (2002)
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for geometrically simple configurations. As computers become faster in processing speed and
larger in memory, more complex and high Reynolds number flows have started to come in
reach of DNS.

DNS provides very detailed information of the flow by capturing both the spatial and
temporal characteristics of the flow. As a result, the amount of data provided by the simulation
is significant and makes the statistical analysis and the tools needed a challenge. Additionally
the space required for the storage of the simulation data is also a substantial constraint.

From the above consideration, we may conclude that DNS can be used primarily as research
tool, providing detailed information about the physical processes involved in fluid dynamics.
The results then can be used for the development of quantitative models, e.g. RANS, which
will allow a more cost effective simulation of other similar flow configurations. A recent
review on DNS for homogeneous isotropic turbulence can be found in Ishihara et al. (2009). A
comprehensive introduction and review of the available numerical methods can be found in
the excellent textbook of Ferziger and Perić (1996).

2.3.2 Immersed boundary method

As introduced in section §2.2.3, the interaction between the particles immersed in a viscous
flow and the flow happens through out the boundary conditions at the fluid-solid interface.
The immersed boundary method refers to a method which imposes the effects of an immersed
boundary (IB) on the flow (Peskin, 1972). The term immersed boundary method (IBM) encom-
pass all methods used for simulation of viscous flows with immersed objects on computational
grids that do not conform to the shape of the immersed bodies. The aim of this section is to
provide an overview on the immersed boundary method.

Before we introduce the IBM we would like to briefly discuss the methods which use body
conformed grids. This will allow us a better assessment of the advantages and disadvantages
of using the IBM. The methods employing body conformed grids precisely define the phase
boundaries. Such grids are also known as body-fitted grids. Using a body-fitted grids greatly
simplifies the discretization of the governing equation in the computational domain and the
boundary conditions on the immersed boundary can be enforced directly. The main difficulties
of this approach is the generation of the computational grid. The generation of body-fitted
grids can become quite cumbersome. The problem becomes even more difficult when the
fluid-solid interface moves throughout the enclosing fluid domain, requiring the generation of
a new grid at each time step.

The IBM takes the opposite approach, the flow field is solved on a time independent,
(usually) Cartesian grid which, in general, does not conform to the geometry of the fluid-solid
interface. The IB is still represented by some means of surface grid, which in the present work
is done by discretizing the particle surface by Lagrangian marker points, which are advected
with the particle velocity. The enforcing of the boundary conditions on the IB is probably the
most important part in the development of an IBM and a number of different approaches exist,
whereas in the case of body-fitted methods the b.c. are clearly defined and enforced. The
quality of the IBM method in use may depend strongly on the employed forcing approach.
The boundary conditions representing the presence of the solid object are incorporated into
the Navier-Stokes equations by modifying the equations in the vicinity of the boundary. The
basic idea is to add an additional forcing term in the momentum equations for the fluid that
represents the effect of the boundary. Ideally the forcing must be localized along the interface
and probably extending into the solid.
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The IBMs are commonly differentiated based on the calculation of the forcing term. There
are two general variants. In the first the forcing term is introduced in the equations of fluid
motions a priori to their discretization. This approach is known as the continuous forcing
approach or indirect forcing. Usually in the process the interface is diffused over few mesh
cells. In the second approach the forcing is introduced after the equations of motion are first
discretized. This approach is often referred to as discrete forcing approach or direct forcing. The
variant of the IBM used in the present work employs the continuous forcing approach.

The main advantage of IBMs is that simple time independent Cartesian grids can be used
without resorting to grid transformations. The simulation of mobile highly complex interfaces
can be performed relatively efficiently. For the representation of the interface no additional
indicator functions for the interface are required. Additionally the Navier-Stokes equations are
solved on the entire computational domain. This allows the use of highly adapted and efficient
numerical solvers which were developed in the last decades in the context of turbulence
research. Additional advantage is the simplicity of implementation and parallelization of the
numerical codes allowing the use of high performance supercomputers. The IBMs are also
highly flexible and allows the implementation of complex geometries in a short time compared
to body-fitted approaches.

The IBM has been widely used in the past for the simulation of multiphase flows with
various configurations (Uhlmann, 2008; Lucci et al., 2010; Lee and Balachandar, 2010; Tenneti
et al., 2011; Chan-Braun et al., 2011) and a number of variants exist in the literature. For
more detailed discussion of the different forcing approaches and variants we refer the reader
to the comprehensive review of Mittal and Iaccarino (2005) and the textbooks of Prosperetti
and Tryggvason (2007) and Tryggvason et al. (2011).

2.3.3 Details of the implementation

The present work investigates numerically the interaction and the resulting two-way coupled
mechanisms of solid heavy particles settling under the influence of gravity in initially ambient
or turbulent flow fields. The numerical experiments are performed by means of series of
direct numerical simulations. The numerical code used in this thesis employs a variant of
the immersed boundary method developed by Markus Uhlmann (Uhlmann, 2005). In the
following a brief overview over the used numerical methods will be presented. For more
detailed discussion of the various numerical aspects as parallelization techniques, linear system
solver, scaling performance and etc. we refer the interested reader to a series of technical
reports Uhlmann (2003a,b, 2004, 2010); Uhlmann and Doychev (2012).

Our methods employ a continuous forcing approach, where a localized volume force term is
added to the momentum equations a priori to their discretization. Two separate discretizations
for the Lagrangian and Eulerian quantities are employed. For the Eulerian flow field a uniform
isotropic Cartesian grid is used, while the particle quantities are discretized in a Lagrangian
manner and the fluid-solid interface is represented by a set of Lagrangian marker points, which
are distributed evenly on the surface of the particles. The necessary interpolation of variable
values from Eulerian grid positions to particle-related Lagrangian positions and vice-versa are
performed by means of the regularized delta function approach of Roma et al. (1999). This
procedure yields a smooth temporal variation of the hydrodynamic forces acting on individual
particles while these are in arbitrary motion with respect to the fixed grid. The particles
in the present work are free to visit any point in the computational domain and the use of
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Cartesian grid with uniform isotropic mesh width ensures that the regularized delta function
verifies important identities, such as the conservation of the total force and torque during
interpolation and spreading. This allows the use of efficient numerical methods for the solution
of the Navier-Stokes equations and especially the Poisson equation for the pseudo-pressure,
which needs to be solved in each Runge-Kutta sub-step and is one of the most computational
demanding parts of the solution procedure. The Poisson problem is solved by means of a
parallel multigrid technique.

The Navier-Stokes equations are integrated in time by using a fractional step method.
This implies a semi-implicit time discretization, the non-linear advection terms are treated
explicitly by a low storage three-step Runge-Kutta scheme and the viscous terms are treated
implicitly by a Crank-Nicholson scheme (Verzicco and Orlandi, 1996). This ensures that the
total accuracy of the time discretization is of second order. This type of two-step time splitting
scheme is not unique and another variants exist. For more detailed discussion the reader is
referred to the textbook of Ferziger and Perić (1996). The particle motion is determined by the
Runge-Kutta-discretized Newton equations for translational and rotational rigid-body motion,
which are explicitly coupled to the fluid equations. The flow field is obtained with the particle
position and velocities from the previous Runge-Kutta sub-step and then the particle equations
are solved using the most recent flow field. This coupling between the two phases is also
known as weak-coupling.

During the course of a simulation, particles can approach each other closely. However, very
thin inter-particle films cannot be resolved by a typical grid and therefore the correct build-up
of repulsive pressure is not captured which in turn can lead to possible partial ‘overlap’ of the
particle positions in the numerical computation. In practice, we use the artificial repulsion
potential of Glowinski et al. (1999), relying upon a short-range repulsion force in order to
prevent such non-physical situations (s. section §2.2.2). This force is employed in order to
avoid overlapping of particles or penetration into each other. This force is calculated as the
sum of short-range repulsive forces between pairs of particles with distance between their
centers falling below a threshold value. The model of Glowinski et al. (1999) is a rather
simple model, however for dilute two-way coupling configurations where the particle-particle
dynamics are negligible the model provides reasonable results (Uhlmann, 2008; Lucci et al.,
2010; Chan-Braun et al., 2011). An overview and discussion of more elaborated models can
be found in the textbook of (Crowe et al., 2011, section §5).

The spatial operators are discretized by means of central finite-differences on a staggered
grid. The spatial discretization was carefully chosen in order to resolve all relevant scales
of the flow, including the fluid-solid interface. The temporal and spatial accuracy of this
scheme are of second order. The numerical code has been parallelized by means of the
MPI standard and extensively testing and benchmarking of the code was performed. The
numerical implementation of the above methods indeed achieved very good scaling on high
performance supercomputers, e.g. JUGENE and JUQUEEN at the Jülich Supercomputer Center
(JSC) Uhlmann (2010); Uhlmann and Doychev (2012). In a recent publication Uhlmann and
Dušek (2014) the numerical model and method was benchmarked against a Fourier/spectral-
element code (Ghidersa and Dušek, 2000; Jenny et al., 2004) showing good agreement with
the spectral results. Another recent applications of the numerical method can be found in
(Uhlmann, 2008; Lucci et al., 2010; Lee and Balachandar, 2010; Chan-Braun et al., 2011;
Kidanemariam et al., 2013).
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Chapter 3

Settling of a single particle in an
ambient fluid

3.1 Introduction

The motion of particles under the simultaneous action of external and hydrodynamical forces
is one of the most important topics with regard to dispersed flows. The understanding of the
coupling mechanisms between the motion of the particle and the forces acting on the particle
have been the subject of many studies in the past. Due to the perfect symmetry of spherical
particles, the study of a single spherical particle settling under the influence of gravity in an
ambient viscous fluid has been identified as one of the most essential configurations for studying
the effect of the hydrodynamic forces on the particle and their implications to its motion. This
configuration is particularly interesting, since all deviations from a rectilinear motion of the
particle as well unsteadiness of the particle velocity are results from the interaction of the
particle with its own wake. It is widely accepted that when a single particle settles in an
a priori ambient fluid, a variety of motion patterns exist, from straight vertical to fully chaotic
paths, for which the fluid motion in the near field around the particles, e.g. particle wake,
plays a dominant role. The various wake structures that may exist in the wake of the particle
could lead to unsteadiness of the hydrodynamic force and also to the onset of lift forces and
torque on the particle. Their implications may have far reaching consequences, for example
Dušek et al. (1994) showed that instabilities in the particle wake enhance the viscous effects,
which in turn reduces the vertical velocity of the particle. Later Bouchet et al. (2006) showed
that each change of the wake structure is accompanied with change of the drag with overall
qualitative effect of the wake instabilities being an increase of the drag, which also would lead
to a decrease of the particle vertical velocity. In the context of particle-induced turbulence
generation and modulation, the answer to the question of whether the presence of particles
will enhance or attenuate turbulence levels has been to our understanding inconclusive. Thus,
elucidating the physical mechanism behind the wake shedding will contribute to the better
understanding of the particle-induced turbulence modulation. A recent review on the wake
structures and therewith introduced changes in the particle trajectories and drag coefficient
can be found in Ern et al. (2012).

The study of a single settling particle could be seen as a necessary prequisite for the study
of the settling of many particles in order to identify effects such as the presence of multiple
particles and their influence upon the structure of the particle wake, the settling velocity or
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the hydrodynamic force. Additionally, it is of great interest to know if the motion of a single
particle is relevant to the motion of particle suspensions.

In this chapter we report the results of two direct numerical simulations of a single heavy
spherical particle settling under the influence of gravity in an initially ambient flow. The results
of the simulations will serve as a reference data set for the following chapters. The comparison
with simulations of many settling particles will allows us to isolate the different effects of
the force on the particle such as the presence of multiple particles. The results here are not
meant to provide a full qualitative study of the mechanisms involved in the settling of spherical
particles. For such studies we refer the interested reader to the excellent works of Natarajan
and Acrivos (1993); Johnson and Patel (1999); Ghidersa and Dušek (2000); Jenny et al. (2003,
2004); Bouchet et al. (2006); Horowitz and Williamson (2010), which are devoted specifically
to the physics of a single particle.

The chapter is organized as follows, before we present the numerical set-up for the present
simulations in section §3.3, we provide a short overview of the regimes of particle settling and
wakes of a single heavy particle of spherical shape settling under the influence of gravity in
section §3.2. Then we present the results for the two simulations in section §3.4, where the
focus will be mainly on the hydrodynamic force on the particle, the particle settling velocity and
the characteristics of the particle wake. The chapter closes with short summary and conclusions
in section §3.5. Statistical quantities such as particle settling velocity, drag coefficient and
various wake statistics will be compared with the literature, especially with data from Uhlmann
and Dušek (2014).

3.2 Overview of the regimes of particle motion

In spite of the simple configuration of spherical particle settling in an uniform flow, depending
on the particle relative velocity, the wake of the particle can be fully three dimensional and can
contain highly complex vortical structures. As the Reynolds number increases, the flow around
the particles undergoes a series of transitions which affect the motion of the particles. For very
small Reynolds number, the flow exhibits a fore-and-aft symmetry around the particle and
the flow is fully attached. With increasing Reynolds number the flow becomes progressively
more asymmetric and vortex form at the rear stagnation point of the sphere. This is a sign
of the beginning of a separation of the flow in vicinity of the particle surface. The flow
separation is indicated by a change in the sign of the streamwise vorticity and first occurs at the
rear stagnation point. It is widely accepted that the flow separation occurs at approximately
Rep = 20 (Clift et al., 1978). For Reynolds numbers in the region of 20 < Rep < 130 a steady
wake region and a separation ring around the particle are formed. Visualizations evidenced
that the wake in this regime consists of a rectilinear axi-symmetric thread downstream of the
particle. Above some threshold value (Rep & 210), the wake of the particle becomes steady
and oblique, symmetric about a plane inclined at some angle with respect to the vertical axis.
As the Reynolds number further increases (Rep & 270), diffusion and convection of vorticity no
longer keep pace with vorticity generation and a single-sided chain of vortex loops is shed from
the particle wake. Instabilities originated in the free surface layer are convected downstream
causing a periodic oscillation of the particle wake. Studies indicate that this periodic vortex
shedding continuous until Reynolds number of around Rep = 420 − 500 (Tomboulides and
Orszag, 2000). When the particle Reynolds number increases beyond a value of about 600 the
vortices are shed with varying orientation. In a recent study, Bouchet et al. (2006) performed
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detailed study of the demarcation points separating the different wake regimes for a fixed
single particle subjected to uniform flow.

The different wake configurations and the transition of the particle wake for freely moving
particles, was extensively studied in the work of Jenny et al. (2004). The authors compiled
a large number of simulations sweeping the two-dimensional parameter space (Ga, ρp/ρf )
of single particle settling or rising in an otherwise stagnant fluid. Please note that for such
flow configurations the flow is fully characterized by the pair (Ga, ρp/ρf ) (s. section 2.1.3). In
order of increasing Galileo numbers, the authors identified the following wake regimes. For
Galileo numbers below a value of approximately 155 (Rep < 212) the wake of the particles
was observed to be steady and axi-symmetric. When the Galileo number increases above this
threshold, the particle wake loses its axi-symmetry via a regular bifurcation and axi-symmetry
is replaced by planar symmetry. Ghidersa and Dušek (2000) showed that the symmetry plane
is selected randomly by initial perturbations and is conserved until the Galileo number reaches
a second threshold of Ga = 173 (Rep = 275). In the interval of Ga = 156 − 173 the wake
consists of separation bubble followed by two trailing counter-rotating vortices. The value
of Ga = 173 marks a second bifurcation, of Hopf type, at which the wake becomes unsteady,
but still planar symmetric, and the double threaded wake is replaced by the above mentioned
chain of vortex loops. When the Galileo number is further increased, the amplitude of the
oscillations is enhanced and the planar symmetry is replaced by chaotic shedding of hairpin
vortices in random directions, which leads to the loss of periodicity. Here we would like to note
that the above threshold values could vary depending on the particle-to-fluid density ratio.
More precise values can be extract from the map provided by Jenny et al. (2004), which is
reproduced in figure 3.1. More recently Horowitz and Williamson (2010) compiled similar
diagram, but using the particle Reynolds number instead the Galileo number. The diagram is
depicted in figure 3.2.

The particle motion, especially the trajectory of the settling sphere is a result of the mutual
interaction between the particle’s degree of freedom and the fluid in vicinity of the particle,
i.e. the vortex formation in the particle wake. Depending on the particle Reynolds number
or the Galileo number the particle trajectories undergo a series of transitions corresponding
to the above introduced wake configurations. In the case of an axi-symmetric wake behind
the particle, the wake is unable to generate any side force on the sphere and the trajectory of
the particle does not deviate from the vertical path. As the wake changes to a steady oblique
trailing vortex pair, the counter-rotating vortices will produce a constant lift force in direction
lateral to the flow, which will cause the particles to settle on an oblique trajectory. When the
steady oblique wake undergoes into one-sided vortex shedding, the orientation of the particle
trajectory does not change, since the orientation of the vortex structures remains constant. In
the chaotic regime the mean particle trajectory is vertical.

For the particles settling on steady rectilinear paths, the particle wakes tend to be similar to
the wakes of a fixed sphere. Indeed early studies of Magarvey and Bishop (1961) showed that
the wakes of freely moving spheres with rectilinear trajectories are closely resembled by the
wakes of fixed particles. However, when particles are allowed to move freely, the additional
degrees of freedom of the mobile particles affects the breaking of axi-symmetry (Jenny et al.,
2003), primarily in changing the threshold values for the breaking of axi-symmetry.

For more detailed discussion and exhaustive bibliographical review on the topic of particle
regimes of motion and transitions of the particle wake we refer the reader to the works of
Jenny et al. (2004); Horowitz and Williamson (2010) and the references therein.
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Figure 3.1: Diagram of flow regimes in the parameter space spanned by the Galileo number and
particle-to-fluid density ratio (Ga, ρp/ρf ). The diagram is digitalized from Jenny et al. (2004). The
leftmost vertical line is the demarcation line between the the steady axi-symmetric regime on the
left side and the steady oblique regime on the right side of the line. Different symbols corresponds
to simulations classified as: +, steady oblique path; ∗, oscillating oblique path with low frequency;
×,oscillating oblique path with high frequency;, ◦, periodic zigzagging trajectory; � three-dimensional
chaotic trajectory. The present simulations lie on the horizontal line at ρp/ρf = 1.5 and are marked by
the two red crosses (×).

3.3 Numerical set-up

In the present work we consider two of the above described regimes, the steady axi-symmetric
and the steady oblique regime. For each regime the settling of a single heavy spherical particle
under the influence of gravity in an initially stagnant fluid was performed. As aforementioned,
this flow configuration is unambiguously characterized by two non-dimensional parameters,
the fluid-to-particle density ratio (ρp/ρf ) and the Galileo number (Ga as in equation 2.12). In
the present work we consider only a single value for the fluid-to-particle density ratio, which
was chosen as ρp/ρf = 1.5. This value corresponds to particles with slightly higher density than
the fluid (e.g. polyester particles in water). Concerning the Galileo number, two values are
considered corresponding to two of the regimes described above. For the steady axi-symmetric
wake regime, the simulation of settling particle with Ga = 121 was performed, while the steady
oblique regime was represented by a simulation of settling particle with Ga = 178. Henceforth,
we refer to the simulation with Ga = 121 as S121 and with Ga = 178 as S178 (S for single
particle). The physical parameters of the dispersed flow were kept in both cases constant (i.e.
particle size dp and kinematic viscosity of the fluid ν), except for the gravitational acceleration,
which was adapted in order to achieve the desired Galileo numbers.

The parametrization of the problem by the two parameters, Ga and ρp/ρf , is particularly
useful, since the calculation of the Galileo number requires only the properties of the particles
and the fluid. Thus, the regime of settling can be determined a priori. However, another
important dimensionless parameter widely used to characterize the motion of particles is the

40



3.3. Numerical set-up

× ×

Re

m
∗

Figure 3.2: Map of regimes in the parameter space spanned by the mass ratio (defined as the relative
density of the particles compared to the fluid) and the particle Reynolds number (m∗, Re). The diagram
is digitalized from Horowitz and Williamson (2010). The diagram depicts the corresponding motion
of the sphere and the associated wake patterns. The present simulations are marked by the two red
crosses (×).

particle Reynolds number Re∞ = w∞D/ν, where w∞ denotes the terminal relative velocity of
the particles. In doing so, a good approximation of the settling velocity w∞ is required, which
is a product of the simulation and depends on the particle dynamics, e.g. forces acting upon the
particle. An estimation of the particle Reynolds number prior the simulation can be made by
using the terminal settling velocity wclift∞ of a single particle in still fluid based on the balance
between the drag on a fixed sphere (as given by Clift et al. (1978)) and the buoyancy force. The
particle Reynolds number based on wclift∞ and the particle diameter dp corresponding to case
S121 and case S178 are calculated to Reclift∞ = 141 and Reclift∞ = 245 respectively. The two
data points of our simulations represented by the parameter duo (Ga, ρp/ρf ) or (Reclift∞ , ρp/ρf )
are depicted on the flow regime diagrams in figure 3.1 and 3.2.

The computational domain VΩ for both cases S121 and S178 is a rectangular box elongated
in the vertical direction in which also the gravitational acceleration acts. The elongated
computational box takes into account the anisotropic character of the flow, which is dominated
by the wake generated by the particle. The domain extends in the vertical direction to
Lz = 273dp in case S121 and to Lz = 341dp in case S178. In the horizontal direction the
domain boundaries lie Lx,y = 17dp apart from each other in case S121 and Lx,y = 10dp in
case S178. Periodic boundary conditions in all three space directions were applied. The
large extents of the computational domain in the vertical direction are owned to the periodic
boundary conditions and were chosen in order to give the particle enough time to accelerate
to their terminal settling velocity without periodic interference with its own wake. Since such
a periodic system does not attain a steady state in the presence of settling particles, a constant
vertical pressure gradient (i.e. a homogeneous body force) was imposed whose integral over
the domain equals the total submerged weight of the suspended bodies.

As aforementioned the simulations in the present work are performed by means of DNS,
i.e. all flow and particle scales of motion are resolved. In order to ensure that our simulations
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represent the flow field in the vicinity of the particles correctly, special care was taken to find the
proper spacial resolution. In a recent publication of Uhlmann and Dušek (2014), the numerical
method and code used for the current simulations was benchmarked against a spectral/spectral
method (Jenny et al., 2004). Uhlmann and Dušek (2014) simulated very similar configuration
of single particle subjected to uniform flow. In their work the boundary conditions in the
lateral direction were chosen to be periodic as in the present work. However, in the flow
directions in-flow, out-flow b.c. were employed in order to guarantee that the particle wake
is not interfering with the incoming flow filed. They showed that for the simulation with the
immersed boundary method of a particle settling in the axi-symmetric regime, a resolution
of 15 grid points per particle diameter was sufficient. The Galileo number considered in their
work was chosen as Ga = 144, whereas in the present work the Galileo number is calculated to
smaller value of Ga = 121. Thus, for the present simulation in case S121 a resolution of 15
grid points per diameter in all three directions is chosen. To account for the higher relative
velocity and thus thinner boundary layer on the particle surface, the resolution in case S178
was increased to 24 grid points per particle diameter. This resolution was also confirmed in
Uhlmann and Dušek (2014), where the Galileo number chosen to represent the steady oblique
motion of the particles coincides with the Galileo number in case S178, viz. Ga = 178. With
the above dimensions of the computational domain, the computational mesh can be readily
obtained to 2562 × 4096 for case S121 and to 2562 × 8192 for case S178. The particle-fluid
interface of each particle is resolved by 708 Lagrangian marker points in case S121 and 1188
marker points in case S178.

In order to capture the temporal scales of the flow and the particles, the time step of
the simulations was chosen in such a way that the Courant-Friedrich-Lewy (CFL) number
measured CFL ≤ 0.5 during the entire course of the simulations. The particle in each simulation
was placed randomly into the computational domain and the simulations were initialized by

Φs ρp/ρf Ga Reclift∞ Lx × Ly × Lz Np

S121 O(10−5) 1.5 121.24 141 10.6dp × 10.6dp × 273dp 1
S178 O(10−4) 1.5 178.46 245 17.6dp × 17.6dp × 341dp 1

Table 3.1: Physical parameters for particulate flow with a single settling particle in an initially ambient
fluid. Solid volume fraction Φs, density ratio ρp/ρf , Galileo number Ga =

√
|ρp/ρf − 1||g|d3

p/ν,

Reynolds numberReclift∞ = wclift∞ dp/ν based on the terminal velocity of a single particle wclift∞ according
to Clift et al. (1978), the particle diameter dp and the fluid viscosity ν, extensions of the computational
box Lx, Ly, Lz and number of particles Np. The gravitational constant applied against the vertical
direction z is denoted by g.

dp/∆x Nx ×Ny ×Nz Nl Nproc

S121 15 256× 256× 4096 708 32
S178 24 256× 256× 8192 1188 64

Table 3.2: Numerical parameters for particulate flow of single settling particle in an initially ambient
fluid. Particle resolution dp/∆x, where ∆x denotes the grid spacing calculated as ∆x = Lx,y,z/Nx,y,z
with Lx,y,z from table 3.1. Number of grid nodes Ni in the i-th coordinate direction. Number of
Lagrangian marker points used for the discretization of the fluid-particle interface, Nl. Number of
processors used for the present simulations, Nproc.
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Case τν/τg τp/τg

S121 121.2 10.1
S178 178.5 14.9

Table 3.3: Various time-scales as function of the gravitational time-scale τg as defined in section 2.1.3
for case S121 and case S178.

releasing the particles to evolve freely. After short initial transient, the particles in both cases
accelerated to their final terminal settling velocity.

The physical and numerical parameters for the two simulations are summarized in tables 3.1
and 3.2. The simulation S121 (S178) was ran on 32 (64) processor cores at the supercomputing
center at Karlsruhe Institute of Technology (KIT).

3.4 Results

In this section the results from the above described direct numerical simulations will be
presented. The focus of this section is to provide reference data for the following chapters §4 -
§8, where the simulations of multiple particles are performed. Here, the results will focus
on the particle trajectories, settling velocity, hydrodynamic force on the particle and the
characteristics of the particle wake. We present the results in two parts. In the first we consider
the particle dynamics by reporting the orientation of the particle trajectories, velocities and
hydrodynamic forces. In the second, the characteristics of the particle wake is discussed. In
particular, we report the observed wake structure and various statistics characterizing the
particle wake.

3.4.1 Particle motion

Here we report the results related to the particle motion from the two simulations of a single
settling particle with Galileo numbers of Ga = 121 in case S121 and Ga = 178 in case S178, by
keeping all other fluid and particle parameters constant. The particle-to-fluid density ratio for
the present simulations was set to ρp/ρf = 1.5. According to the diagrams of the flow regimes
(cf. figures 3.1, 3.2), the particle in case S121 settles in the steady axi-symmetric regime and
the particle in case S178 settles in the steady oblique regime.

We have verified that the particle motion in case S121 is indeed steady axi-symmetric by
study of the phase-space diagram of the particle position xh,p in the horizontal plane and the
vertical position zp for case S121 for the entire duration of the simulation (plot omitted). The
position of the particle on the horizontal plane is calculated as:

xh,p =
√
x2
p + y2

p, (3.1)

where xp and yp are the horizontal components of the particle position vector xp = (xp, yp, zp).
It was observed that the particle indeed settles on a steady rectilinear path. This confirms the
observation made in the aforementioned bibliography, that single particle with parameter pair
(Ga = 121, ρp/ρf = 1.5) settles on a straight vertical path. Due to the steady rectilinear motion
of the particle, the horizontal particle velocity uh,p and the angular velocity of the particle are
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Figure 3.3: Temporal evolution of the vertical component of the particle relative velocity,
wp,rel = wp − wf in case S121. Time and velocity scales are normalized by the gravitational scales τg
(equation 2.15) and ug (equation 2.11).

identically zero. The velocity uh,p is thereby defined as:

uh,p =
√
u2
p + v2

p, (3.2)

where up and vp are the horizontal components of the particle velocity up = (up, vp, wp). The
vertical velocity, however, is not zero and results from the balance of the particle acceleration
and the forces acting on the particle (cf. equation 2.25). The vertical component of the relative
particle linear velocity is depicted in figure 3.3 as function of time. The linear velocity has
been calculated as the difference between the particle and fluid velocity:

up,rel(t) = up(t)− uf (t). (3.3)

The time and the particle relative velocity have been normalized by the gravitational time
scale τg and the corresponding gravitational velocity scale ug (cf. table 2.1). Here and in the
following the gravitational scales are used for the normalization of all time and velocity plots,
except where it is differently stated. For sake of completeness the various particle time scales
defined in section §2.1.3 are depicted in table 3.3 as function of the gravitational time scale.
As can be seen the particle accelerates in vertical direction for approximately 30τg where the
vertical component of the particle relative velocity reaches its maximum value, which remains
approximately constant for the entire duration of the simulation.

The simulation in case S121 was terminated after approximately 270τg. This time is the
approximate particle return time, which is the time the particle needs to travel the distance
corresponding to the vertical extension of the computational domain Lz. The return time is
defined as the ratio of the vertical extension of the computational domain Lz and the particle
relative velocity wp,rel. This is required in order to prevent the particle wake to interfere with
the fluid velocity seen by the particle. Due to the periodic b.c. in the vertical direction, the
particle will settle through the computational domain periodically and may interact with the
fluctuations in the flow field which were generated by the particle themselves.

As can be seen in figure 3.3 the vertical component of the particle relative velocity does not
experience any significant fluctuations and remains constant for the time period t/τg = [30, 270].
The particle Reynolds number based on the terminal settling velocity in case S121 was calcu-
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lated to Rep = 139.8, which is slightly smaller than the terminal settling velocity estimation of
Clift et al. (1978), viz. Reclift∞ = 141.

Regarding case S178, the particle with the parameter pair (Ga = 178, ρp/ρf = 1.5) is
expected to settle in the steady oblique regime. The oblique motion of the particle is character-
ized by an oblique angle α of the particle velocity to the vertical axis and the axi-symmetry of
the particle trajectory and wake is replaced by planar symmetry, where the plane is inclined at
the oblique angle α. The angle α can be defined as:

α = tan−1
(
uh,p
wp,rel

)
(3.4)

For the present case the angle was calculated to 5.21◦ degree which is in very good agreement
with the results of Uhlmann and Dušek (2014), where they observed an oblique angle of
5.22◦. The oblique motion of the particle implies that the particle motion is not entirely
in the vertical direction and that the particle drifts also in the horizontal direction with a
non-zero horizontal component of the particle velocity. The horizontal (uh,p) and vertical
(wp,rel) components of the particle velocity are depicted in figure 3.4a-b as function of time.
Similar as in case S121, the simulation was terminated at a time point before the return time
of the particle in order to avoid interferences with the wake of the particle. For case S178 we
estimated this time to be 300τg. After it is released to move freely, the particle accelerates for
approximately 30τg gravitational time units, where it reaches its maximum value. During this
time the horizontal particle velocity remains initially zero and begins slowly to increase as
soon as the vertical component of the particle relative velocity reaches the first bifurcation
point (Ga = 155, Rep = 212) at which the loss of axi-symmetry and the oblique motion sets in.
A small instability in the particle motion sets in as soon as both a sufficient vertical velocity
and a sufficiently long wake has developed, which level off at a steady value after a transient
period of approximately 100τg. As reported in Dušek et al. (1994) the instabilities enhance
the viscous effects and this results in decrease of the vertical particle velocity. As can be seen
after reaching its maximum value, the particle vertical velocity decreases slightly. The time
at which wp,rel decreases coincides with the time at which the instabilities in the horizontal
particle velocity sets in. This observations are in line with the observations made in Jenny
et al. (2004, figure 4) for Galileo number Ga = 170. After the initial fluctuations in the particle
velocity decayed, the particle velocity reaches its asymptotic steady value in the time interval
t/τg = [130, 300]. It can be observed that the gravitational velocity ug in case S178 is lower
than the particle terminal settling velocity by as much as 30%. The particle Reynolds number
based on the particle terminal velocity calculates then to a value of Rep = 233.06.

The oblique motion of the particle will cause a rotation of the particle due to the torque
exerted on the particle. The rotation of the particle is expected to be around an axis which
is orthogonal to the plane of the particle motion. Indeed the horizontal angular velocity
is non-zero and its time evolution is depicted in figure 3.4c. The horizontal component of
the particle angular velocity ωh,p was calculated in the same manner as xh,p and uh,p, viz.
ωh,p = (ω2

x + ω2
y)1/2. Similar to the velocity uh,p the particle first begins to rotate as the

oblique motion sets in (t/τg ≈ 30) and experience similar instabilities over the time period
t/τg = [30, 130], which level off at a mean value of 0.027. Slight oscillations of the angular
velocity in this interval are of numerical origin, with amplitude of O(10−4).

The results obtained in this sections for case S178 compares well with the results of
Uhlmann and Dušek (2014). The relative difference to the results of Uhlmann and Dušek
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Figure 3.4: Results for case S178. Time evolution of the (a) particle horizontal velocity, uh,rel =
(u2
p,rel + v2

p,rel)1/2. (b) vertical component of the particle relative velocity, wp,rel. (c) the particle angular
velocity. Here the component orthogonal to the incoming flow is showed, ωh,p = (ω2

x + ω2
y)1/2. For the

normalization of all velocities the gravitational velocity scale ug was used. Time was normalized by the
gravitational time scale τg.

(2014, table 7) was evaluated for the particle velocity components to ∆uh,p = 7.8% for the
horizontal component and to ∆wp,rel = 1.7% for the vertical component. For the angular
velocity, however, the difference was calculated to ∆ωh,p = 30%. The difference ∆φ for some
relevant quantity φ to a reference quantity φref is defined as:

∆φ = |φ− φref |
|φref |

. (3.5)

One reason for the observed deviation from the reference data could be the temporal dis-
cretization, i.e. the size of the time step. For the simulations performed in Uhlmann and Dušek
(2014) a time step corresponding to a CFL number of 0.3 was used, whereas for the present
simulations a CFL number of 0.5 was employed. Uhlmann and Dušek (2014) identified two
reasons for the time dependence of the results. The first is the use of the fractional step method,
which introduces a “slip-error” on the fluid-solid interface of the order of ∆t (∆t being the time
step). The second reason is that in the statically steady state the flow is non-trivially unsteady
in a fixed frame of reference, due to the particle motion relative to the computational grid.

In the steady state where no changes in the particle velocity are present the force on the
particle cancels and the total sum becomes zero. This implies that the drag and the buoyancy
force are in equilibrium. Then we can easily estimate the drag force fz on the particle through
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the following relation:

fz = (ρp − ρf )|g|
d3
pπ

6 . (3.6)

It is common to present the drag force in a form of the drag coefficient, which can be calculated
form the force fz by normalizing it with the reference force fref which is defined as the far-field
dynamic pressure acting on the projected cross-sectional area of the particle, i.e.:

Cd = fz
1
2ρfw

2
∞Ap

, (3.7)

where Ap is the projected cross-sectional area of the particle and w∞ is the terminal settling
velocity of the particle. We calculated the drag coefficient of the particle in case S121 to
Cd = 1.002 and in case S178 to Cd = 0.78. The total deviation from the drag coefficient of a
single fixed particle subjected to uniform flow (Clift et al., 1978) was evaluated in both cases
to be less than 9%. This is most probably to the time step used in the current simulations.

Before we turn to the wakes of the particle, we can conclude in the meantime that the
spatial and temporal resolutions used in case S121 and S178 were sufficient to correctly
reproduce the motion of the particles.

3.4.2 Particle wakes

In this section we report results on the flow field conditioned on the particle position, e.g. the
particle wake. Before we proceed with the results, let us first fix some geometrical definitions
and the appropriate notation. First we define a particle centered coordinate system with fixed
spatial orientation as the Eulerian fixed coordinate system used to describe the flow field, i.e.
x̃ = x− xp. The origin of the coordinate system is attached to the center of the particle and
translates with the particle motion without rotation. Any position vector in this coordinate
system will be denoted by x̃ = (x̃, ỹ, z̃). For the presentation of the results in the present
section, one additional coordinate system is required, x̂ = (x̂, ŷ, ẑ). This coordinate system is
also particle centered, but with the following orientation of the coordinate axes (unit normal
vectors):

êz = −up,rel/‖up,rel‖, (3.8)

êy = ez × uh/‖uh‖, (3.9)

êx = êy × êz, (3.10)

where ez denotes the unit normal vector of the Eulerian z axis. The vector êz is aligned with
the particle relative velocity vector in the opposite direction, êy lies in the horizontal plane and
is perpendicular to the vertical axis ez and the vector pointing in the direction of the horizontal
velocity uh. The vector êx is perpendicular to the vectors êy and êz. A sketch of the used
coordinate systems can be found in figure 3.5. The evaluation of any particle or fluid quantity
φ at some position x̃ or x̂ in the above defined coordinate systems will be denoted as φ̃ or φ̂,
except when it is specifically stated otherwise.

In the steady axi-symmetric regime the two coordinate systems (x̃, ỹ, z̃) and (x̂, ŷ, ẑ) coin-
cide, due to alignment of the particle velocity with the vertical z axis. On the other hand, in the
steady oblique regime the two coordinate systems deviate from each other, due to differences
in the orientation of the particle velocity and the vertical axis.
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ẑ

upx

yz

g

Figure 3.5: Sketch of the coordinate systems used for the evaluation of the flow field conditioned on the
particle position, i.e. particle wakes. The coordinate system (x̃, ỹ, z̃) is attached to the particle center
and has the same orientation as the Eulerian coordinate system used for the representation of the flow
field (x,y, z). The definition of the coordinate system (x̂, ŷ, ẑ) is given by the set of equations 3.8-3.10.

The wake structures reported in the literature corresponding to the two regimes considered
in the present work are identified as a vortex bubble around the particle in case S121 and a
vortex bubble followed by two counter-rotating vortices in case S178. The structure for the
wake in case S121 at steady state is depicted in figure 3.6a-c. The graph in figure 3.6a shows
an iso-surface of the vertical component of the relative velocity w̃p,rel/ug. The vortical structure
of the wake is also depicted in figure 3.6b by means of the λ2 criterion of Jeong and Hussain
(1995). The λ2 criterion consist of plotting an iso-contour of the second largest eigenvalue
of the tensor S2 + Ω2, where S and Ω are the symmetrical and anti-symmetrical parts of
the velocity gradient tensor. It can be seen that the structure and orientation of the particle
wake are in line with the observations in the literature. Contour lines of the velocity w̃p,rel/ug
through the particle’s center are shown in figure 3.6c. The graph reveals the symmetrical
structure of the particle wake around z axis. The region denoted by the red contour line marks
the recirculation region, where w̃p,rel/ug ≤ 0. The maximal extent of the recirculation region
from the particle downstream faced surface defines the so called recirculation length le of the
particle wake. The position on the zero iso-conour definig the recirculation length is marked by
the blue cross. Due to the symmetry of the wake around the vertical axis in case S121 the point
on the recirculation region defining the recirculation length lies on the vertical axes z̃ and ẑ.

The pendant plot for the wake in case S178 is shown in figure 3.7a-c. It can be seen that
the wake is indeed inclined to the vertical axis and that it consist of a vortex bubble followed
by two counter-rotating vortices. This is also confirmed in the contour plot of the velocity
w̃p,rel/ug, one can clearly see the oblique orientation of the wake with its recirculation region.
In contrast to case S121 the maximal extent of the recirculation region is found to be positioned
off-center, i.e. not on the vertical axis z̃. It is interesting to note that its position is not on the
vertical axis ẑ either.
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Figure 3.6: Results for the wake in case S121. (a) Iso-contour of the relative relative velocity w̃p,rel/ug.
The iso-contour value was chosen as w̃p,rel/ug = 1. (b) Iso-contour of the vortical structure around the
particle represented by λ2 criterion. (c) Contour plot of the projected relative velocity w̃p,rel/ug in the
plane parallel to the vertical axis passing trough the particle center xp. Contours are shown for values
(−0.2:0.2:0.8). The red line ( ) marks the extent of the recirculation region, i.e. w̃p,rel/ug = 0. The
blue cross x marks the maximal distance of the recirculation region to the surface of the particle and
blue dashed line ( ) represents the plane of symmetry at which the wake is symmetric. The red
dashed line ( ) marks the vertical coordinate ẑ (the vector aligned with the particle relative velocity
wp,rel). Green dashed line is the axis perpendicular to ẑ. The position of the z-axis is denoted by the
black dashed line ( ). Due to axi-symmetry of the particle wake the lines ( ), ( ) and
( ) coincide.

Figure 3.8 shows profiles of the velocity w̃p ,rel on the axis z̃ passing through the particle’s
center. In both cases, the flow upstream of the particle starts decelerating with approaching the
particle at approximately x̃/dp = −3 and vanishes at the surface of the sphere at x̃/dp = −0.5.
Immediately downstream of the sphere the particle relative velocity becomes negative after
which starts to increase slowly towards the value of the undisturbed upstream relative velocity.
The negative values of w̃p,rel indicate the presence of the recirculating region. Due to the axi-
symmetry of the particle wake in case S121, the recirculation length can be easily estimated by
locating the position at which the particle relative velocity w̃p,rel cancels again. We calculated
the value of the recirculation length in case S121 to le/dp = 1.19 (le/rp = 2.38). For the
calculation of le in case S178, one needs to consider the oblique orientation of the recirculation
region in the particle wake. Thus, the recirculation length for case S178 cannot be directly
evaluated from the profile of w̃p,rel on the z̃ axis. In order to calculate le for case S178, we
employ the following definition. The recirculation length le is calculated as the maximal
distance from any point on the line encapsulating the recirculation region to a surface element
on the downstream faced side of the particle. The line connecting the surface element with
the the point on the recirculation region boundary is aligned with the unit normal vector of
the surface element. The value of the recirculation length for case S178 calculates then to
le/dp = 1.57 (le/rp = 3.14). This value is in line with the reference value reported in Uhlmann
and Dušek (2014) with deviation of ∆le = 1.5%.
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Figure 3.7: Results for case S178. (a) Same as in figure 3.6, but for case S178. The iso-contour value
was chosen as w̃p,rel/ug = 1. (b) Front and side view of the vortical structure in the particle wake.
The oblique orientation and the double threaded structure of the wake are clearly visible. The colors
indicate the orientation of rotation of the vortices as in figure 3.6. (c) Same as in figure 3.6, but for
case S178. The contour values are shown for (−0.2:0.2:0.8). Color coding of the dashed lines as in
figure 3.6.

The recovery of the fluid velocity in the particle wake can be further investigated by
considering the velocity defect ûd0 on the axis ẑ. The velocity ûd0 is defined as the velocity
deficit of the relative velocity wp,rel:

ûd0(0, 0, ẑ) = ŵ∞(0, 0, ẑ)− ŵp,rel(0, 0, ẑ)
ŵ∞(0, 0, ẑ) , (3.11)

where ŵ∞(0, 0, ẑ) is defined as the maximum of the incoming relative velocity on the ẑ axis, viz.
ŵ∞(0, 0, ẑ) = maxẑ ŵp,rel(0, 0, ẑ). The downstream evolution of ûd0 with increasing particle
distance for both cases is depicted in figure 3.10. As expected form its definition, the velocity
defect ûd0 in the particle wake becomes unity at the particle surface, due to the no-slip
boundary condition on the particle surface. The velocity defect is evaluated for distances up to
100dp downstream of the particle. The first feature evident form the graph in figure 3.10 is that
with increasing distance from the particle surface the velocity deficit increases initially (due to
recirculation in the wake of the particle) and reaches its maximum at 0.9dp in case S121 and
at 1.085dp in case S178. Similar observation was made in the work of Wu and Faeth (1993),
where the wake of a mobile sphere in a still surrounding was experimentally investigated.
The authors noticed that the position at which the maximum of ûd0 is observed varied with
the particle Reynolds number with tendency to be closer to the particle surface for increasing
Reynolds numbers. It is well accepted that the velocity deficit in the particle wake may exhibit
regions with different decay rates of the form ûd0 ∼ r̂−az , where a can have different values
depending on the particle Reynolds number and the flow conditions in the particle wake. The
most commonly reported values for a in the literature are a = 1, a = 2/3 and a = 2. Power

50



3.4. Results

−20 0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

r̃z/dp

w̃
p
,r
el
/
u
g

(a)

−40 −20 0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

w̃
p
,r
el
/
u
g

r̃z/dp

(b)

Figure 3.8: Vertical component of the relative velocity on the center line passing trough the particle
center xp and parallel to the vertical axis. (a) Case S121. (b) Case S178. The coordinate system is
particle centered, i.e. origin at xp. Negative values of the x axis represent the upstream velocity in
front of the particle and positive values represent the velocity downstream. The distance from the
particle was normalized by the particle diameter dp. The velocity is made non-dimensional with the
gravitational velocity ug.

law decay with a = 1 is known to be present in laminar wakes (Schlichting, 1979; Wu and
Faeth, 1993; Bagchi and Balachandar, 2004), while a power law with a = 2/3 is characteristic
for turbulent wakes (Tennekes and Lumley, 1972; Batchelor, 1972; Parthasarathy and Faeth,
1990a; Wu and Faeth, 1993; Pope, 2000). Recent investigations of the particle wake subjected
to turbulent environment observed decay rates in the far wake with the power law of a = 2
(Wu and Faeth, 1994; Legendre et al., 2006; Amoura et al., 2010). The corresponding power
laws are depicted in figure 3.10 by the dashed lines. As can be seen the velocity ûd0 in case
S121 exhibits immediately after reaching its maximum value a power law decay characteristic
for turbulent wakes (a = 2/3) which is followed by a decay rate custom to laminar wakes
(a = 1). The change of slope from r̂

−2/3
z to r̂−1

z takes place at downstream location in a
distance of 15dp. The extension of the turbulent power law in the present work is inline with
the observations made in previous studies, e.g. Wu and Faeth (1994); Bagchi and Balachandar
(2004). It should be noted that the local Reynolds number decreases with the downstream
distance in the wake of an axi-symmetric body (Pope, 2000). The velocity deficit in the particle
wake in case S178 experiences similar decay rate in the near-wake zone for 1 < r̂z/dp < 5 as
in case S121, after which the slope changes and the velocity ûd0 decays roughly with the power
law of r̂−2

z .
Let us now turn to the profiles of the velocity w̃p,rel in cross-stream direction taken along

the axis in direction of êy at different distances from the particle surface. The profiles are
depicted in figure 3.11. The radial axis at which the profiles are shown are visualized by the
green dashed lines in figure 3.6c and figure 3.7c. The profiles are shown at four different
distances form the particle surface, i.e. (x · êz)/dp = [0.5, 1.5, 2.5, 3.].

It can be observed that the radial profiles in case S121 (figure 3.11a) are symmetric with
respect to the particle position, resembling the symmetry of the particle wake. With increasing
distance the influence of the particle on the fluid velocity accordingly decreases and is reflected
by flattening of the velocity profile. With increasing radial distance from the particle center, the
effect of the particle diminishes quickly and the value of the undisturbed velocity is reached at
approximately half particle diameter.
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Figure 3.9: Recirculation length le in the wake of the particles for both cases S121 (?) and S178 (?,
�) as function of the Reynolds number based on the terminal settling velocity Re∞. The symbols
marked by the pentagrams (?, ?) represent the length of the recirculation region by considering the
obliqueness of the wake. The red diamond symbol (�) marks the length of the recirculation length in
case S178 evaluated on the vertical axis z̃. The difference between the two definitions is best illustrated
in figure 3.7c. The results are plotted along the data from Uhlmann and Dušek (2014) (?) and the
digitalized data for single fixed particle in uniform flow from Bouchet et al. (2006), (◦) and Bagchi and
Balachandar (2004), (•), ( ).

Considering case S178, the corresponding profiles of w̃p,rel in figure 3.11b reveals that the
symmetry in the velocity with respect to the center of the particle is lost. However, when the
fluid velocity profiles are evaluated in the coordinate system defined by (x̂, ŷ, ẑ), the symmetry
of the streamwise velocity component is restored.

It is well known that the cross-stream profiles of the velocity deficit ûd0 in the wake of an
isolated sphere become self-similar and follow a Gaussian function (Tennekes and Lumley,
1972; Wu and Faeth, 1994; Bagchi and Balachandar, 2004; Legendre et al., 2006; García-
Villalba et al., 2012):

ûd
ûd0

= exp[−(ẑ/hwz)/2], (3.12)

where ûd is the mean velocity deficit in the vertical plane perpendicular to êx and is defined as:

ûd(0, ŷ, ẑ) = ŵ∞(0, ŷ, ẑ)− ŵp,rel(0, ŷ, ẑ)
ŵ∞(0, ŷ, ẑ) , (3.13)

with ŵ∞(0, ŷ, ẑ) being the maximum of ŵp,rel(0, ŷ, ẑ) over x̂. In the above equation hwz denotes
the cross-stream location where the velocity deficit becomes ûd0 exp (−1/2) and is known as
the half-width of the particle wake.

Figure 3.12 shows the cross-stream profiles of the velocity deficit in the particle wake for
both cases. The profiles are taken at the same distance from the particle surface as the velocity
profiles in figure 3.11. It can be observed, that in case S121 the velocity deficit across the wake
seem to be reasonably correlated with each other and with the Gaussian velocity distribution,
whereas in case S178 deviation from the Gaussian function.
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Figure 3.11: Cross-profiles of the vertical component of the relative velocity ŵp,rel at different distances
from the particle surface. Profiles are taken along the axis, which is aligned with the unit normal vector
êx (cf. figure 3.6c and figure 3.7c), except in subfigure (b) where the profile is taken along horizontal
axis eh. (a) Case S121. (b) - (c) Case S178. The black dashed lines ( ) mark the extension of
the particle. The color indicates the distances downstream from the particle: ( ), êz|x̂|/dp = 0.5;
( ), êz|x̂|/dp = 1.5; ( ), êz|x̂|/dp = 2.5; ( ), êz|x̂|/dp = 3.5. The gravitational velocity ug
was used for non-dimensionalizing the velocity profile.
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Figure 3.12: Cross-profiles of the velocity deficit ûd/ûd0 in the particle wake as function of the cross-
stream coordinate r̂z,α. The profiles are taken at 4 different downstream locations ẑ/dp = [1, 3, 5, 7].
The blue dashed ( ) line corresponds to a Gaussian function. The velocities ûd and ûd0 are defined
as in equations 3.11, 3.13. (a) Case S121. (b) Case S178. The distance from the particle was normalized
by the wake half-width hwz.

Ga uh,p/ug wp,rel/ug α◦ Cd le/dp

S121 121.24 0 1.15 0◦ 1.002 1.19
S178 178.46 0.12 1.30 5.21◦ 0.78 1.57

Table 3.4: Various statistical results for the direct numerical simulations of case S121 and S178. The
results are presented for the time period at which the simulations are at steady state, i.e. t/τg = [30, 270]
for case S121 and t/τg = [130, 300] for case S178.

3.5 Conclusion

In this chapter we presented the direct numerical simulations of the sedimentation of single
heavy finite-size particle under the influence of gravity in an initially ambient flow field. Here
we considered the settling of the particles in two regimes. In the first one the particle settles
in the steady axi-symmetric regime with Galileo number of Ga = 121, whereas in the second
the particle settles in the steady oblique regime with Ga = 178. The particle density-to-fluid
ratio in both cases was kept constant to ρp/ρf = 1.5. Special care was taken to determine the
appropriate spatial and temporal resolution of the particle motion in order to capture the small
scale flow structures in vicinity of the particle. For the case with Ga = 121 the resolution of
15 grid points per particle diameter was determined to be sufficient while for Ga = 178 the
resolution of 24 grid points per diameter was used. The present simulations showed that this
numerical method and the chosen resolution are able to capture the characteristic features
of the particle motion and the flow field in vicinity of the particle. The motion of the particle
was represented with sufficient accuracy and was found to be in both cases, as predicted from
previous studies, in equilibrium with the surrounding flow field, i.e. steady. The particle in
case S121 settled on a rectilinear trajectory, whereas the path of the particle in case S178 was
steady rectilinear in an oblique angle to the vertical direction. The double threaded wake is,
however, randomly oriented with respect to the horizontal direction. Further, the structure
of the particle wake was also accurately reproduced. The wake in case S121 was found to
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be axi-symmetric and consists of a toroidal vortex around the particle, while in case S178 a
double threaded wake with counter-rotating vortices was observed. The wake in case S178 was
further found to be symmetric in a two-dimensional plane inclined at an oblique angle, which
resulted from the oblique motion of the particle. The statistical description of the particle wake
and particle motion, such as the wake structure and wake recirculation length as well as the
particle terminal settling velocity, particle rotation and steadiness of the particle motion were
compared with the recent study of Uhlmann and Dušek (2014). The present results appear to
be in a good agreement with the reference data. The results of the simulations in this chapter
are meant to be used as reference for the following chapters §4 - §8 where the settling of
multiple particles is considered. The results for various statistical quantities obtained at steady
state are summarized for convenience in table 3.4.
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Chapter 4

Flow through a stationary array of
randomly distributed spheres

4.1 Introduction

As described in the previous chapter, when the particle Reynolds number becomes finite, a
wake behind the particles is formed, which can perturb the flow field downstream of the
particle and for sufficiently large Reynolds numbers the flow may even become turbulent. The
problem becomes even more complicated, when multiple particles are present in the flow. In
the context of particle-induced turbulence, the wake generated by the particles can contribute
significantly to the turbulence production in the flow. Thus, the characterization of the flow
fluctuations in the particle wake is crucial for the understanding of the turbulence-production
mechanism. As introduced in section §1.2.2, the flow field induced by the suspension of
multiple particles could have statistical properties different from that of classical turbulence
and is often referred to as pseudo-turbulence. For example, in large number of studies (Lance
and Bataille, 1991; Martínez-Mercado et al., 2007, 2010; Risso et al., 2008; Riboux et al., 2013)
the power spectral density of the vertical fluid velocity component was observed to exhibit
regions where it evolves roughly as the power of −3 of the wave number. Despite the recent
effort on the subject, to our knowledge there is still not a conclusive theoretical interpretation
of the existence of the −3 spectral range. A possible reason for this was recently proposed
by Risso et al. (2008). The authors argued that the fluid velocity fluctuations induced by the
particles involve two different contributions. The first contribution is related to the spatial
variation of the velocity and is called spatial fluctuation, since it results from the local particle
distribution. The second contribution corresponds to temporal fluctuations in the velocity
field that results from hydrodynamic instabilities in the flow. According to the authors, in a
laboratory frame, where the particles are allowed to move freely, this two contributions cannot
be easily distinguished and there is a lack of diagnostic tools for the decomposition of the
velocity fluctuations in their spatial and temporal parts. However, the decomposition could be
easily performed for the case of a flow through a random array of fixed particles. In a following
work, Risso (2011) showed that a superposition of independent random bubble disturbances
generates a power spectrum with −3 power law. He identified the spatial distribution of the
bubbles as the main reason for the power law. More recently Riboux et al. (2013) performed
a numerical study of the flow past a random array of stationary bubbles at low solid volume
fractions. The bubbles were modeled by time depending momentum sources fixed in space at



Chapter 4. Flow through a stationary array of randomly distributed spheres

random positions. The flow in vicinity of the bubbles was thereby deliberately under-resolved.
However, they showed that the large structures in the flow and the particle wakes from a
distance of a few particle diameters are correctly reproduced by their approach. They were able
to further separate the fluid velocity fluctuations in their spacial and temporal contributions.
The authors concluded that the wake interactions are mainly responsible for the fluctuations
in the flow field. Furthermore, the spatial fluctuations were identified to result from the
bubble mean wakes and the temporal fluctuations were caused by collective instabilities of
the randomly distributed wakes. The main result however is that the power spectral density
of both the spatial and the temporal fluctuations include regions following the −3 power law,
thus making the identification of the dominant contribution difficult.

The collective fluctuations induced by the suspension can interact with the individual
particle wake leading in most cases to an attenuation of the particle wake when compared to
the wake of a single particle. For small but finite Reynolds numbers, Koch (1993) identified in
a theoretical study that the fluid velocity fluctuations are controlled by a screening mechanism
due to a deficit of particles in the wake of a test particle. This was confirmed in an experimental
study by Cartellier and Riviére (2001) for a uniform bubbly flows. An alternative mechanism
responsible for an attenuation of the particle wake is the so called wake intermingling (White
and Nepf, 2003), where the fluctuations in the wake of a test particle could be attenuated due to
perturbations from the wakes of the neighboring particles. The intermingling mechanism was
observed in an experimental study of Roig and De Tournemine (2007), where they investigated
the interstitial velocity of homogeneous bubbly flows. More recently Risso et al. (2008) showed
that the wakes in dispersed two-phase flows are mainly controlled by multi-body interactions
and that the wake attenuation in a fixed array of spheres is similar to that of bubbles rising in
a homogeneous swarm.

The flow field induced by the particle suspension also exerts a hydrodynamic force on the
individual particles. One of the still not fully understood and unresolved issues considering
such applications is the force exerted by the fluid, on an assembly of particles. In the past,
a significant number of studies were devoted to the characterization of the hydrodynamic
force on the particles. Unfortunately, theoretical relations for the drag force are available
only in the limit of vanishing solid volume fraction and Reynolds numbers, i.e. Stokes regime.
One of the earliest attempts to analytically derive an expression for the drag force in dilute
flow of fixed particles in the Stokes regime was made by Kaneda (1986). He showed that
the drag force scaled as the square of the Reynolds number. The current knowledge of the
hydrodynamic force is mainly based on experimental or numerical data from which empirical
correlations are derived. Some of the widely used expressions based on experimental data for
the drag force are the correlations derived by Ergun (1952) and Richardson and Zaki (1954).
However, these correlations are limited only to dense flows. Recent numerical studies of the
flow past an assembly of particles (Hill et al., 2001b,a; Beetstra et al., 2007; Tenneti et al.,
2011) have led to the establishment of different expressions for the drag force as a function
of the Reynolds number and the solid volume fraction. These studies again, considered only
flows with relatively large solid volume fraction (Φs > 0.1).

Here we extend the study from chapter §3 by considering the flow through a random array
of stationary particles. This configuration is particularly interesting, since it allows the isolation
of the collective effects, arising through the hydrodynamic interaction between the particles,
from the pure effects of particle mobility. The flows considered in this chapter are dilute and
the particles have the same properties as those from the simulations in chapter §3. The main
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objective here is to provide insight in the flow field generated by the relative motion of the
fluid with respect to the stationary particles. In particular a detailed statistical description
of the flow field induced by the particles will be provided. Of special interest is the question
whether the spectral density of the flow field will exhibit the −3 power law. Furthermore, the
spatial and temporal contributions to the fluctuation in the flow field will be discussed. The
hydrodynamic force exerted by the fluid on the particles is also going to be discussed in detail.
Here we provide a detailed description of the local distribution of the force exhibited by the
neighboring particles of a test particle. Finally, the statistical properties of the mean particle
wake are presented and elaborated in detail.

The chapter is organized as follows. In section §4.2 the flow configuration and the physical
parameters of the simulations are presented. Here also the simulation start-up procedure
is discussed as well. The results of the simulations are then presented in section §4.3. The
chapter is closed in section §4.4 with brief conclusion and discussion.

4.2 Computational set-up

The simulations performed in this chapter extend the study in chapter §3 by considering
the flow through a random assembly of fixed particles. For this purpose we performed
two direct numerical simulations corresponding to the two cases from the previous chapter.
Dimensional analysis shows that under this conditions the system is characterized by two
non-dimensional parameters: the solid volume fraction Φs and the Reynolds number based
on the particle diameter Rep = U∞dp/ν, where U∞ is the mean velocity used to drive the
flow. In the present simulations the velocity U∞ was computed as result from the balance of
the particle buoyancy and the submerged weight of a single particle in unbounded flow. The
particle Reynolds number calculated with this velocity in the present two simulations results
to Re∞ = 141 and to Re∞ = 245. The solid volume fraction was set in both simulations to
Φs = 0.5%. For this value of the solid volume fraction the dispersed flow is considered to
be dilute. Hereafter we will refer to the simulation of the fixed particles with the parameter
pair (Φs = 0.005, Re∞ = 141) as F121 and with the triplet (Φs = 0.005, Re∞ = 245) as F178
(F for fixed particles). The physical parameters of the dispersed flow in case F121 and case
F178 were set as in case S121 and S178 respectively (i.e. particle size dp, kinematic viscosity ν
and gravitational acceleration g). That is, the difference between the simulations considered
in this chapter and in chapter §3 is only the solid volume fraction Φs (besides the particles
being at fixed positions in space).

The simulations were performed in triply-periodic computational domains with cuboid
shape elongated in the vertical direction in order to account for the anisotropic length scales of
the particle wakes. The computational domain in case F121 extends in the vertical direction
in terms of the particle diameter to Lz = 341dp and in the both horizontal directions to
Lx,y = 68dp. For case F178 this values are Lz = 171dp and Lx,y = 85dp respectively. The
flow in both cases is driven by the constant mean velocity U∞ mentioned above. Due to the
periodic boundary conditions a homogeneous body force in the vertical component of the fluid
momentum equation was added, similar to the simulations of settling spheres S121 and S178.
This assures that the system in both cases F121 and F178 can attain a steady state (Uhlmann,
2005).

The particles in case F121 and case F178 are resolved with the same number of points per
particle diameter as in case S121 and case S178, i.e. 15 and 24 grid points in case F121 and
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Φs Re∞ Lx × Ly × Lz Np

F121 0.005 141 68dp × 68dp × 341dp 15190
F178 0.005 245 85dp × 85dp × 171dp 11867

Table 4.1: Physical parameters for the flow past an assembly of stationary randomly positioned particles
(case F121 and case F178). Solid volume fraction Φs and Reynolds number Re∞ = U∞dp/ν based on
the imposed mean fluid velocity in the vertical direction, the particle diameter dp and the fluid viscosity
ν, lengths of the computational box Lx, Ly, Lz and number of particles Np.

F178 respectively. With the above dimensions of the computational domain, the computational
mesh can be readily obtained to total of 10242 × 5120 grid points in case F121 and to 20482 ×
4096 grid points in case F178. With the above values of the solid volume fraction, the total
number of particles in both cases can be calculated to Np = 15190 in case F121 and to 11867
in case F178. The computational domain along with the particles is visualized in figure 4.1.

The time step adopted in the present simulations is identical to that adopted in the
simulations S121 and S178. Thus, obtaining in both cases CFL numbers below 0.5. Analogously,
the particle-fluid interface of each particle in case F121 is resolved by 708 and in case F178 by
1188 Lagrangian marker points.

As mentioned above, the particles were placed randomly in the computational domain.
Thereby, special care was taken to assure that there are no particles overlapping each other.
As we will see later in section §6 the initial distribution of the particles indeed resembles
the expected statistics of a random Poisson process. In order to reduce the overall workload
required to cover the initial transient in the flow, we established an efficient start-up procedure.
The simulations are initialized from a succession of coarse simulations. The coarse simulations
are run until statistically steady state is reached. The results from the coarse simulations are
then interpolated on a finer computational grid and the simulations are resumed. This is
repeated until the required resolution is reached. In particular, we have started the simulation
in case F121 with particle resolution of dp/∆x = 7.5. The simulation was run until a statistically
stationary state was reached, covering an interval of 531τg. Then the flow field was linearly
interpolated on a computational grid with the final resolution of dp/∆x = 15. The actual
simulation was then run for another 142τg. In case F178, we have applied the above described
procedure twice, i.e. we started with a coarse simulation with particle resolution of dp/∆x = 6.
At this resolution the simulation was run for 746τg. The final flow field was then linearly
interpolated upon a twice finer grid, i.e. dp/∆x = 12 and the simulation was further run for
283τg. The final flow field was once more refined to the final resolution of dp/∆x = 24. The
simulation was then run for another 54τg. Hereafter we arbitrary set the time at which the
simulations with the required resolution are started to zero, i.e. t/τg = 0.

The physical and numerical parameters for the two simulations F121 and F178 are sum-
marized in tables 4.1 and 4.2. The simulation F121 was conducted on 640 processor cores on
the IBM system at the LRZ München supercomputing center, requiring approximately 3 · 105

CPU core hours, whereas the simulation F178 was performed on 8192 processor cores of the
Blue Gene/p system at JSC Jülich consuming approximately 2 · 106 CPU core hours.

60



4.3. Results

4.3 Results

In this section the results from the two direct numerical simulations F121 and F178 will be
presented. The aim of this section is to provide an insight into the flow field generated by
the presence of the particles and into the hydrodynamic forces exerted on the particles by the
flow. The results are presented in three parts. In the first, the statistical description of the fluid
velocity fluctuations will be provided and analyzed. In particular, the splitting of the velocity
fluctuations in their spatial and temporal contributions will be preformed. Spectral analysis
of the flow field will be performed as well, by calculating the spectral density function of the
flow field and the corresponding two-point correlations. In the second part, the average force
exerted by the flow field on the particles is presented. The focus here will be on the local
distribution of the hydrodynamic force. In the third part, the particle conditioned flow field, i.e.
the mean particle wake will be characterized. Here various statistics inherent to the average
particle wake will be elaborated in detail.

4.3.1 Flow field induced by the particles

Figure 4.2 shows the time evolution of the intensities of the fluid velocity fluctuations for
both cases, F121 and F178. For the calculation of the fluctuations only computational nodes
occupied exclusively by the fluid were considered. Please refer to appendix A for the definition
of the averaging operators. The fluctuations in figure 4.2 are normalized by the settling velocity
obtained for the settling of the single particle in cases S121 and S178. Overall the fluctuations
in both cases appear to be small, when compared to the reference velocity. In both cases a
short initial transient is visible after which the fluctuations converges towards their asymptotic
value. It can be observed that in both cases the velocity fluctuations are highly anisotropic with
the vertical component being highly dominant. Thereby, the fluctuations in case F121 exhibit
larger anisotropy level (ratio of the streamwise to cross-stream fluctuation components) than
in case F178. In absolute values the anisotropy level in case F121 and F178 were calculated
to be approximately 5.7 and 4.1 respectively. This appears to be in line with the observations
made in Risso et al. (2008), where a significant anisotropy was also observed. Although they
did not provide an exact number, we estimated the anisotropy level in their study to be roughly
3.5 for Reynolds number of 235. This high level of anisotropy in the flow suggest strong effects
of the particle wakes, where the mean particle wake contributes to the fluctuating velocity field.
This would confirm the results of Riboux et al. (2013), where they stated that the fluctuations
in the flow field are mainly caused by large-scale wake interactions. It is interesting to note
that the fluctuations of the horizontal velocity component in case F178 are slightly larger than

dp/∆x Nx ×Ny ×Nz Nl Nproc

F121 15 1024× 1024× 5120 708 640
F178 24 2048× 2048× 4096 1188 8192

Table 4.2: Numerical parameters for flow past an assembly of stationary randomly positioned par-
ticles (case F121 and case F178). Particle resolution dp/∆x, where ∆x denotes the grid spacing.
Number of grid nodes Ni in the i-th coordinate direction. Number of Lagrangian marker points used
for the discretization of the fluid-particle interface, Nl. Number of processors used for the present
simulations, Nproc.
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Figure 4.1: Dimensions of the computational domain with the initial particle distribution for
(a) case F121 and (b) case F178. dp denotes the particle diameter. Periodic boundary conditions
are applied in all three directions in both cases.

those in case F121. Most probably the larger fluctuations in case F178 stem from the oblique
character of the individual particle wake, as shown in chapter §3. On the other hand, the
fluctuations of the vertical velocity component show the opposite behavior, i.e. the fluctuations
in case F121 are larger than in case F178.

Figure 4.3 depicts the normalized probability distribution function (p.d.f.) of the horizontal
and vertical components of the fluid velocity fluctuations. As can be seen both components do
not resemble a Gaussian distribution. As expected the fluctuations of the horizontal component
in both cases are symmetric about their mean value. However, the p.d.f. evidences that the
fluctuations exhibit strong intermittency. It is interesting to note that the fluctuations of the
horizontal velocity component in case F121 are more intermittent than in case F178. This
is confirmed by evaluating the fourth moment of the distribution, which is known as the
kurtosis (flatness). We measured the kurtosis in case F121 to K(u) = 27.05 and in case F178
to K(u) = 14.95. Regarding the vertical component, the velocity fluctuations in both cases are
not symmetric with large downward fluctuations being more probable than upward ones. This
is manifested in the significant bump observed in the p.d.f. around the negative value of six
standard deviations. As a result, the p.d.f. becomes negatively skewed and indeed the skewness
(i.e. the third moment of the distribution function) in both cases showed to be negative with
very similar values, S(w) = −2.40 and S(w) = −2.60 in case F121 and case F178 respectively.
This is a characteristic feature of wake flows where fluid is entrained in the wakes of the
particles. Considering the intermittency of the vertical velocity fluctuations, it appears that the
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Figure 4.2: Intensity of the fluid velocity fluctuations for case F121 ( , ) and for case F178
( , ) as functions of time. Solid lines correspond to horizontal velocity component, dashed
lines show the vertical component. The quantities are normalized with the terminal settling velocity ws
of the corresponding single-particle cases (S121 and S178, respectively).

fluctuations in case F178 are slightly more intermittent than in case F121. We calculated the
kurtosis in case F121 to K(w) = 12.66 and in case F178 to K(w) = 14.07.

These results are in line with the observations made in Risso and Ellingsen (2002); Riboux
et al. (2010). In both studies the agitation in the fluid by the rise of bubbles was investigated.
Nevertheless, the authors observed local increase of the probability density function of the
fluid velocity at large velocity fluctuations. Risso and Ellingsen (2002) noted that this increase
of the p.d.f. is strongly affected by events in the vicinity of the particles and that the velocity
fluctuations are controlled by non-linear interactions between the wakes of all bubbles. Similar
shape of the probability density function was observed in the study of Riboux et al. (2013),
where they studied the flow field fluctuations induced by an assembly of stationary bubbles.

As introduced in section §4.1, the velocity fluctuations in the flow field induced by the
particles could be decomposed in their spatial and temporal fluctuations (Risso et al., 2008). In
order to investigate the relative influence of the two contributions for the present simulations,
we decomposed the flow field fluctuations in their spatial and temporal parts. To this end,
we first define the following decompositions of the flow field with respect to three different
averaging operators:

uf (x, t) = 〈uf 〉Ωf (t) + u′f (x, t) (4.1)

uf (x, t) = 〈uf 〉t(x) + u′′f (x, t) (4.2)

uf (x, t) = 〈uf 〉Ωf ,t + u′′′f (x, t). (4.3)

The above three equations define implicitly the fluctuations of the fluid velocity field with
respect to (i) the instantaneous space phase averaging of the flow field u′f (x, t), (ii) the
three dimensional time averaging flow field u′′f (x, t) and (iii) the space and time averaging
of the fluid velocity u′′′f (x, t). A detailed definitions of the averaging operators 〈·〉Ωf , 〈·〉t
and 〈·〉Ωf ,t in equations 4.1 - 4.3 can be found in appendix A. Based on these equations, the
instantaneous fluctuating velocity field with respect to the space and time average can be
expressed alternatively as follow:

u′′′f (x, t) = 〈u′f 〉t(x) + u′′f (x, t). (4.4)

63



Chapter 4. Flow through a stationary array of randomly distributed spheres

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

u′f/σ, w′f/σ

σ
·p
.d
.f
.

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

u′f/σ, w′f/σ

σ
·p
.d
.f
.

(b)

Figure 4.3: Probability density function of the flow velocity field for (a) case F121 and (b) case F178.
Horizontal component ( ), vertical component ( ). The blue dashed line ( ) corresponds
to a Gaussian distribution.

For detailed derivation of equation 4.4 the reader is referred to appendix B. In view of the
work of Risso et al. (2008); Riboux et al. (2013) the expression of 〈u′f 〉t(x) will be referred
hereafter to as spatial fluctuations and the expression u′′f (x, t) to as temporal fluctuations. As
noted by Risso et al. (2008), the spatial fluctuations originate from the local inhomogeneity of
the velocity field, which is a result of the particle spatial distribution. The temporal fluctuations
on the other hand are generated by the collective instability of the flow around the randomly
distributed particles, since the flow induced by a single particle at this Galileo number would
be steady. Pleas note that while the spatial fluctuations are only a function of the position x,
the temporal fluctuations depend on both the position x and the time t.

The variance of the fluctuations with respect to the space and time average can be now
expressed as the additive contributions of the variance of the spatial and the temporal fluctua-
tions, viz.:

〈u′′′f u′′′f 〉Ωf ,t = 〈〈u′f 〉t〈u′f 〉t〉Ωf ,t + 〈u′′fu′′f 〉Ωf ,t (4.5)

A detailed derivation of the relation 4.5 can be found in appendix B. As noted by Risso et al.
(2008) the spatial contribution 〈〈u′f 〉t〈u′f 〉t〉Ωf ,t is related to the spatial variations of the time
averaged velocity field and is not related to turbulence. On the other hand, the contribution
〈u′′fu′′f 〉Ωf ,t is related to the temporal fluctuations of the flow field and measures the turbulence
intensity in the flow.

The decomposition in equation 4.4 is depicted in figure 4.4 in a two dimensional plane at
some instant in each of our two simulations. The exemplary data shown is illustrative of the
entire data set. It can be seen that in both cases F121 and F178 the dominant contribution
to the fluctuating vertical fluid velocity u′′′f stems from the spatial fluctuations 〈u′f 〉t. The
fluctuations with respect to the time averaged field, u′′f , on the other hand, are much less
significant in the present range of Reynolds numbers and at the chosen solid volume fraction.
Compering the two flow cases, it is observed that the temporal fluctuations u′′f are significantly
larger in case F178 than in case F121, which is consistent with the expectations (increase
in Reynolds number). Moreover, the spatial fluctuations 〈u′f 〉t in both cases resemble closely
the particle wakes in the total fluctuations u′′′f . On the other hand, the temporal fluctuations
u′′f and the particle wakes are only weakly correlated with each other and they seem to be
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Figure 4.4: Fluid velocity fluctuations of the vertical velocity component normalized by the undisturbed
incoming velocity U∞ for (a,b,c) case F121 and for (d,e,f) case F178. Total instantaneous fluctuations
u′′′f (x, t), (a,d). Spatial fluctuations 〈u′f 〉t(x), (b,e). Temporal fluctuations u′′f (x, t), (c,f). The fluctua-
tions are shown in a two dimensional vertical plane. Note the difference in the color range between
(a,b,d,e) and (c,f).

homogeneously distributed over the particle assembly, while the spatial fluctuations show
highly inhomogeneous distribution. It is important to note that, opposite to the temporal
fluctuations, the spatial fluctuations are not statistically symmetric. Regarding the horizontal
velocity component (figure omitted), the mean particle wake has only a minor contribution to
the velocity fluctuations. Thus, the total fluctuations are represented almost entirely by their
temporal part. As a result the spatial fluctuations are negligible. The temporal contribution,
however, originates from the instabilities in the particle wakes caused by the presence of the
particle assembly.

To estimate more quantitatively the contributions of the spatial and temporal fluctuations,
we have computed the p.d.f. of the different contributions, which are depicted for the vertical
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Figure 4.5: Probability density function of the fluid velocity field for (a,b,c) case F121 and (d,e,f) case
F178. The p.d.f. is normalized by the standard deviation of the velocity. Total instantaneous fluctu-
ations u′′′f (x, t) (a,d). Time average of the spatial fluctuations 〈u′f 〉t(x) (b,e). Temporal fluctuations
u′′f (x, t) (c,f). Horizontal velocity component ( ). Vertical velocity component ( ). Gaussian
distribution ( ).

velocity component in figure 4.5. It can be observed, that in both cases the p.d.f. of the spatial
fluctuations resembles very closely the p.d.f. of the total fluctuations (cf. figure 4.3) for both the
vertical and the horizontal velocity components. This is best observed in the third and fourth
moments of the p.d.f.. We have calculated the skewness and the kurtosis of the distributions,
which can be found in table 4.3 for case F121 and in table 4.4 for case F178. Regarding the
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temporal fluctuations, figure 4.5 reveals that in both cases the distribution of the horizontal
and the vertical velocity components is very similar. It is interesting to note that the distribution
of the vertical component is as symmetric as of the horizontal component. This implies that the
asymmetry in the total fluctuations of the vertical component is inherited from the distribution
of the spatial fluctuations.

Overall, the results confirm the observations made recently by Riboux et al. (2013), that
the mean wake of the particles is mainly responsible for the fluid velocity fluctuations.

S(u) S(w) K(u) K(w)
u′′′f (x, t) 0.006 −2.23 25.86 10.72
〈u′f 〉t(x) 0.002 −2.24 26.06 10.77
u′′f (x, t) −0.047 0.030 4.64 6.35

Table 4.3: Skewness and kurtosis for case F121 of the probability distribution functions shown in
figure 4.5 (a,b,c). S(u) and K(u) correspond to the p.d.f. of the horizontal velocity components and
S(w) and K(w) to the vertical velocity component.

S(x) S(z) K(x) K(z)
u′′′f (x, t) 0.07 −2.70 14.64 13.99
〈u′f 〉t(x) 0.076 −2.90 17.79 15.36
u′′f (x, t) −0.002 −0.18 5.95 6.00

Table 4.4: Same as in table 4.3 but for case F178. The corresponding p.d.f.s can be found in figure 4.5
(d,e,f).

4.3.2 Energy spectrum and two-point correlations of the flow field

Figure 4.6 depicts the one-dimensional energy spectrum of the flow field for case F121 and
F178. In the present work the one-dimensional energy spectrum is computed as:

Eij(κ, t) =
∑
κ

〈û∗f,i(κ)ûf,j(κ)〉, (4.6)

where κ is the wave number vector, ûf (κ) denotes the Fourier transform of the flow velocity
uf and û∗f (κ) the complex conjugate of û(κ). Due to the presence of the dispersed phase
in the flow, the volume occupied by the fluid Ωf may be not continuous and encloses the
volume which is occupied exclusively by the particles. Thus, difficulties may arise by the
computation of the Fourier transform of the fluid velocity uf , since the velocity signal would
exhibit discontinuities at the particle positions. In order to avoid this the velocity signal at the
position of the particles is approximated by means of a tri-linear interpolation. This procedure
leads to smoothing of the well known “step-noise” at wave numbers (wavelengths) around the
particle scale (Parthasarathy and Faeth, 1990a; Lucci et al., 2010), e.g. κxdp ∼ 2π (λx/dp ∼ 1).
In order to better compare the energy contents between the different cases, the spectra are
normalized by their respective maximum value. For more detailed discussion on the calculation
of Eij and the interpolation procedure the reader is referred to appendix C.
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Figure 4.6: One dimensional energy spectrum Eαα (α = 1, 2, 3) of the flow field for case F121 (a,c)
and case F178 (b,d). Horizontal direction (a,b) and in vertical direction (c,d). Lines show velocity
components in horizontal directions (u: , v: ), and in vertical direction (w: ). Note that
the graphs in (c) and (d) show only the two statistically independent components. Vertical dashed line
( ) represents the wave number corresponding to the particle diameter dp. Magenta lines ( )
represents the slope corresponding to κ−3

α .

As introduced in section §4.1 the energy spectrum in dispersed bubble flows was observed
to experience a decay power law as the power of −3 of the wave number κ. The main question
here is whether the energy spectrum of the flow field experience power low decay for the
present flow configurations.

First let us consider the spectrum in the horizontal x-direction. Please note that in the
y-direction the spectrum can be easily obtained by replacing the u velocity component with the
v-component. As can be seen, the slope of the energy spectrum of the u velocity component
exhibits in both cases a κ−3

x sub-range, κx being the wave number in the horizontal direction.
We would like to stress that this scaling behavior is maintained in a wide range of the wave
number, ranging from approximately κxdp = 3.5 to κxdp = 40. The decay rate of the energy
spectra of the remaining two velocity components also seems to be approximated by a constant
decay law. We measured the decay rate to be approximately −3.5, indicating faster decay than
the u-component. The influence of the particle interface on the spectra can be clearly depicted
in the spectrum by the presence of the above mentioned “step noise”, which is observed
for wave numbers larger than the wave number corresponding to the particle diameter. In
the vertical direction, similar decay rate of the spectra for both the horizontal and vertical
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Figure 4.7: Two-point auto-correlation function of the fluid velocity fluctuations in case F121 for
separations in x-direction (a) and z-direction (c) with corresponding pre-multiplied spectra in (b) and
(d). Lines show velocity components in horizontal directions (u: , v: ), and in vertical
direction (w: ). rx and rz denote the separation in the horizontal and vertical direction. λx and
λy denote the wave length. All spectra are normalized to a maximum value of unity.

velocity components can be observed. Please note that corresponding plots show only the two
statistically independent velocity components. However, a difference between the two cases
can be observed, with the power law being more distinctive in case F178 than in case F121.
In case F178 the −3 sub-range in the spectrum for both velocity components is maintained
for nearly two decades of the wave number, i.e. κzdp ∈ [3, 80]. The energy spectra in both,
the horizontal and the vertical direction clearly show a reverse cascade process, since energy
is present at scales more than two orders of magnitude larger than the particle scale, where
energy input takes place.

In order to better characterize the flow field induced by the particles, we have calculated the
two-point correlation function of the flow field and the corresponding pre-multiplied spectrum.
Figures 4.7 and 4.8 show the two-point correlation function of the fluid velocity fluctuations
for both cases F121 and F178. It can be seen from the figures that in the horizontal directions
all velocity components decorrelate for separations larger than ten particle diameters, which is
smaller than the length of the computational domain in the horizontal direction. Concerning
the correlation function in the vertical direction, the figure shows that the vertical velocity
component is not fully decorrelated at separations of half the box vertical length. At the largest
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Figure 4.8: Two-point auto-correlation function of fluid velocity fluctuations in case F178 for separations
in x-direction (a) and z-direction (c) with corresponding pre-multiplied spectra in (b) and (d). Lines
show velocity components in horizontal directions (u: , v: ), and in vertical direction (w:

). All spectra are normalized to a maximum value of unity.

separation rz the correlation coefficient measures 0.07 in case F121 and 0.14 in case F178
(please note that in terms of the particle diameter, the computational domain in case F121 is
two times larger than in case F178). A possible reason for the long distance correlation of the
flow field is the strong anisotropy of the particle wakes.

The corresponding pre-multiplied spectra show that the smallest scales of the flow in both
cases are well resolved. For wave numbers larger than the particle scale distinct maxima can
be observed. Concerning the horizontal direction, the maximum in the pre-multiplied spectra
for both cases is located at around λx/dp = 3, where λx is the wave length in the horizontal
direction. This value is most probably related to the average lateral extension of the particle
wakes. After reaching its maximum the spectrum diminishes rapidly for all three velocity
components. Although the velocity fluctuations completely decorrelate, the energy spectrum
in the horizontal direction does not drop entirely to zero, indicating the presence of very large
flow structures in the flow. Similar trend can be observed for the spectrum in the vertical
direction. The spectrum of the horizontal velocity component experience a global maximum
at slightly larger wave-lengths than in the horizontal direction, i.e. λz/dp = 4. After reaching
its maximum value the spectra drops in both cases quickly to a value of approximately 0.03.
Regarding the vertical velocity component the spectra in both cases shows somehow different
behavior. While in both cases the spectra exhibits a global maximum, the maximum in case
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Figure 4.9: (a) Time evolution of the vertical component of the mean hydrodynamic force 〈fz〉p for
case F121 ( ) and case F178 ( ). The force is normalized by the reference force fref as in
equation 3.7. (b) Variance of the horizontal and the vertical components of the particle hydrodynamic
force as function of time (α = x, z). Color coding as in (a). Solid lines correspond to the horizontal
component and dashed lines to the vertical component.

F121 is observed over a wider range of wave lengths (λz/dp = [10, 200]), than in case F178
(λz/dp = [7, 30]). In case F121 the spectrum diminishes to 0.77, while in case F178 a value
of 0.51 was observed. It is interesting to note that the wave number at which the spectra in
figure 4.6 begins to decay as −3 power law corresponds roughly with the occurrence of the
maximum value of the pre-multiplied spectra in figure 4.7 and 4.8.

4.3.3 Particle hydrodynamic force

Figure 4.9a shows the mean of the hydrodynamic force (vertical component) for both cases
F121 and F178. The force has been normalized with the reference force from equation 3.7.
Thus, the values in figure 4.9a can be interpreted as a mean drag coefficient of the dispersed
phase. As can be seen the average hydrodynamic force in both cases does not experience
significant fluctuations over the simulated time period. The average drag coefficient in case
F121 is evaluated to 1.02 and in case F178 to 0.80. The difference between the value of
the drag coefficient for the single settling particle from the simulation S121 (S178) and the
mean value in case F121 (F178) is then calculated to 1.7% (2.5%). The relatively small
difference between the drag coefficient for the single particle and the assembly of particles for
the present configurations evidences that the hydrodynamic interactions between the particles
are relatively small. As result the average force acting on the particles resembles very closely
the force of the single particle.

Based on numerical simulations, recently Tenneti et al. (2011) proposed a correlation
for the mean drag force exerted by the fluid on the particles. They considered a uniform
flow past an assembly of stationary particles with particle Reynolds number in the range of
Rep ∈ [0.01, 300]. However, they considered relatively large solid volume fractions (Φs > 0.1).
By applying their correlation to the present parameter values for Re and Φs, the average drag
coefficient was estimated to 0.95 and 0.776 for case F121 and case F178. When compared with
the present data, the correlation for the drag force under-predicts the values by approximately
6.8% in case F121 and by 3.6% in case F178.
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The intensities of the fluctuations of the force components with respect to the instantaneous
mean force are shown in figure 4.9b. The intensity of the particle force are represented by its
root mean square, which is calculates as:

〈f ′if ′i〉p(t) = 〈(fi(t)− 〈fi(t)〉p)2〉p, i = 1, 2, 3. (4.7)

The horizontal component of the hydrodynamic force variance in both cases is small,
approximately 5% of the reference force. On the other hand, the fluctuations of the vertical
force component experience different intensities, where fluctuations in case F121 are almost
30% larger than in case F178. Corresponding to the anisotropy of the flow field, the fluctuations
of the hydrodynamic force experience similar anisotropy levels. The hydrodynamic force in case
F178 appears to be more evenly distributed among the horizontal and the vertical components
with anisotropy level of 2.77, whereas in case F121 the anisotropy level was evaluated to 3.6.

The statistics of the average hydrodynamic force in figure 4.9 are integral quantities
describing the force exerted on average by the fluid on the particles, providing a kind of
macroscopic perspective on the hydrodynamic force. In order to gain more insight into the
effects of the hydrodynamic interaction between the particles on the force exerted on an
individual particle in the particle assembly, we have performed particle-conditioned averaging
of the hydrodynamic force. This allows us to provide a local (microscopic) view of the particle
forces. First we define a discrete solid phase indicator function, which is unity for computational
nodes occupied exclusively by the dispersed phase and zero otherwise. The indicator function
is then applied to the computational domain and multiplied by the hydrodynamic force of
the particle located at the respective spatial position. The averaging domain is then shifted
to the location of each particle, taking into account the periodicity of the domain, and the
values in the domain are added up. This procedure was repeated for 3 · 106 and 106 particle
snapshots in case F121 and case F178 respectively. The so calculated two dimensional field
was then divided by the number of samples at each discrete node, yielding an average force
field. Here and in the following we will refer to this quantity as the particle conditioned
hydrodynamic force and will be denoted as 〈f̃(x̃, z̃)〉p,t. Henceforth we will use the notation
from section 3.4.2 for the coordinates (x̃, z̃) to indicate that the coordinates are defined relative
to the position of the test particle. Any quantity ψ(x̃) evaluated at position (x̃) relative to the
particle center will be denoted as ψ̃(x̃). Detailed definition of the averaging procedure can be
found in appendix A.

A map of the vertical component of the average force 〈f̃(x̃, z̃)〉p,t is shown in figure 4.10.
Note that the quantity 〈f̃(x̃, z̃)〉p,t is not invariant with respect to the vertical direction z̃.
As a consequence, the map of the particle-conditioned hydrodynamic force does not posses
symmetry with respect to the horizontal axis x̃. The map in figure 4.10 shows that indeed
in both cases the average force upstream and downstream of the reference particle differ.
Downstream of the particle one can observe that the vertical component of the hydrodynamic
force is on average smaller than the mean over all particles. At immediate proximity behind
the reference particle the hydrodynamic force is on average reduced by as much as 60%, when
compared to the mean force 〈fz〉p. On the other hand upstream of the reference particle, the
hydrodynamic force experience values similar to that of 〈fz〉p. In both cases the domain of
influence of the test particle is confined in a narrow region of the order of the particle diameter
elongated in the vertical direction. As can be seen the particle influence on the force is visible
for distances up to 80 particle diameters downstream of the particle.

In order to provide more qualitative insight into the spatial variation of the particle-
conditioned drag force, we consider the horizontal and vertical profiles of the force through
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Figure 4.10: Map of the particle-conditioned average value of the vertical hydrodynamic force compo-
nent 〈f̃z〉p,t for (a) case F121 and (b) case F178. The force 〈f̃z〉p,t is plotted as function of the position
(r̃x, z̃) relative to the reference particle (vertical plane passing through the center of the reference
particle).

the center of the reference particle which are shown in figure 4.11. In the horizontal direction
the profile in both cases increase close to the reference particle after which it decreases and
fluctuates around the mean force 〈fz〉p,t, indicating that the presence of the test particle has
only minor effect on the hydrodynamic force of the particles located in the horizontal direction
from the reference particle. The maximum in both cases was observed at approximately the
same distance of 1.3 particle diameter from the surface of the test particle. The increase of the
drag coefficient in the horizontal direction close to the reference particle was also observed in
a numerical study of Kim et al. (1993), where the interaction between two stationary spheres
placed side by side in a uniform flow was investigated for particle Reynolds numbers similar to
the Reynolds number in case F121. The authors observed that the drag coefficient increases
for distances below 4 particle diameters and tends to the drag coefficient of a single particle
for distances larger than 21dp. They also observed that the maximum of the drag coefficient is
located in immediate distance to the reference particle at approximately 1.8dp. On the other
hand, in the vertical direction, as expected, the force immediately behind the test particle
experience its minimum value after which it increases slowly and reaches unity at a vertical
distance of approximately z̃ = 75dp. It is interesting to note that in both cases the rate at which
the force increases towards unity is approximately the same, which indicates that in both cases
the wake region behind the particle has on average similar properties, despite the differences
in the wakes of the single particle from case S121 and case S178 (the average wake of the
particles for case F121 and case F178 will be discussed in section 4.3.4).

For the purpose of relating the hydrodynamic force of the reference particle with the force
exerted on the neighboring particles, the residual force f̃ij between the test particle i and any
neighboring particle j was evaluated. The resultant force is evaluated as the difference of the
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Figure 4.11: Variation of the particle conditioned average value of f̃z from figure 4.10 along the two
axis passing through the center of the reference particle, i.e. (x̃, z̃) = (0, 0). (a) in the horizontal
direction (x̃, z̃) = (r̃x, 0). (b) in the vertical direction (x̃, z̃) = (0, z̃). r̃x denotes the radial distance from
the particle surface in the horizontal direction. Case F121 ( ). Case F178 ( ).

hydrodynamic force of the two particles projected on the line connecting the particles:

f̃ij = (f̃ i − f̃ j) · ẽij , (4.8)

where ẽij is the unit normal vector of the particle pointing from particle i in direction of
particle j. With this definition, negative values imply that the resultant force points in the
direction of the reference particle and that, if released to move freely, the particle pair would
initially accelerate towards each other. On the other hand, positive values would result in the
opposite behavior. Here we would like to stress that this behavior can be expected only in the
immediate time after the particles are released , i.e. t→ 0.

Figure 4.12 depicts the particle-conditioned average force 〈f̃ij〉p,t in case F121. The
averaging is performed in the same way as described above. Please note that in contrast to
〈f̃z〉p,t, the average of the quantity f̃ij is symmetric with respect to the horizontal axis x̃. The
average force 〈f̃ij〉p,t has been normalized by the absolute value of the hydrodynamic force
obtained in case S121 and case S178. It can be observed that the force 〈f̃ij〉p,t downstream
of the reference particle exhibits negative values, whereas on the horizontal axis crossing the
reference particle positive values are observed. The affected region behind the test particle
extends approximately up to 40dp. From the close up view in figure 4.12b it is evident that the
area with positive values of the force 〈f̃ij〉p,t is localized horizontally to the reference particle
and due to the symmetry of the flow in the horizontal direction is symmetric with respect to
the vertical axis z̃. This region is as well substantially smaller than the region with negative
values behind the particle, extending up to roughly 1.7dp on each side of the test particle, after
which it assumes values close to |〈f〉p,t|.

Figure 4.13 shows the corresponding plot for case F178. Overall, similar observations
can be made as in case F121. However, the region with negative values of 〈f̃ij〉p,t appear to
be slightly shorter than in case F121. This can be best observed in figure 4.14b where the
profile of the force in vertical direction is depicted. The graph reveals that the force in case
F121 increases faster to zero than in case F178. In the horizontal direction, the force steeply
increases in the vicinity of the test particle reaching positive value of 0.21|fref | (0.23|fref |) in
case F121 (F178) at x̃ = 1.3dp after which it quickly declines towards zero. In both cases the
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Figure 4.12: Spatial map of the particle-conditioned average value of the resultant hydrodynamic force
f̃ij as function of the position (x̃, z̃) relative to the reference particle (vertical plane passing through the
center of the reference particle) for case F121. The force f̃ij is defined in equation 4.8. The graph in
subfigure (b) shows close up view to the reference particle.
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Figure 4.13: Same as in figure 4.12 but for case F178.

region with positive values of the force 〈f̃ij〉p,t extends up to 4 particle diameters. Very similar
results were obtained in Kim et al. (1993). The authors observed that the flow between the
particle pair accelerates differently than the flow on the opposite side of the particles leading
to a negative pressure gradient which would contribute to a lift force between the two spheres.
The lift force would tend to repel the particles from each other. The authors reported the
length of the “repulsion” region to be approximately 3.4 particle diameter.
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Figure 4.14: Variation of the particle conditioned average values of 〈f̃ij〉p,t from figures 4.12 - 4.13
along the two axis passing through the center of the reference particle, i.e. (x̃, z̃) = (0, 0). (a) in the
horizontal direction (x̃, z̃) = (r̃x, 0). (b) in the vertical direction (x̃, z̃) = (0, z̃). r̃x denotes the distance
from the particle surface. Case F121 ( ). Case F178 ( ).

4.3.4 Particle wakes

In the following we will present an analysis of the local fluid velocity field in the vicinity of
the particles. To this end, the flow field in vicinity of the particles is conditionally averaged
with respect to a reference particle. In particular, we employ the above described procedure
used to perform the averaging of the hydrodynamic force. Here, instead of using a solid phase
indicator function, a indicator function for the continuous phase is applied. This ensures that
the averaging is performed over the actual volume occupied instantaneously by the fluid. The
hydrodynamic force is also replaced by the Eulerian velocity field relative to the velocity of the
test particle. Please note that for the present simulations F121 and F178 the particle velocity
is identical zero. The averaging can be then defined as:

〈ũf,rel(x̃, t)〉p,t = 〈uf (x̃, t)− uip(t)〉p,t, i = 1 . . . Np. (4.9)

Please recall that the position x̃ is defined as x̃ = x − xip (section §3.4.2, p. 47), thus
the coordinates of the position of the center of the i-th particle are given by x̃ = 0. The
velocity ũf,rel(x̃, t) is related to the relative velocity from equation 3.3 by simply replacing the
characteristic fluid velocity uf with the velocity uf (x̃, t). The reader is referred to appendix A
for detailed definition of the above defined averaging operator.

Figure 4.15 shows contours of the vertical velocity component of the average relative
velocity, w̃f,rel/U∞, on a plane through the center of the test particle. The plane is aligned
with the vertical coordinate z̃. In analogy with section 3.4.2 the region enclosed by the red
contour line corresponds to the recirculation region of the wake, i.e. w̃f,rel ≤ 0. Due to the
axi-symmetry of the mean wake, the recirculation length of the wake can be defined as the
maximum extension of the recirculation region on the vertical axis z̃, i.e. the point at which
the velocity w̃f,rel/U∞ changes sign. This can be easily examined in the profile of the average
relative velocity w̃f,rel/U∞ on the vertical axis through the center of the particle, which is
shown in figure 4.16. The recirculation length in case F121 measures le = 0.955dp and in
case F178 le = 1.05dp. When compared with the values obtained for the single particles in
section 3.4.2, the recirculation length for the assembly of fixed particles is significantly smaller.
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Figure 4.15: Contour plot of the projected relative velocity w̃p,rel/U∞ in the plane parallel to the vertical
axis passing trough the particle center xp. (a) case F121. (b) case F178. Contours are shown for values
(0:0.2:0.8). The red line ( ) marks the extent of the recirculation region, i.e. w̃p,rel/U∞ = 0. The
position of the z-axis is denoted by the black dashed line ( ). r̃x denotes the radial distance from
the reference particle in the averaging domain.

In case F121 le is 20% smaller than in case S121, whereas in case F178 the recirculation length
of the mean wake is smaller by as much as 33%.

The profile of the velocity w̃f,rel/U∞ on the vertical axis z̃ experience similar evolution as
in the single particle simulations. The uniform flow upstream of the particle decays quickly for
distances between z̃/dp = [−4,−0.5] and becomes negative immediately behind the particle
after which it increases slowly towards its asymptotic value. The recovery of the velocity
downstream of the particle is in both cases consistent with the recovery in the single particle
simulations. The velocity w̃f,rel in case F178 increases faster than in case F121 and reaches
97% of its asymptotic value after approximately 33 particle diameter downstream of the particle
surface, while in case F121 this distance was calculated to 46dp. This indicates that the mutual
interaction of the particle wakes in case F178 accomplish faster decorrelation of the fluid
velocity than in case F121.

It is interesting to note that the relative velocity w̃f,rel for the fixed assembly of particles is
slightly smaller than the mean velocity driving the flow U∞. In case F121 the velocity reaches
up to 93% of the velocity U∞, while in case F178 only 90% are obtained. The difference
between the upstream velocity at z̃/dp = −20 and the velocity at z̃/dp = 100 downstream of
the test particle was measured to 1.5% in case F121 and to 0.64% in case F178, confirming
the observation made above that the velocity in case F178 recovers over shorter distance than
in case F121. This also evidences the long-range effect of the particles on the flow field and is
in line with the observed pattern of the hydrodynamic force behind the test particle.

The reduced recirculation length as well the faster recovery of the asymptotic velocity in
the wake of the particle assembly than in the wake of a single particle confirm the observations
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Figure 4.16: Vertical component of the relative velocity on the center line passing trough the center of
the reference particle xp and parallel to the vertical axis. (a) Case F121. (b) Case F178. The coordinate
system is particle centered, i.e. origin at xp. The inset-figures show close-up view of the recirculation
region. The blue cross × marks the position at which w̃f,rel/U∞ changes sign. Negative values of the
x-axis correspond to upstream positions in front of the particle and positive values represent the domain
downstream of the test particle. The distance from the particle was normalized by the particle diameter
dp. The velocity is made non-dimensional with the mean velocity driving the flow U∞.

made by Risso and Ellingsen (2002) and Risso et al. (2008) that the wake of the particles
in the assembly is attenuated, when compared to the wake of a single particle. The wake
attenuation can be best evaluated by considering the velocity defect ũd0 behind the particles.
The velocity ũd0 is defined as in equation 3.11 using the coordinate system (x̃, ỹ, z̃) instead of
the system (x̂, ŷ, ẑ). Figure 4.17 shows the evolution of ũd0 as function of the vertical distance
r̃z downstream from the particle surface. The velocity deficit was evaluated in both cases for
distances up to 100 particle diameters downstream from the particle surface. As in case S121
and case S178 the velocity deficit is unity at the particle surface after which it increases and
reaches a global maximum at 0.9dp in both cases F121 and F178. While in case F121 this
value correspond to the value observed for the single particle in case S121, the value in case
F178 is smaller than in case S178 by as much as 17%. After reaching its maximum value the
velocity w̃f,lag decays experiencing regions with different power laws.

When comparing the velocity deficit for the network of particles with that obtained for the
single particle simulation from chapter 3, figure 4.17 reveals that the velocity w̃f,lag experience
slightly different decay rates. Similar to the single particle simulations, immediately after
reaching its maximum value, the velocity w̃f,rel decays with −2/3 power law, resembling the
characteristics of a turbulent wake. This and the location of the maximum of w̃f,rel indicates
that the flow close to the particle (z̃ ≤ 2.6dp) is similar to that induced by a singe particle. The
region with −2/3 power law is followed by a region, where the velocity deficit decays as a
laminar wake with −1 power law. However, for case F121 and case F178 the change in slope
from r̃

−2/3
z to r̃−1

z takes place much closer to the particle as in the case for the single particle.
In case F121 the change in slope was observed at 2.63dp, while in case F178 at 2.1dp. This
values are an order of magnitude smaller than for the single particle in case S121 and case
S178. It is worth noticing that the −1 power law in case F178 is somehow more prominent
than in case F121, which is in contrast to the results for the single particle. In the region of the
final decay, the velocity deficit for the particle network does not experiences similar cut-off as
in the case of single particle. Overall, the velocity deficit in the wake of the particle assembly
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Figure 4.17: Streamwise velocity deficit ũd0 defined as in equation 3.11 along the vertical axis z̃ as
function of the downstream distance r̃z from the reference particle surface. Case F121 ( ), case
F178 ( ). The downstream distance r̃z from the particle surface is defined as r̃z = z̃ − zp. The
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support the above results that the mean wake is strongly affected by the collective presence of
the particles with the consequence of being significantly attenuated with respect to the wake
of a single particle.

In large number of studies the velocity deficit behind the particles in a priori turbulent
flows is observed to decay approximately as r̃−2

z (Wu and Faeth, 1994; Legendre et al., 2006;
Amoura et al., 2010). The smaller decay rate observed in our simulations indicates that the
uniform flow past a random assembly of particles has a different nature. As result, for uniform
flows the presence of the particles affects the flow over longer distances downstream of the
particles.

Now let us turn to the question of self-similarity of the mean particle wake. To this end,
we consider the cross-stream profiles of the velocity deficit ũd in the particle wake, which is
depicted in figure 4.18 as function of the radial distance x̃ from the wake centerline. The
velocity deficit ũd is calculated as in equations 3.11, 3.13. As for the single particle the
wake is considered to be self-similar, when by appropriate scaling the cross-profiles of the
velocity deficit ũd follow a Gaussian distribution. As can be observed in figure 4.18 the mean
particle wake in both cases F121 and F178 do indeed follow a Gaussian function. For the
normalization of the velocity deficit in the cross-profile the value of ũd at x̃ = 0 was used and
for the normalization of the radial distance the half-width hwz of the particle wake was used.
Thereby the half-width of the particle wake is defined as in equation 3.12.

For laminar wakes it is known that the spreading of the wake obey hwz ∼ x̃1/2, whereas for
turbulent wakes the half-width scales as hwz ∼ x̃1/3. The streamwise evolution of the wake
half-width is shown in figure 4.19. It can be observed, that in the present simulations the
half-width of the wake appear to follow over large range a linear expansion, i.e. hwz ∼ x̃:

hwz/dp = ãz̃/dp + b̃. (4.10)

The coefficients in ã and b̃ were evaluated in case F121 to ã = 0.011, b̃ = 0.42 and in case
F178 to ã = 0.017, b̃ = 0.405. A linear spreading of the particle wakes was also observed in
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Figure 4.18: Profiles of the velocity deficit in the average particle wake as function of the cross-stream
coordinate x̃. The profile was taken at four different downstream locations, z̃/dp = [6, 10, 13, 17]. The
blue dashed ( ) line corresponds to a Gaussian function. The velocities ũd and ũd0 are defined as in
equations 3.11, 3.13. (a) Case F121. (b) Case F178. The coordinate system (x̃, ỹ, z̃) is chosen as in
figure 3.5. The distance from the particle center was normalized by the wake half-width hwz.

the studies of Bagchi and Balachandar (2004); Legendre et al. (2006); García-Villalba et al.
(2012). However, this studies considered turbulent flows. The evolution of the wake half-width
also illustrates that the wake in case F178 experience larger values than in case F121.

In the context of particle induced turbulence, the question of turbulence generation by the
particles can be indirectly addressed by focusing on the turbulence statistics in the particle
wake. For this reason we study the evolution of the total turbulent kinetic energy k̃f in the
particle wake. The energy k̃f is defined as follow:

k̃f = 1
2〈ũ

′
fi,relũ

′
fi,rel〉p,t, (4.11)

where the velocity fluctuations ũ′fi,rel are defined with respect to the average 〈ũf,rel〉p,t as:

ũ′f,rel(x̃, t) = ũf,rel(x̃, t)− 〈ũf,rel(x̃, t)〉p,t. (4.12)

Following García-Villalba et al. (2012) the covariance of the fluctuations 〈ũ′fi,relũ
′
fi,rel
〉p,t can

be decomposed in the following three contributions:

〈ũ′fi,relũ
′
fi,rel〉p,t(x̃, t) = 〈u′fi(x̃, t)u

′
fi(x̃, t)〉p,t + 〈u(i)′

p (t)u(i)′
p (t)〉p,t − 2〈ufi(x̃, t)u(i)′

p (t)〉p, t.
(4.13)

In the above equation the first term on the right hand side represents the covariance of
the fluctuating fluid velocity field, conditioned on the particle position. The second term
express the contribution from the particle velocity fluctuations and the third term stands for
the contribution of the mixed covariance between the particle velocity fluctuations and the
particle-conditioned fluid velocity fluctuations. Please note that this equation holds for flow
configurations with fixed and with mobile particles. For the present two cases of fixed particles
the last two contributions are identically zero and the total turbulent kinetic energy can be
calculated as:

k̃f = 1
2〈u

′
fi(x̃, t)u

′
fi(x̃, t)〉p,t. (4.14)
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Figure 4.19: Cross-stream half-width of the average particle wake as function of the downstream
distance z̃. Case F121 (—•—, ). Case F178 (—•—, ). Dashed lines represent a linear fit of
the spreading of the wake, hwz/rp = ãz̃/dp + b̃, with ã = 0.011, b̃ = 0.42 for case F121 and ã = 0.017,
b̃ = 0.405 for case F178.

The variation of the kinetic energy k̃f along the vertical axis z̃ in the particle wake is shown in
figure 4.20. The turbulent kinetic energy has been normalized by a reference energy defined as:

k̃ref = 1
2 ũ

(i)′
ref ũ

(i)′
ref , (4.15)

where the velocity ũ(i)′
ref is defined as:

ũ
(i)′
ref = (〈u′fu′f 〉Ωf ,t + 〈u(i)′

p (t)u(i)′
p (t)〉p,t)1/2. (4.16)

Since the particles in the present two cases F121 and F178 are fixed in space, the second term
in the equation 4.16 becomes identically zero and the reference velocity becomes identical to
the unconditioned box-averaged covariance 〈u′fu′f 〉Ωf ,t.

In both cases the energy k̃f increases in the near vicinity of the particle, reaching a local
maximum at 1.1dp in case F121 and at 1.3dp in case F178. Then the turbulent kinetic energy
decreases reaching a local minimum after which increases slowly towards its asymptotic value.
In case F121 the recovery of the turbulent kinetic energy is approximately 80% at 100 particle
diameter downstream of the reference particle. On the other hand, in case F178 the recovery
of k̃f is more complete reaching 90% of the reference energy at the same distance. This
again strengthen the observation that the velocity field in the mean particle wake in case
F178 recovers over shorter distances than in case F121. Similar evolution of the turbulent
kinetic energy in the particle wake was observed in Zeng et al. (2010) and more recently
in García-Villalba et al. (2012). In the first work the authors numerically studied the effect
of a stationary finite size particle in a channel flow, while in the second the channel flow of
finite-sized mobile particles was investigated. Nevertheless, for the regions of the flow where
the flow is dominated by the particle wakes, the observations appear to be in good agreement
with the here observed evolution of the turbulent kinetic energy. The only visible difference
appear to be in the vicinity of the particle, where in the above two studies the local maximum,
respectively minimum is not as pronounced as in the present case. A reason for this could be
the turbulent background flow, which would tend to diminish the effect of the particle wake in
vicinity of the particle surface.

81



Chapter 4. Flow through a stationary array of randomly distributed spheres

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

z̃/rp

k̃
f
/
k̃
r
ef

Figure 4.20: Evolution of the energy k̃f as function of the downstream distance z̃ form the reference
particle for case F121 ( ) and case F178 ( ). The energy k̃f is calculated according to
equation 4.14 and normalized by the reference kinetic energy k̃ref defined in equation 4.15.

4.4 Conclusion

The particle-induced flow field was elaborated in detail. It was observed that in both cases the
fluctuations of the fluid velocity were highly anisotropic with the vertical velocity component
being the dominant one. The anisotropy of the flow field was attributed to the dominance of
the particle wakes in the flow field. As a result, the probability distribution function of the flow
velocity was strongly affected by the presence of the particle wakes, especially the p.d.f. of
the vertical velocity component. Nevertheless, the horizontal component of the fluid velocity
was found to experience higher intermittency than the vertical component. In order to better
characterize the velocity fluctuations, the fluid velocity fluctuations were decomposed in their
spatial and temporal contributions. The results led to the conclusion that the flow field is
unsteady and that large-scale wake interactions are responsible for the fluctuations of the flow
field. The spatial fluctuations were found to be more prominent than the temporal fluctuations
accounting for the major contribution to the total fluctuations. Furthermore, a spectral analysis
of the flow field was performed. The spectral density function in both cases was found to
experience a κ−3

α sub-range for both the horizontal and vertical velocity components. As a
consequence, it was concluded that the mobility of the particles is not required for the energy
spectrum to exhibit −3 decay power law. The above results were found to be in good agreement
with the available literature. Additional to the energy spectrum, the corresponding two-point
correlation function for the flow field was evaluated, revealing that the flow field in the vertical
direction was not fully decorrelated over the half height of the computational box.

The hydrodynamic force exerted by the flow upon the particles was analyzed. The mean
particle drag coefficient in both cases proved to be close to the drag coefficient of a single
particle. This circumstance implies that the local flow field acting on the individual particles
resembles very closely the flow field around a single settling particle. The hydrodynamic
force was also conditionally averaged on the presence of the particles. This led to a map
of the force experienced by the neighboring particles in vicinity of a test particle. The map
revealed a substantial decrease of the drag immediately downstream of the test particle and
that the presence of the particle was experienced over long distances. Analysis of the resultant
force of a particle pair consisting of the reference particle and any other neighboring particle
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at certain distance showed that the test particle and the particles located downstream of it
would be more prone to attract each other (as result of the reduced drag behind the particles),
whereas particles located sideways are more prone to repel each other. This features of the
particle conditioned hydrodynamic force support the results for the wake induced aggregation
of particle pairs (drafting-kissing-tumbling (Hu et al., 1993)).

Finally, we have performed detailed analysis of the particle-conditioned averaged flow field
in the vicinity of the particles, i.e. the average particle wake. It was found that the average
length of the recirculation length was significantly attenuated by the presence of multiple
particles (up to 33% reduction in case F178), supporting the results from the literature (Roig
and De Tournemine, 2007; Risso et al., 2008). The streamwise velocity deficit on the axis
through the center of the particles was found to experience decay regions with two different
power laws. In the near-wake the velocity deficit was observed to decay as z̃−2/3 and as z̃−1 for
distances larger than five particle diameters. This led to the conclusion that close to the particle
the flow is similar to that induced by a single particle. The vertical velocity component in the
particles’ wakes was found to be reasonably correlated with a Gaussian function, evidencing
a self-similarity of the average particle wake. This was observed in both cases, thus being
independent of the Galileo number. The half-width of the mean particle wake in both cases
evolved linearly with the downstream distance from the reference particle. Thereby, the
spreading of the wake in case F178 was observed to be higher than in case F121. The energy
of the velocity fluctuations with respect to the particle-conditioned average, revealed that
the kinetic energy in case F178 recovered faster than that of case F121. The results for the
turbulent kinetic energy for the present simulations reasonably correlates with the results from
Zeng et al. (2010); García-Villalba et al. (2012). This again confirms that in case F178 the flow
field in the wake of the particles recovers faster than in case F121.

The overall conclusion is that the velocity field in the mean wake for both cases was
affected over long distances by the presence of the particles. Thereby the velocity recovery
in the particle wake showed different properties in both flow cases, with the velocity in case
F178 recovering faster (over shorter distance) than in case F121.
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Part II

Settling of many finite-size particles in
an initially quiescent flow field





Chapter 5

Introduction and
computational set-up

In this part of the thesis the dynamics of freely moving heavy finite-size particles settling under
the influence of gravity in an initially ambient flow field is investigated. This study extends the
investigation from chapter §4 by allowing the particles to move freely within the computational
domain. This will allow the investigation of the effects of mobility on both the dispersed
and the carrier phase. As introduced in chapter §1 the present flow configurations involve
large number of complex coupling mechanisms between the dispersed and the carrier phase,
which are most prominently manifested by quantities such as inhomogeneous particle distri-
bution, turbulence generation or modulation by the particles and the mean particle settling rate.

Particle clustering
A remarkable feature of such flow configurations is the ability of the particles to agglomerate
into clusters. In the past a large number of literature was accumulated on the topic of particle
clustering. However, the most of the studies considered flows which are a priori turbulent (cf.
chapter §1). In case of pseudo-turbulent flows, i.e. flow generated solely by the presence of
the particles, surprisingly little is known about the mechanisms responsible for the clustering
of the particles. To our knowledge Kajishima and Takiguchi (2002) were the first to observe
clustering of heavy sedimenting particles in pseudo-turbulence. The authors performed direct
numerical simulation of heavy particles settling under the influence of gravity in an initially
ambient flow with particle Reynolds number of O(100). They observed that the particles
agglomerated in highly anisotropic clusters, forming columnar like structures and concluded
that clusters are formed due to particle wakes. Similarly structured particle clusters were
found in the experimental work of Nishino and Matsushita (2004). The flow in the work of
Nishino and Matsushita (2004) was considered to be turbulent with turbulent intensities of
the order of 3%. However, in both works the relative turbulence intensities in the flows were
comparable. The relative turbulence intensity is a measure of the influence of the fluid (pseudo)
turbulence on the particle motion and is defined as the ratio between the intensity of the
surrounding fluid and the apparent slip velocity. The clustering of light particles (e.g. bubbles)
in pseudo-turbulence has received comparably more attention in the past. Although bubble
flows poses some features which set them apart from dispersed flows with heavy particles, it is
nevertheless instructive to consider the present results in view of the literature for bubbles,
which appear to be more profound than the one for heavy particles. Bubble clustering in
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pseudo-turbulence has been studied numerically for example in Sangani and Didwania (1993);
Mazzitelli and Lohse (2009) and experimentally in Cartellier and Riviére (2001); Zenit et al.
(2001); Risso and Ellingsen (2002); Esmaeeli and Tryggvason (2005); Roig and De Tournemine
(2007); Martínez-Mercado et al. (2010). This studies were however not fully conclusive with
some of the authors reporting clusters being oriented in the horizontal direction and some
in the vertical. Risso and Ellingsen (2002) reported, on the other hand, no clustering and
suggested that for the low volume fraction considered in their study (Φs = 0.5%− 1.05%), the
hydrodynamic interactions between the bubbles only weekly influenced the bubble distribution.

Mean particle settling rate
It is well known that the presence of particles in the fluid will disturb the flow and as we
showed in the previous chapter instabilities in the flow are generated by the presence of the
particles, which lead to hydrodynamic interactions between the particles. For mobile particles
these interactions could significantly affect the hydrodynamic force exerted by the fluid on
the particles as well as the mean settling rate of the particles. The mean settling rate of the
particles as well as the hydrodynamic force were identified in section §1.2.1 as one of the
most important quantities responsible for the dynamics of the particles. As noted in §1.2.1
the common observation is that the presence of multiple particles could lead to net increase
of the drag coefficient and to a decrease of the average particle settling rate. In this context,
the fluctuations of the flow filed induced by the particles are known to be responsible for the
so called non-linear drag effect. On the other hand, when the particles are inhomogeneously
distributed, i.e. they are organized in clusters, it is known that the particle clusters could
have the opposite effect on the settling velocity of the particles. Kajishima and Takiguchi
(2002); Kajishima (2004a) observed that the velocity of the particles inside clusters are on
average higher than outside and that particle clusters behave as objects settling with higher
velocity. The review of the literature in section §1.2.1 revealed that the relative importance of
the different mechanisms, which affect the average particle settling velocity, is incompletely
defined. Thus, one of the main objectives of this work is to contribute to the understanding of
these effects.

One of the open questions with respect to the particle settling rate is its dependence with
the solid volume fraction. To this date there is no reliable theoretical approach to estimate
the effect of the solid volume fraction on the particle settling rate. Commonly, this effect is
estimated based on empirical correlations such as Richardson and Zaki (1954). Thus, it will be
highly beneficial to estimate the reliabilty of such correlations and if possible to contribute to
their improvement.

Regarding the regimes of settling (cf. chapter §3), the real impact of the transition of the
particle motion on many particle systems is expected to considerably modify the dispersion
characteristics of the particles. The individual particles will tend to drift horizontally by
themselves without interactions with the remaining particles. The dispersion of the particles
in pseudo-turbulent flow field was studied experimentally and theoretically by Parthasarathy
and Faeth (1990a). The authors considered dilute flow of heavy particles settling under the
influence of gravity with particle Reynolds numbers of the order of O(100). They observed
that the particles exhibited self-induced lateral motion due to eddy shedding. The fluctuations
of the particle velocities were reported to be highly anisotropic with the vertical component
being the dominant one.
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Particle-induced flow field
As aforementioned, the fluctuations of the flow field play a crucial role in the dynamics of the
particles. In pseudo-turbulence the fluctuations in the flow field are introduced solely by the
relative motion of the particles to the fluid and, as we saw in chapter §4, are mainly controlled
by the wakes of the particles. In such flow configurations the decay of the velocity disturbances
generated by the particles play an important role. In the limit of vanishing solid volume
fraction and very small Reynolds numbers (Rep � 1), the Stokes solution predicts that the flow
perturbations behind the particles decay as r̃−1

z , where r̃z is the relative distance downstream
from the particle surface. In an theoretical work Caflisch and Luke (1985) showed that due to
the slow decay the superposition of the flow induced by multiple settling particles will lead to
the divergence of the fluid velocity variance with the size of the container. At finite Reynolds
numbers a wake develops behind the particles, wherein the velocity decays as r̃−1

z in the case of
laminar wake and as r̃−2/3

z in case of turbulent wake, which was confirmed in the simulations
reported in chapters §3 and §4. In an experimental study Parthasarathy and Faeth (1990a)
showed that even in the case of finite Reynolds numbers and very low volume concentrations
(Φs < 0.01%) the variance of the fluid velocity diverges as well. In their study they used
the principle of superposition to predict the fluid velocity fluctuations. They overcome the
divergence issue, by assuming that the wake vanishes for distances larger than 175 particle
diameters. Moreover, the authors showed that the particle wake has to be taken into account
for the estimation of the velocity fluctuations. The experimental work of Parthasarathy and
Faeth (1990a,b) will be considered in the present study as an important reference case, whose
parameters match closely with the flow parameters in the present work, except for the solid
volume fraction, which was in their work considerably lower. In an experimental work Risso
and Ellingsen (2002) investigated the velocity fluctuations in a homogeneous dispersion of
bubbles. They identified two regions in the flow in which the properties of the fluid velocity
fluctuations are different. In the vicinity of each bubble, the flow was found to be similar to that
generated by a single bubble. Far from the bubbles the fluid velocity fluctuations were found
to be controlled by a non-linear interactions between the wakes of all bubbles and showed
to be self-similar when scaled with Φ0.4

s . The self-similarity of the fluid velocity fluctuations
was confirmed in following studies of Roig and De Tournemine (2007); Risso et al. (2008);
Riboux et al. (2010, 2013). However, the review of the literature was not conclusive to what
extent the self-similarity of the fluid velocity fluctuations applies for dispersed flows with heavy
particles.

Regarding the energy spectrum of the flow induced by a large number of freely moving
particles, the question arise whether the wakes of the particles will have the same contribution
to the fluctuations of the flow field as when the particles are fixed. Particularly, it is interesting
to observe whether the mobility and the spatial distribution of the particles will affect the
shape of the power spectral density function of the vertical fluid velocity component.

To summarize, the main objective of the present part of the thesis is to qualitatively assess
the effects of particle mobility on both the carrier and the dispersed phase as well the effects
of the solid volume fraction by addressing the following open questions with respect to the
principal two-way coupling phenomena:

• Particle clustering:

– Do particles agglomerate in clusters in these flows?

– What is the exact mechanism of cluster formation?
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– What is the structure of particle clusters in pseudo-turbulence?

– What is the temporal dynamics of the clusters?

• The effect of the particle-induced flow field on the particle motion:

– How does the pseudo-turbulence affect the tendency to form wake-induced clusters?

– How does the pseudo-turbulence affect Lagrangian dynamics of the particles?

– What are the consequences of particle cluster on the settling rate and the hydrody-
namic forces of the particles?

• Characteristics of the particle-induced flow field:

– What are the characteristics of the fluid velocity fluctuations? Are they self-similar?

– What is the probability distribution function of the fluid velocity?

– What is the shape of the energy spectrum?

– What are the characteristics of the mean particle wake?

This questions are approached in this and the following chapters as follows. In the
present chapter the relevant parameters, the computational set-up and the simulation start-up
procedure will be presented. Additionally we will give an overview of the general evolution of
the dispersed flow and we will provide a discussion of the initial transient of the flow from the
moment when the particles are released until the moment at which the flow is considered to
be at statistically steady state. The analysis in the following chapters §6 - §8 will be based on
the data accumulated during the time at which the flow is considered statistically steady. In
chapter §6 results for the spatial distribution of the dispersed phase will be presented. Here
the focus will be on whether the particles agglomerate in clusters or not and on the physical
mechanisms responsible for the clustering of the particles. Thereby, in case of clustering, the
global and local characteristics of the particle clusters will be provided. Moreover, the temporal
dynamics of the clusters will be discussed in detail. In chapter §7, a comprehensive description
of the particle motion will be provided. The main objective in this chapter is to provide a deep
insight into the effect of the particle-generated flow field on the particle motion, especially the
effects of possible particle clustering on the particle motion will be elucidated in detail. To
this end, a detailed discussion of various particle statistical quantities, such as statistics of the
mean and the fluctuating particle velocities and hydrodynamic forces will be performed. From
particular interest is the average particle settling velocity relative to the motion of the fluid
and the drag force exhibited by the particles. Furthermore, the contribution of the local flow
field on the particle velocity and forces is identified and analyzed. Finally, in section §8 the
effect of the particles and the particle clusters on the flow field is discussed. Here the statistical
description of pseudo-turbulence is elaborated in detail. The focus in this chapter will be on the
fluctuations of the fluid velocity and the shape of the energy spectrum. A detailed description
of the average particle wake will be presented as well.

5.1 Flow configuration, initial- and boundary conditions

The simulations introduced in this chapter consider the motion of mobile heavy finite-size
particles settling under the influence of gravity in an initially ambient fluid. For this purpose
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we performed in total three simulations. As introduced in section §2.1.4, dimensional analysis
shows that under such conditions the system is characterized by three non-dimensional
parameters: (i) the particle-to-fluid- density ratio ρp/ρf , (ii) the Galileo number Ga and (iii)
the solid volume fraction Φs. The first two simulations considered here, correspond to the two
simulations considered in chapter §4 with the only difference that the particles are allowed
to move freely in the computational domain adding six additional degrees of freedom for the
particles, i.e. the three components of the particle translational and angular velocities. Here
the first two parameters are kept the same as in case S121 and case S178 from chapter §3,
i.e. ρp/ρf = 1.5 and Ga = 121 and Ga = 178. The third parameter, the solid volume fraction,
was set in both simulations to Φs = 0.5%, as in case F121 and case F178. For this value of
the solid volume fraction the dispersed flow is considered to be dilute. Hereafter we will
refer to the simulation with the triplet (ρp/ρf = 1.5,Ga = 121,Φs = 0.005) as M121 and with
the triplet (ρp/ρf = 1.5,Ga = 178,Φs = 0.005) as M178 (M for mobile particles). The third
simulation is derived from the simulation M178 by reducing the solid volume fraction by order
of ten, when compared with M178. Consequently, this simulation is characterized by the triplet
(ρp/ρf = 1.5,Ga = 178,Φs = 0.0005) and will be referred to as ML178.

The simulations are performed as in section §4 in triply periodic computational domains
with cuboid shape elongated in the vertical direction in order to account for the anisotropic
length scales of the particle wakes. The extensions of the computational domain in case
M121 are the same as in case F121. Similarly, in case M178 and case ML178 the size of the
computational domain is as in case F178. The flow in all three cases is driven by the constant
mean velocity U∞ introduced in section §4.2. This implies that the average vertical velocity of
the particles will be close to zero, assuming that the particles are homogeneously distributed
and neglecting any two-way coupling and collective effects. The particle Reynolds number
based on the velocity U∞ and the particle diameter can be evaluated to Re∞ = U∞dp/ν = 141
in case M121 and to Re∞ = 245 in both cases M178 and ML178. A homogeneous body force
is added to the vertical component of the fluid momentum equation in order to assure that
the systems in all three cases can attain a steady state (Uhlmann, 2005). In case particles
approach closely each other, an artificial repulsion force (cf. section §2.3.3) is applied in order
to prevent unphysical overlapping of particles. Since in the present work all flow cases are
considered in the dilute regime, the effect of the collision model upon the statistics is expected
to be marginal.

The particles in case M121, M178 and ML178 are resolved with the same number of
points per particle diameters as in case F121 and case F178, i.e. dp = 15∆x in case M121 and
dp = 24∆x in cases M178 and ML178. Consequently the total number of grid points remain
10242 × 5120 in case M121 and 20482 × 4096 in cases M178 and ML178. The particle-fluid
interface in case M121 is resolved by 708 and in cases M178 and ML178 by 1188 Lagrangian
marker points.

The simulations M121 and M178 are initialized with the last computed flow field from
case F121 and case F178 respectively. At this time the particles are randomly distributed and
the particle wakes are already fully developed and in a statistically stationary state. For a
detailed description of the initial flow field in case M121 and M178 the reader is referred to
the result section §4.3 of the previous chapter. The simulation in case M121 was run for total
of 3424τg, while case M178 was evolved 1672 gravitational time units. On the other hand,
the simulation ML178 is initialized from the last computed flow field in case M178 and the
number of particles was reduced by randomly taking particles out of the domain. Please note
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that the wakes of the remaining particles in this case are also fully developed and in statistically
steady state, however, the initial flow field differs significantly from that in case M178, due to
the occurrence of strong particle clustering in case M178, as we will see in chapter §6. Thus,
the flow field at this time is strongly correlated with the distribution of the particles at this time.
Nevertheless, we believe that simulation ML178 will provide valuable insight into the effects
of the solid volume fraction on the particles’ clusters. The simulation in case ML178 was run
for 1756 gravitational time units. The computational domain and the initial particle position
in case M121 and M178 are visualized in figure 4.1 (page 62), whereas the computational
domain and particle initial position in case ML178 are depicted in figure 5.1. Hereafter, in
order to better analyze and compare the time evolution of the three systems, the time at which
the simulations are started is set arbitrary to zero, i.e. t/τg = 0.

The physical and numerical parameters for the three simulations M121, M178 and ML178
are summarized in tables 5.1 and 5.2. The simulation M121 was conducted on 640 processor
cores on the IBM system at the LRZ München supercomputing center, requiring approximately
1.8 · 106 CPU core hours, whereas the simulation M178 was performed on 8192 processor cores
of the Blue Gene/p system at JSC Jülich consuming approximately 25 · 106 CPU core hours and
the simulation in case ML178 was performed on 8192 processor cores at the LRZ München
and the JSC Jülich supercomputing centers. In this case approximately 20 · 106 CPU core hours
were consumed.

Φs ρp/ρf Ga Re∞ Lx × Ly × Lz Np

M121 0.005 1.5 121.24 141 68dp × 68dp × 341dp 15190
M178 0.005 1.5 178.46 245 85dp × 85dp × 171dp 11867
ML178 0.0005 1.5 178.46 245 85dp × 85dp × 171dp 1130

Table 5.1: Physical parameters of the flow of heavy particles settling under the influence of gravity in
an initially quiescent fluid. Solid volume fraction Φs, density ratio ρp/ρf , Galileo number Ga, Reynolds
number Re∞ = U∞dp/ν based on the imposed mean fluid velocity in the vertical direction, the particle
diameter dp and the fluid viscosity ν, extensions of the computational box Lx, Ly, Lz and number of
particles Np.

dp/∆x Nx ×Ny ×Nz Nl Nproc

M121 15 1024× 1024× 5120 708 640
M178 24 2048× 2048× 4096 1188 8192
ML178 24 2048× 2048× 4096 1188 8192

Table 5.2: Numerical parameters for the flow cases M121, M178 and ML178. Particle resolution dp/∆x,
where ∆x denotes the grid spacing. Number of grid nodes Ni in the i-th coordinate direction. Number
of Lagrangian marker points used for the discretization of the fluid-particle interface, Nl. Number of
processors used for the present simulations, Nproc.

5.2 Temporal evolution of the system

Here the evolution of the dispersed flows in the above introduced three cases M121, M178
and ML178 from the moment when the particles are released will be discussed. We would
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Figure 5.1: Dimensions of the computational domain with the particle distribution for case ML178 at
the begin of the simulation. (a) side view (b) top view showing the initial particle distribution projected
upon the horizontal plane. dp denotes the particle diameter. Periodic boundary conditions are applied
in all three directions in both cases. The corresponding plot for case M121 and case M178 are depicted
in figure 4.1 on page 62.

like to stress that a detailed analysis of the here presented quantities will be provided in the
following chapters §6 - §8. The main concern of this section is to provide an overview over the
general evolution of the particulate flow system. To this end, we discuss the temporal evolution
of the mean particle settling rate and the fluctuations in both the fluid and the particle phase.
This will allow us to define a time interval over which the flow is considered as statistically
steady. The temporal statistics in the following chapters are consequently computed in this
time interval.

The instantaneous particle relative velocity with respect to the fluid-phase-averaged velocity
is defined as:

up,rel(i, t) = uip(t)− 〈uf 〉Ωf (t), ∀i = 1 . . . Np. (5.1)

Then the mean particle settling velocity can be defined as the particle ensemble average of the
vertical component of the particle relative velocity up,rel, viz.:

ws(t) = 〈wp,rel(t)〉p. (5.2)

Figure 5.2 depicts the temporal evolution of the average of the particle settling velocity ws
for all three cases. The velocities have been scaled with the viscous velocity scale based on
the particle diameter, i.e. wsdp/ν. The magnitude of the velocity ws normalized by the same
viscous scale is often referred to as the average particle Reynolds number and will be denoted
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Figure 5.2: Average of the relative particle settling velocity, ws, for case M121 ( ), case M178
( ) and case ML178 ( ). as function of time. The velocity ws has been normalized by the ratio
of the particle diameter dp and the kinematic viscosity ν. Dashed lines indicate the terminal settling
velocity of the single particle from case S121 ( ) and case S178 ( ).

in the present work by:

Rep,rel = |ws|dp/ν. (5.3)

The corresponding terminal settling velocities of the single particles from the simulations S121
and S178 are shown as well in figure 5.2. It can be observed that the particles in case M121
settle on average approximately at the same rate as the corresponding single particle in case
S121. The average particle settling velocity does not deviate substantially from the velocity
in case S121 and remains over the entire course of the simulation at an approximate value of
Rep,rel = 141.6. This indicates that the collective effects, i.e. the presence of multiple particles,
as well the hydrodynamic interactions between the particles have only a marginal effect on
the average settling velocity in the present configuration (ρp/ρf = 1.5,Ga = 121,Φs = 0.005).
On the other hand, in case M178 it can be observed that the mean particle settling velocity
deviates substantially from the settling velocity of the single particle in case S178. The average
particles velocity initially increases for approximately 200τg and reaches a maximum value of
Rep,rel = 271, after which the velocity levels off and fluctuates around a value of 260.6. The
collective effects in case M178 lead to an overall enhancement of the particle settling rate,
when compared to the terminal settling velocity of a single particle. The difference between the
two velocities for the present simulation measures approximately 12%. This will be investigated
in greater detail in chapter §7. Here we would like to note that the only physical difference
between the two cases M121 and M178 is the value of the Galileo number and as we will
see in the next chapter (§6) the particles in case M178 agglomerate into clusters, while the
particles in case M121 remain homogeneously distributed. The one of the consequences of the
particle clusters in case M178 is an increase of the mean particle settling rate (cf. 7.1.1).

Concerning case ML178, the graph in figure 5.2 reveals that the mean settling rate of
the particles initially decreases and reaches a minimum value of Rep,lag = 256 approximately
100τg after the simulation was initiated. Please note that due to the removing of the majority
of the particles from the system, the remaining particles in case ML178, at the begin of
the simulations, are more probably exposed to the mean flow, which would lead to a net
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Figure 5.3: Intensity of the velocity fluctuations of (a) the fluid phase and (b) the dispersed phase as
function of time. Case M121 ( , ). Case M178 ( , ). Case ML178 ( , ).
Solid lines correspond to horizontal velocity components (α = 1, 2), dashed lines show the vertical
velocity component (α = 3). The velocity fluctuations have been normalized with the absolute value of
the particle settling velocity wref = |w∞| of the corresponding single particle cases S121 and S178.

reduce of the average particle settling velocity. After reaching its minimum, the mean particle
settling velocity increases slowly for approximately 1000τg and reaches a maximum value of
Rep,rel = 282.6 at t/τg = 1100. The velocity then appear to fluctuate at the mean value of
Rep,rel = 280. As we will see in chapter §6, the main reasons for these evolution of the particle
settling velocity in case ML178 is the spatial distribution of the particles.

Let us now turn to the time evolution of the velocity fluctuations in the fluid and the
dispersed phase, which are depicted in figure 5.3. In all three cases the common observation
is that the fluctuations of the velocity fields in both phases are anisotropic with the vertical
components being highly dominant. In case M121 after a short initial transient, the fluctuations
of the vertical velocity component in both phases exhibit slow fluctuations with time scale of
the order of 1000τg. However, as we saw in figure 5.2, the mean settling rate of the particles
appears to be uncorrelated (unaffected) by these long time oscillations. On the other hand,
the fluctuations of the vertical velocity component in case M178 increase more slowly as in
case M121 and similar to the average settling rate of the particles, reach a statistically steady
state after approximately 200 gravitational time units. In contrast to the velocity fluctuations
in case M121, in case M178 the fluctuations oscillate around their asymptotic value with
comparably shorter period. Moreover, the temporal evolution of the mean settling rate of the
particles in case M178 seems to correlate with that of the fluid velocity fluctuations. These
feature merits a more detailed investigation, which would be conducted in the following
three chapters. Similar to the mean settling rate, the fluctuations in case ML178 for both
phases exhibit long transitional period of roughly 1100τg in which they decrease significantly.
The difference between the two cases M178 and ML178 at the end of the simulated time
intervals was calculated to be as high as 50.9% for the vertical component of the fluid velocity
fluctuations and 22.2% for the vertical component of the particle velocity fluctuations. For the
horizontal components this difference was calculated to 52.7% and 17.6% for the fluid and the
particle velocity fluctuations respectively.

The fluctuations of the cross-stream components of the fluid and the particle velocity have
in all three cases comparable values, which indicates that turbulent dispersion may play an
important role in the present numerical experiments. As we will see later, the particles do not
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settle on a straight trajectories oriented in streamwise direction, rather they settle on curved or
oblique paths. As result the particle wakes are not oriented perfectly with the vertical direction
(in case M178 and case ML178 this is true even for a single particle in undisturbed flow),
which causes momentum along the wake axis to be deposited in the lateral direction. This is in
line with the observations made in Parthasarathy and Faeth (1990a,b). However, in their work
the relative turbulent intensities are one order of magnitude smaller than in the present work,
thus the turbulent dispersion of the particles is expected to be more prominent in the present
simulations. It is interesting to note that the velocity fluctuations in the dispersed phase in all
three cases are entirely due to collective effects, since a single particle at this Galileo numbers
is in steady motion.

Before we conclude, let us recall (section §4.3.1) that the initial flow field in case M121
and case M178 was fully developed at the time the particles were released. Due to the
strong anisotropy of the particle wakes, the flow field in both cases evidenced a small positive
correlations of the vertical velocity component in the stream-wise direction (figures 4.7 - 4.8).
Please note that the particles at this time were fixed and randomly distributed, thus the flow
field would contain a three dimensional time average (fixed particles) contribution which will
affect the spatial correlation of the fluid velocity. A preliminary coarse grid simulations at
Rep,lag = 230 (data provided by courtesy of Markus Uhlmann) showed that even an extended
domain size in the vertical direction of Lz = 680dp does not assure full decorrelation of
the flow field. Thus, in case of streamwise elongated particle clusters, as in case M178, the
necessary domain size required to obtain full decorrelation of the flow field would be even more
restrictive. On the other hand, in the horizontal direction the velocity signals decorrelated for
separations smaller than the extension of the computational domain in the horizontal direction,
concluding that the domain size in the horizontal direction is sufficiently large in order to
accommodate the largest flow structures. The same considerations apply for case ML178,
where, as aforementioned, the initial flow field is strongly correlated with the distribution of
the particles at this time (cf. chapter §8).

5.3 Conclusion

Here we have introduced the computational set-up and the initial flow configurations for the
three direct numerical simulations performed in this part of the thesis. This chapter was not
meant to provide a detail analysis of the results of the present simulations, rather to provide
a brief introduction to the open questions which are going to be addressed in this part of
the thesis. Additionally, the initial transient of the flow from the moment when the particles
are released was discussed. The main concern was to identify the time interval in which
the dispersed flow is considered to be in statistically steady state. This time interval is then
consequently used in the following chapters §6 - §8 to accumulate the temporal statistics. The
main observation is that while the particles and the flow in case M121 evolved in a statistically
stationary state shortly after the particles were released, the particles and the flow field in
case M178 required approximately 200 gravitational time units to reach statistically steady
state. For consistency between the two cases, the dispersed flow in case M121 and case M178
is considered as fully developed after an initial transient of 200τg. On the other hand, the flow
in case ML178 experienced longer initial transient due to the strong large scale correlations
in the initial flow field. Therefore, the statistics in case ML178 will be accumulated after the
initial transient of 1100τg. A comparison of the fluid (particle) velocity fluctuations in case
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M178 and ML178 evidenced, as expected, a strong dependency with solid volume fraction,
higher solid volume fraction led to higher fluctuations in the flow. Moreover, the mean settling
rate of the particles showed to correlate with the fluctuations of the fluid velocity field.

Finally, a brief discussion of the two-point correlation of the initial flow field in case M121
and M178 lead to the conclusion that due to anisotropy of the particle wakes an even larger
domain extensions in the vertical directions are required in order to obtain a full decorrelation
of the flow field.
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Chapter 6

Spatial structure of the
dispersed phase

As introduced in sections §1.2.3 and §5 an interesting feature of dispersed particulate flows is
the ability of the particles to sample the flow in an inhomogeneous manner, i.e. to agglomerate
into clusters. The flows under consideration in this chapter consist of multiple heavy freely
moving finite-size particles settling under the influence of gravity in an initially ambient flow
field. Further the flows are considered to be homogeneous in all three directions and all of the
fluctuations in the flow field are generated by the relative motion of the fluid to the particles.
Particularly, in the present chapter the spatial distribution of the particles in case M121, M178
and ML178 will be studied in detail. For detailed description of the configuration of these
cases, the reader is referred to chapter §5. The main question addressed here is whether the
particles in such flow configurations agglomerate into clusters or not. In the context of particle
clustering, the distribution of the particles is implicitly compared with the Poisson distribution
of uniformly distributed particles. Due to the homogeneity of the flows, any deviation of the
particle distribution from the random (homogeneous) distribution can be attributed to the
collective effects and to the coupling effects between the particles and the particle-induced flow
field. In case of particle clustering a characterization and detailed description of the clusters
will be provided. The discussion will focus on questions such as what is the characteristic
shape, size and life-time of the particle clusters.

6.1 Qualitative cluster analysis

The question of whether particles cluster or not is often approached qualitatively by visualiza-
tions of the instantaneous particle positions. Visualizations often have been used to provide an
initial reference for further quantitative analysis.

Figure 6.1 depicts the instantaneous particle positions in case M121 at two instants, at the
time the particles are released to move freely, showing the initial particle distribution and at
some instant when the system is in statistically stationary state. As can be seen, there is no
significant difference between the particle distribution at this two instants. The corresponding
visualization for case M178 is shown in figure 6.2. It is clearly observable that the particle
distribution at time when the flow is in statistically stationary state deviates significantly from
the initial particle distribution. One can easily identify localized regions in the projection upon
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Figure 6.1: Instantaneous particle position in case M121 viewed from the top: (a) initial state t/τg = 0;
(b) in the statistically stationary regime at t/τg = 1200.
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Figure 6.2: The same as in figure 6.1 but for case M178: (a) t/τg = 0; (b) t/τg = 820.

the horizontal plane with a high particle density and regions with low particle concentration,
or even void regions with complete absence of particles.

Hereafter, regions with high particle concentration are referred to as clusters and regions
with low particle concentration as voids, where the definition of high- and low- particle
concentration will be discussed and defined more precisely later in this section. Seen from this
vertical perspective the particles appear to form structures which are elongated in the vertical
direction. More precise inspection reveals that the clusters and the voids extend throughout
the entire height of the computational domain. On the other hand the characteristic size of
the particle clusters in the horizontal direction is much smaller than the extensions of the
computational domain and they appear to be randomly distributed in the horizontal plane. This
initial qualitative description of the clusters in case M178 is in line with previous experimental
(Nishino and Matsushita, 2004) and numerical (Kajishima and Takiguchi, 2002; Kajishima,
2004b,a) findings, where similar columnar particle accumulation was observed. Time sequences
of such visualization shows that these structures persist over long time intervals.
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6.2 Voronoï Analysis

In the following we quantify the tendency of the particles to agglomerate into clusters by
performing Voronoï analysis of the particle distribution. A number of techniques have been
established for the characterization of the spatial structure of the dispersed phase. Besides
the conventional tools for detecting preferential concentrations such as box counting methods
(Fessler et al., 1994), pair correlation function estimation (Sundaram and Collins, 1997) and
genuine clustering detection algorithms (Melheim, 2005), a technique based upon Voronoï
tessellation has recently been proposed in the context of particulate flows (Monchaux et al.,
2010). The Voronoï tessellation or the so called Voronoï diagrams is a decomposition of the
space into independent cells, which are associated to a single particle pi, Vi = V(pi). The
Voronoï cells Vi possess the property that all points inside the cell are closer to the particle pi
than to any other particle pj , j 6= i (Okabe et al., 1992). Example of a Voronoï diagrams in two-
and three-dimensional space can be found in figure 6.3. The cells in figure 6.3a fill the entire
space by periodical extension of the cell boundaries. As consequence the local concentration of
the particles can be related to the inverse of the volume of the Voronoï cells. That is, Voronoï
cells with small (large) volume indicate areas with high (low) particle concentration. A main
advantage of the Voronoï analysis in comparison to the previously mentioned approaches is
the absence of any a-priori choice of length scales and its computational efficiency. Here we
would like to stress that the Voronoï analysis provides only a general tendency of clustering
at some instant and does not provide any information about the size or shape of the clusters.
Additionally, since Voronoï volumes are evaluated around each individual particle, one can
track the local particle concentration along the particle trajectories in a Lagrangian manner.
This kind of cluster analysis was successfully applied in the past in number of studies in both
the two- and three-dimensional space, e.g. Monchaux et al. (2010, 2012); García-Villalba et al.
(2012); Tagawa et al. (2012); Dejoan and Monchaux (2013).

In order to investigate the spatial distribution of the dispersed phase, we have performed a
three dimensional Voronoï analysis by computing the Voronoï diagrams and the corresponding
volumes Vi of the Voronoï cells for all particles in the computational domain. The Voronoï
cell volumes are normalized to be of unit mean. This normalization allows a qualitative
comparison of the p.d.f.s for different particle number densities, since the so normalized
p.d.f.s are independent of the particle number density (Ferenc and Néda, 2007). Before we
proceed with the results, let us briefly clarify the procedure applied here to quantify the
general tendency for clustering. As pointed out by Monchaux et al. (2010, 2012) one can study
the probability distribution function of the normalized Voronoï volumes and their standard
deviation. A tendency of clustering is given, when the p.d.f. of the normalized Voronoï volumes
deviates from the p.d.f. for random distribution and the standard deviation is larger than for
randomly distributed particles. The standard deviation of the p.d.f. is then directly linked to
the level of clustering. By definition of the Voronoï tessellation, for particles distributed in a
more regular manner than random, the corresponding p.d.f. of the Voronoï cell volumes should
be less intermittent than the p.d.f. for randomly distributed particles. Eventually for particles
on regular lattice all Voronoï volumes will become identical and the p.d.f. will be resembled by
a Dirac function. However, for particles with more inhomogeneous distribution than random,
the p.d.f. of the Voronoï cell volumes is expected to be more intermittent than the one for
randomly distributed particles with higher probability of finding cells in the “extremes”, i.e. the
probability of finding Voronoï cells with very large or very small volumes will become larger
than for randomly distributed particles.
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(a) (b)

Figure 6.3: (a) Two dimensional Voronoï diagram for case M178. The dashed line shows the domain
boundaries. (b) Close-up of a three dimensional Voronoï diagram.

Figures 6.4a and 6.5a depict the p.d.f. of the normalized Voronoï volumes for case M121
and case M178 computed at different times during the course of the simulations. Except for the
initial state, the tessellations are performed at several instants covering short time intervals of
length less than 30τg. As aforementioned, in the three dimensional space particles with random
distribution are usually implicitly assumed to be distributed as a random Poisson process. In
this case a random Poisson process is well represented by a Gamma function (Ferenc and Néda,
2007). As can be observed, the p.d.f. for both cases at time the particles were released in the
computational domain is well represented by the Gamma function, confirming that the initial
particle distribution was indeed random. It can be observed that in case M121 (figure 6.4a)
the occurrence of very small and very large Voronoï cells is less probable than in the case of
randomly distributed particles. Additionally the standard deviation of the normalized Voronoï
volumes at all instants was found to be smaller than in the random case, indicating that the
deviation from the average cell volume in case M121 is less probable than in the case of
randomly distributed particles. This indicates that the distribution of the particles in case M121
becomes more ordered than randomly distributed particles. Regarding case M178 (figure 6.5a),
as time advances the p.d.f. of the Voronoï volumes begins to deviate more and more from the
one at initial time. Finally, the p.d.f.s in time saturate at their final position, indicating the
reaching of a stationary state. Furthermore, the p.d.f.s of the present data exhibit tails with
higher probability of finding Voronoï cells with very large or very small volumes than in the
random case with uniform probability, indicating that cluster and respectively void formation
takes place.

As we showed in section §5 the flow in the present simulations is highly anisotropic due
to preferential spatial direction due to gravity. Furthermore, a columnar like structures are
observed in case M178, viz. figure 6.2, indicating the highly anisotropic shape of the particle
clusters in case M178. This kind of non-isotropic clusters can sometimes be “invisible” to the
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Figure 6.4: Case M121: Probability density function of (a) the normalized Voronoï cell volumes
and (b) the aspect ratios AV , where AV is defined as in equation 6.1. Different lines represent
data assembled over different time intervals. The initial random distribution is represented by
( ). t/τg = [279.7, 307.6] ( ). t/τg = [559.4, 587.3] ( ); t/τg = [1216.7, 1244.5] ( );
t/τg = [1496.4, 1524.2] ( ). The dashed black line ( ) represents an analytical Gamma function
fit (Ferenc and Néda, 2007).

Voronoï analysis, purely based upon the cell volumes. Therefore, we have analyzed the shape
of these structures by computing the aspect ratio (AR) of each Voronoï cell, defined as the ratio
of the largest horizontal extension lx(Vi) to the largest vertical extension lz(Vi) of the Voronoï
cell Vi:

AVi = lx(Vi)/lz(Vi), ∀i = 1...Np. (6.1)

The so defined aspect ratio AV provides a qualitative measure of the anisotropy of the particle
clusters and can be seen as measure for the stretching of the cells. For the present simulations,
large values of AV indicate a “flat” cells squeezed (stretched) in the vertical (lateral) direction
and small values of AV indicate cells which are squeezed (stretched) in the horizontal (vertical)
direction. Figures 6.4b and 6.5b depict the distributions of the AR AV of the Voronoï cells
for case M121 and case M178. The p.d.f.s are calculated at the same instants as the p.d.f.s
of the Voronoï cell volumes. It can be seen that the p.d.f.s in case M121 does not show
any deviation from the p.d.f. of the randomly distributed particles, while in case M178 an
appreciable difference can be observed. Finding Voronoï cells with large values of AV is more
probable than in case of randomly distributed particles. This is an indication that the majority
of the Voronoï cells in case M178 are squeezed (stretched) in the vertical (horizontal) direction
and that the particle agglomerations are more likely to be oriented in the vertical direction.
This confirms the observations made in figure 6.2b, where particle columnar like structures
were observed, which is in line with the results from the literature (Kajishima and Takiguchi,
2002; Kajishima, 2004a).

As mentioned above, in case of particle clustering the p.d.f. of the normalized Voronoï
volumes deviate from the p.d.f. for randomly distributed particles. Furthermore the second
moment of the distribution should exceed the one for randomly distributed particles. Con-
trarily, for particle with more homogeneous spatial distribution, the standard deviation of
the normalized Voronoï volume p.d.f. is expected to be smaller than in the random case.
Therefore, the standard deviation of the p.d.f. of the normalized Voronoï volumes can be used
to characterize the level of clustering (Monchaux et al., 2010, 2012). Figure 6.6 depicts the
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Figure 6.5: As figure 6.4 but for case M178. Different lines represent data assembled over different
time intervals. Initial random distribution is represented by ( ). t/τg = [199.1, 213.7] ( ).
t/τg = [345.3, 359.9] ( ); t/τg = [572.5, 576.9] ( ); t/τg = [794.1, 810.9] ( ). The dashed
black line ( ) represents an analytical Gamma function fit (Ferenc and Néda, 2007).

temporal evolution of the standard deviation of the p.d.f. of the normalized Voronoï volumes,
σV , for both cases M121 and M178. Since there is no analytical expression for the second
moment of the distribution of the Voronoï volumes (Ferenc and Néda, 2007; Monchaux et al.,
2010), the standard deviation is compared with respect to the standard deviation of the initial
particle distribution (σV = 0.411). As can be seen from figure 6.6, the standard deviation in
case M121 decreases after particles have been released to settle freely and reaches quickly
a statistically steady value of approximately 0.345. Contrary, the standard deviation in case
M178 shows the opposite behavior: as the particles organize in clusters, the standard deviation
increases with time and reaches a statistically steady value of approximately σV = 0.616. From
the figure it is clearly observable, that for the particles in case M178 the transient time, that
the particle require in order to reach statistically stationary state is considerably longer than in
case M121. Moreover, the time at which an approximately steady state is reached represents
approximately the time at which the fluctuations of the particle- and fluid velocity field reached
steady state.

The Voronoï diagrams can be used to define an intrinsic definition of cluster regions with
high particle concentration and voids with low particle concentration by determining the
intersection points between the p.d.f. of the DNS data and that of the random distribution.
Particles whose Voronoï cell volume is smaller than the lower intersection points V c are
considered to be located in a regions with high particle concentration and particles whose
Voronoï cell volume is larger than the upper intersection point V v are attributed to void regions
(Monchaux et al., 2010). By tracking the particle positions in time, the Voronoï tessellation
allows us to determine the instantaneous local concentration of the particles. Combining this
with the above intrinsic definitions of clusters and voids we can determine instantaneously for
each particle, if it reside in regions with high or low particle concentration. We calculated the
mean residence time of the particles in clusters (voids), by determining the temporal intervals
during which the volume of the Voronoï cells of each particle is below (above) the threshold
V c (V v). It turns out that on average the particles in case M178 reside for approximately
24.9τg in regions with high particle concentration and approximately 87.7τg in regions with
low particle concentration. This indicates, that once the particles enter cluster or void regions
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Figure 6.6: Standard deviation of Voronoï cell volumes as function of time for case M121 ( ) and
case M178 ( ). The corresponding value for randomly distributed particles with uniform probability
( ).

they remain trapped therein for relatively long times, with a bias towards voids. Please note
that the Voronoï tessellation would attribute rather large cell volumes to particles located
on the periphery of clusters. With the above intrinsic definition of clusters and voids, the
particles located inside clusters or voids can be identified at each instant. Figure 6.7 shows
the temporal evolution of the total number of particles incorporated in clusters and voids in
case M178 evidencing that once statistically stationary state was reached the total number
of particles residing in voids or clusters remains approximately constant over time with only
minor temporal fluctuations. A total of approximately 30% of the particles are attributed
to clusters and 15% to voids. Moreover, we have calculated the frequencies with which the
particles enter clusters and voids to 0.016/τg and 0.006/τg respectively. The higher frequency
of particles entering clusters stems most probably from the geometrical origin of the Voronoï
tessellation and could be attributed to particles located on the periphery of clusters.

Since each Voronoï cell can be uniquely assigned to a single particle, the derived cell
quantities (volume and AR) of each particle can be tracked in time. This allows us to study
the behavior of these quantities in a Lagrangian manner. To this end we have studied the
Lagrangian autocorrelation function related to a cell quantity QV(t), which is calculated as
function of the separation time τsep as:

RQVQV (τsep) = 〈Q
′
V(t)Q′V(t+ τsep)〉p,t
〈Q′V(t)Q′V(t)〉p,t

, (6.2)

where Q′V(t) = QV(t)− 〈QV〉p,t is the fluctuation with respect to the mean over the particle
ensemble and time. For detailed definition of the averaging operator 〈·〉p,t the reader is referred
to appendix A.

The Lagrangian autocorrelation of the Voronoï cell volume and AR for both cases M121
and M178 are depicted in figure 6.8. It can be observed that in both cases the correlation
time of the Voronoï volume is appreciably larger than the correlation time of the Voronoï
cell aspect ratio. Comparison of both cases reveals that the Voronoï volume in the clustering
case M178 is somewhat correlated over longer times than in case M121 where no clustering
takes place. The corresponding integral time scale were calculated to 43.7τg in case M121
and to 73.7τg in case M178. Regarding the Voronoï cell aspect ratio, it features in both cases
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V ( ) for case M178. The plotted data has been thinned out for clarity purposes.

Note, that the data for case M121 is not shown, since in case M121 no clustering is observed.
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Figure 6.8: Lagrangian autocorrelation of Voronoï volumes ( ) and Voronoï cell aspect ratio AV
( ) as function of the separation lag τsep for (a) case M121 and (b) case M178. The inset show
closeup of the same data, but for small separation lags τsep. The blue dashed lines ( ) represent
the osculating parabola at τsep/τg = 0.

considerably faster decorrelation than the cell volume, practically vanishing at the same time
after approximately 200τg. The corresponding integral time scale measures 17.2τg and 14.2τg
in case M121 and case M178 respectively. Please note that the aspect ratio of the Voronoï cells
is a geometrical property of the shape of the cells and it may be significantly modified while
the particle dynamically rearrange in space without necessarily changing the volume of the
corresponding cells.

Concerning the short time behavior of the particle structures, it can be studied by consid-
ering the Taylor micro-scale of the Voronoï cell properties. The Taylor micro-scale is defined
as the osculating parabola at zero separation and is depicted in the insets of figure 6.8. In
contrast to the integral time scale, the Taylor micro-scale in both cases have similar values:
15.8 in case M121 and 13.7 in case M178. The corresponding values for the Voronoï cell aspect
ratio measure 7.3 and 4.5 in case M121 and M178 respectively. The comparable values of the
Taylor micro-scale in both cases suggests that the short time behavior of the particle structure
in both cases is very similar.
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Figure 6.9: Temporal evolution of the average distance to the nearest neighbor for cases M121 and
M178, normalized by the value for a homogeneous distribution on a regular cubical lattice. Case M121
( ). Case M178 ( ). Random particle distribution with the same volume fraction ( ).

An alternative way of characterizing the spatial structure of the dispersed phase is by
performing a nearest-neighbor analysis (Kajishima, 2004b). Figure 6.9 depicts the time
evolution of the average distance to the nearest particle neighbor dmin, which is calculated as:

dmin = 1
Np

Np∑
i=1

min
j=1
j 6=i

di,j , (6.3)

where di,j = |xip − xjp| is the distance between the centers of i-th and the j-th particle. The
distance dmin has been normalized by its value for a homogeneous distribution with the same
solid volume fraction, dhommin = (‖Ω‖/Np)1/3. The lower limit of dmin/dhommin corresponds to the
minimum value of the function, when all particles are in contact with a neighboring particle.
The upper limit of the function dmin/dhommin has a value of unity and arises for homogeneously
distributed particles, i.e. particles are positioned on a regular lattice. As expected, the average
distance to the nearest neighbor at initial time is very close to the value for a randomly
distribute particles. With time the value of dmin/dhommin in case M121 increases quickly and
reaches a value of 0.61 in the time interval where the flow is considered as statistically steady.
This is in line with the above findings, that the particles in case M121 are more ordered than
randomly distributed particles. Contrarily, the value of dmin/dhommin in case M178 decreases for
approximately 200τg and undulates at approximate value of 0.5. This again corroborates the
results obtained above, that the particles in case M178 tend to form agglomerations.

We can preliminarily conclude that the particles in case M121 are distributed in more
regular way, whereas the particle distribution in case M178 exhibits strong inhomogeneities,
i.e. particle form clusters. Further we showed that the shape of the particle structures is
anisotropic and these structures are oriented in vertical direction. Lagrangian analysis revealed
that the particle structures maintain coherency over substantial time scales.

6.3 Conditionally averaged particle concentration

The Voronoï analysis in the previous chapter showed the tendency of the particles in case M178
to agglomerate in clusters as a whole, whereas in case M121 no clustering was evidenced.
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In this section we study the local particle distribution in the vicinity of a test particle. This
kind of analysis will provide more insight into the micro-structure of the dispersed phase.
The micro-structure is a result of the migration of the particles induced by particle-particle
interactions and is affected by features such as particle wake interactions, vortex shedding or
hydrodynamic forces (Hu et al., 2001). For this purpose we performed particle-conditioned
averaging of the particle locations. The averaging procedure is very similar to that introduced
in section §4.3.3. First we define an averaging volume ΩA with vertical axis coinciding with the
vertical direction and a discrete solid phase indicator function, which is unity for computational
nodes occupied exclusively by the dispersed phase and zero otherwise. The indicator function
is then applied to the computational domain identifying the grid nodes located in the domain
occupied by the dispersed phase Ωp. The origin of the domain ΩA is then shifted to the location
of each particle, taking into account the periodicity of the domain, and added up. The domain
ΩA is discretized by the same grid spacing as the corresponding cases M121 or M178. A
detailed definition of the averaging procedure can be found in appendix A. This procedure was
repeated for 16816 and 26180 particle snapshots in case M121 and M178 respectively. By
normalization of the so defined quantity with the number of samples one obtains an averaged
field φconds with values in the interval φconds ∈ [0, 1], which can be interpreted as the particle
conditioned local volume fraction (Kidanemariam et al., 2013). The so defined quantity can
be also interpreted as the probability that a point of the averaging domain is located inside
the domain occupied by the solid phase Ωp. When normalized with the global solid volume
fraction Φs, the quantity φconds /Φs can be related to the pairwise distribution function, which
provides the probability of finding a particle at certain distance away from a given reference
particle (Sundaram and Collins, 1997; Shotorban and Balachandar, 2006; Sardina et al., 2012).
By definition, for mono-dispersed flows the quantity φconds is a symmetric function, viz.:

φconds (x̃) = φconds (−x̃). (6.4)

Figures 6.10 and 6.11 show the two dimensional maps of φconds /Φs for both flow cases.
As can be clearly seen on macroscopic level the dispersed phase in case M121 (figure 6.10a)
does not show any signs of accumulation and particles appear to be randomly distributed
(φconds /Φs ' 1). The local solid volume fraction differs from that for randomly distributed
particles only in vicinity to the reference particle (figure 6.10b), where the probability of
finding another particle is significantly larger than the global average sold volume fraction. As
can be seen the local particle concentration exhibits anisotropic spatial distribution, i.e. the
region with higher particle concentration is clearly oriented in vertical direction. The maximum
can be found at approximately one particle diameter downstream of the reference particle on
the vertical axis. In the horizontal direction φconds is observed to be below the average at small
horizontal separations from the reference particle. The average value is adopted for distances
larger than one particle diameter.

In case M178 (figure 6.11a), the distribution of the local solid volume fraction clearly
exhibits a strongly anisotropic spatial structure even at the macroscopic level. The distribution
evidences high values of the local concentration located in a vertical stripe along the vertical
direction. As can be seen the region of high local particle density extends throughout the entire
height of the computational domain. This is in line with the observation that the particles
in case M178 agglomerate in columnar like structures (section §6.2). In contrast to the
micro-structure in case M121, the local sold volume fraction in case M178 shows larger than
the average values in a small region in the horizontal direction with maximum at distances
around 1.5dp.
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Figure 6.10: (a) Averaged local solid volume fraction φconds conditioned on the particle positions for
case M121, normalized by the global solid volume fraction Φs. (b) Close-up of the same data. The
coordinates are relative to the reference particle position (section §3.4.2, p. 47).
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Figure 6.11: As in figure 6.10, but for case M178.

The evolution of φconds /Φs with the distance from the test particle can be better examined
by considering the axis profiles of φconds /Φs through the center of the reference particle.
Figure 6.12 depicts the profile of particle conditioned solid volume fraction for both flow cases
through the center of the test particle in both the horizontal and the vertical direction. In
the horizontal direction (figure 6.12a) the local particle concentration exhibit in both cases
different behavior. In case M121 the quantity φconds /Φs increases slowly and reaches unity at
a horizontal distance of approximately x̃ = 2.5dp from the surface of the reference particle.
Beyond that distance the solid volume fraction remains close to unity. On the other hand,
in case M178 the local particle concentration increases more quickly with the horizontal
distance and crosses unity at x̃ ≈ 1dp after which it increases further until a maximum value of
φconds = 2Φs located at x̃ = 1.5dp. After reaching maximum φconds /Φs decreases and converges
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Figure 6.12: Evolution of φconds along two perpendicular axis through the reference particle: (a)
z̃ = 0. (b) x̃ = 0. Case M121 ( ) and case M178 ( ). The vertical dashed lines ( , )
represent the distance |x̃ijk| = dp/2+2∆x, which marks the limit of the range of action of the collisional
force. The dashed blue line, ( ), indicate decay rate proportional to x̃−0.65.

towards unity at a rate approximately proportional to x̃−α with α = 0.65. As can be seen
the region in the horizontal direction which is depleted of particles is much smaller in the
clustering case M178 than in case M121.

In vertical direction (figure 6.12b), the profile of φconds /Φs in both cases exhibit similar
evolution. In case M121 the local particle concentration is observed to increase steeply for
distances up to z̃ = 1.5dp. Beyond this distance φconds /Φs decays slowly and reaches unity
at distance of approximately 8dp. In case M178, on the other hand, the graph increases for
distances up to 3dp, after which it decays slowly, not reaching unity within the present domain
size. Thus, the long distance behavior of φconds /Φs reflects directly the macroscopic clustering
structure of the particles, i.e. the particles in case M178 form columnar like structure which
expends throughout the entire domain in vertical direction. It is interesting to note that while
on macroscopic level the particles distribution in both cases evidence difference behavior: (no)
clustering in case (M121) M178, the microscopic structure is remarkably similar in both cases.
It appears that the mechanism responsible for this behavior is “robust”, which does not depend
on the Galileo number (the only difference between the two flow cases).

6.4 Effect of the solid volume fraction

Here the effect of the solid volume fraction upon the particle clustering is discussed. From
particular interest are the general shape and extension of the particle cluster as well as the
properties of the micro-structure of the dispersed phase. For this purpose we performed a
comparison of various statistics related to the particle distribution in case M178 and case
ML178. Please recall, that the only physical difference between the two cases is the solid
volume fraction Φs (cf. chapter §5). Beside this, the initial flow field and the particle distribution
in case ML178 corresponds to the latest available state of case M178 where nearly 90% of the
particles in case M178 were randomly removed from the computational domain. Visualization
of the initial particle distribution as well at the end of the simulated time interval projected
upon the horizontal plane can be found in figure 6.13. As can be seen the initial particle
distribution inherits the distribution features of the particles in case M178. However, the
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Figure 6.13: The same as in figure 6.2 but for case ML178: (a) t/τg = 0; (b) t/τg = 1756.

particle distribution appear to be slightly more homogeneous and as we will see below, Voronoï
analysis confirms that the particles are more randomly distributed than at the end of the
simulation in M178. On the other hand, the final particle agglomeration in case ML178
(figure 6.13) indicate that strong particle clustering takes place revealing large void regions
accompanied by localized regions with high number density of particles.

Similar to the analysis in section §6.2, a more quantitative results are obtained by means of
Voronoï analysis. Figure 6.14 depicts the corresponding p.d.f.s of the volume and the aspect
ratio of the Voronoï cells in case ML178. Please note that due to the sufficiently smaller number
of particles in case ML178 the curves of the p.d.f.s exhibit more noise than in case M178. It can
be observed that the p.d.f. of the Voronoï cell volume of the initial particle distribution in case
ML178 indeed reassembles closely the Gamma distribution corresponding to a random Poisson
distribution. However, the p.d.f. of the aspect ratio deviates from that for randomly distributed
particles with bias towards the p.d.f. in case M178, indicating the columnar like organization
of the particles. At later times the p.d.f.s of both the Voronoï cell volume and the aspect ratio
experience similar shape as in case M178 indicating that particles agglomerate in columnar
like clusters as in case M178. The clustering, however, appear to be more pronounced in
case ML178 than in case M178. This can be best observed in figure 6.15 where the temporal
evolution of the standard deviation of the Voronoï volume for case M178 and case ML178 are
depicted. The figure reveals that in fact at begin of the simulation, the standard deviation of
the Voronoï cell volume in case ML178 is close to the value for randomly distributed particles.
As time advances the standard deviation increases steadily for approximately 1100τg (note that,
this time correlates strongly with the temporal evolution of the particle and fluid quantities
shown in section §5.2) after which it levels off and fluctuates around σ(Vi) ≈ 0.8, which is
approximately 25% larger than the value in case M178 at statistically stationary state. This
observations confirms that the initial particle distribution in case ML178 is close to random
and that in the course of the simulation strong clustering takes place with substantially higher
clustering levels than in case M178. An alternative nearest-neighbor analysis (figure omitted)
verifies this findings as well.

By tracking the particle position in time and applying the intrinsic definition of clusters
(voids), we computed the mean residence time of the particles in case ML178 in cluster
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Figure 6.14: As figure 6.4 but for case ML178. Different lines represent data assembled over different
time intervals. t/τg = [0, 101.2] ( ). t/τg = [1205, 1250] ( ). t/τg = [1367, 1431] ( );
t/τg = [1586, 1653] ( ); t/τg = [1699, 1756] ( ). The dashed black line ( ) represents: (a)
an analytical Gammma function fit (Ferenc and Néda, 2007); (b) Voronoï cell aspect ratio for randomly
distributed particles;

and voids respectively. The residence time in clusters measures 90.3τg and in voids 166.4τg.
This indicates that the cluster respectively void structures in case ML178 are somehow more
“robust” and persist over longer times than in case M178 and evidence that once the particles
enter one of the either regions they remain trapped therein for relatively longer times than
in case M178. However the number of particles located in cluster and void regions increases
only slightly when compared to case M178. We evaluated the amount of particles residing in
clusters (voids) to approximately 35% (18%).

In order to obtain more insight into the temporal behavior of the particle clusters in case
ML178 we have calculated the corresponding Lagrangian autocorrelation function of the
Voronoï cell volume and the cell aspect ratio (figure omitted). In both cases the autocorrelation
function experienced similar behavior, unfortunately, the considered time interval was not
sufficient for full decorrelation of the autocorrelation function. Nevertheless, the short time
behavior can be addressed by considering the Taylor micro-scale, which calculates for the
Voronoï cell volume to 37.1τg and for the aspect ratio to 6.9τg. Comparison with the values
obtained for case M178 reveals that both values are larger in case ML178. While the difference
for the Voronoï aspect ratio is relatively small, the values for the Voronoï cell volume in case
ML178 a nearly three times larger than in case M178.

Now let us turn to the conditionally average particle concentration. Figure 6.16 shows the
two dimensional map of φconds /Φs for case ML178. It can be clearly seen, that while the overall
structures of the particle agglomeration in case M178 and case ML178 are very similar, the
clustering intensity in case ML178 is significantly higher than in case M178. As in case M178,
on macroscopic level the particles in case ML178 are organized in highly anisotropic columnar
like structures. However the region where the maximum of the local particle concentration
is observed is substantially larger in case ML178 extending in the vertical direction up to
20dp from the surface of the reference particle (recall that in case M178 this distance was
measured to be 3dp). Its extensions in the horizontal direction increased substantially as well,
now covering region of 10dp on each side of the reference particle. As in case M178 the local
solid volume fraction in the horizontal direction experiences values larger than the average
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Figure 6.15: Standard deviation of Voronoï cell volumes as function of time for case M178 ( )
and case ML178 ( ). The corresponding value for randomly distributed particles with uniform
probability ( ).

value, however, the region experiencing maximum values covers larger area and the maximum
value can be observed at distances up to 4.6dp. This can be best observed in the close-up in
figure 6.16b showing the distribution of the local particle concentration in vicinity of the test
particle.

The spatial variation of the particle conditioned solid volume fraction can be more conve-
niently examined by considering the horizontal and the vertical profiles through the center of
the particle, as shown in figure 6.17. In the horizontal direction (figure 6.17a) the profile of
φconds /Φs in case ML178 increases more quickly than in case M178 and reaches unity approxi-
mately at x̃ = 0.83dp after which it increases further until a maximum value of φconds = 5.1Φs

located at 1.6dp. The local particle concentration then decays at higher rate than in case M178
with values of α = 0.9. In contrast to case M178 the profile of φconds /Φs converges towards a
slightly negative value Φcond

s = 0.85Φs, indicating the deficit of particles caused by the strong
clustering. Furthermore, the region depleted of particles in direct vicinity of the reference
particle is much smaller compared to case M178. In the vertical direction (figure 6.17b),
the profile of φconds /Φs in case ML178 evidences similar evolution with z̃ as in case M178.
However, the maximum value in case ML178 is approximately three times larger than in case
M178, i.e. φconds = 9.1Φs. In contrast to case M178, the profile of φconds remains flat over a
distances ranging from z̃ = 1.3dp − 3.87dp. The particle conditioned concentration then decays
slowly towards a value φconds = 2.01Φs, which is about 38% larger than in case M178.

6.5 Conclusion

In the present chapter we have investigated the spatial structure of the dispersed phase in
flows of heavy finite-size particles settling under the influence of gravity in an initially ambient
fluid. Here we considered the simulations introduced in chapter §5, which allowed us to
investigate (although limited to the number of parameters in the parameter space) the effects
of the Galileo number and the solid volume fraction.

Concerning the effect of the Galileo number, a strong clustering was observed for the
particles with the higher Galileo number of Ga = 178, while no evidence of clustering was
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Figure 6.16: As in figure 6.10, but for case ML178.
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Figure 6.17: Evolution of φconds along two perpendicular axis through the reference particle: (a)
z̃ = 0. (b) x̃ = 0. Case M121 ( ) and case M178 ( ). The vertical dashed lines ( , )
represent the distance |x̃ijk| = dp/2+2∆x, which marks the limit of the range of action of the collisional
force. The dashed blue line, ( ), indicate decay rate proportional to x̃−0.65. The dashed blue line,
( ), indicate decay rate proportional to x̃−0.9.

observed for Ga = 121, on the contrary the particles rather organized in slightly more regular
manner than a randomly distributed particles. The particles in the clustering case were
observed to agglomerate in highly anisotropic columnar like structures extending in the
present simulation in the vertical direction throughout the entire domain length of 170 particle
diameters. On the other hand, in the horizontal direction the particle cluster extended up to
equivalent diameter of 10 particle diameters.

Voronoï analysis revealed that the residence time of the particles inside cluster or void
regions is relatively long compared to the gravitational time scale. An intrinsic cluster (void)
definition revealed that nearly 30% (15%) of the particles reside in clusters (voids). Lagrangian
analysis of the Voronoï cell volume revealed that the particle structures maintained coherency
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that the particles in both cases experienced similar behavior.
Similarity between both flow cases was also found in the micro-structure of the dispersed

phase, which was studied by means of the particle-condioned average of the solid volume
fraction. This indicated that while on macroscopic level the two cases exhibit completely
different spatial structure of the dispersed phase, on microscopic level they appear to feature
similar micro-structure, indicating that under this conditions the mechanism responsible for this
behavior does not depend on the Galileo number and that the short range particle-to-particle
interaction is remarkably “robust”.

Regarding the effect of the solid volume fraction upon the cluster characteristics, we
have performed a third simulation with the same physical and numerical parameters as the
simulation with Ga = 178, except for the solid volume fraction, which was reduced by the
factor of ten. Voronoï analysis and study of the conditionally averaged particle concentration
showed that while the overall cluster structure was maintained, the level of clustering increased
with decrease of the solid volume fraction which manifested itself in the micro-structure of the
dispersed phase. The micro-structure revealed that for the smaller value of the solid volume
fraction the extensions of the region with higher local particle concentration than the average
increased substantially. The higher clustering levels and the lower solid volume fraction (small
number of particles) led to a net deficit of particles in the horizontal direction, when compared
to the average concentration.

The present results are in line with the observed cluster structure made by Kajishima and
Takiguchi (2002); Kajishima (2004a). When the clustering of bubbles in pseudo turbulence
is considered, similar vertical orientation of the bubble clusters was found by Esmaeeli and
Tryggvason (2005) and more lately by Martínez-Mercado et al. (2010). In the later work
the authors reported robust vertical alignment of the bubbles at both small and large scales.
The particle respectively the bubble Reynolds number in all of this works was of the order of
O(100). For smaller particle (bubble) Reynolds numbers of the order of O(10) the works of
Cartellier and Riviére (2001); Cartellier et al. (2009); Yin and Koch (2007) investigated the
micro-structure of the dispersed phase and found a deficit of neighboring particles downstream
of a reference particle and increased probability of finding a particle located horizontally
from the test particle. Yin and Koch (2007) attributed this to the wake induced “drafting-
kissing-tumbling” mechanism (Hu et al., 1993). In a numerical work of bubbly flows Sangani
and Didwania (1993); Smereka (1993) suggested that, when potential flow is assumed, the
bubbles form horizontally aligned rafts. This leads to the question of how important is the local
flow around the particles, in particular the recirculation in the wake of the particles for the
orientation of the particle agglomerations, since for particle Reynolds number below Rep < 20
no, or negligible separation is observed (Clift et al., 1978).

In view of the results in case M121 and M178 the question arise what is the exact mech-
anism responsible for the clustering of the particles. Kajishima (2004a) identified the wake
attraction in the sense of “drafting-kissing-tumbling” as the main reason for the clustering of
the particles. However, this does not account for the difference in the particle distribution
in both cases investigated here. As we saw in chapter §4 an isolated particle at the Galileo
numbers and particle-to-fluid density ratio considered in the present study settle steadily on a
vertical and on an oblique path, respectively. Thus, the question arise to what extent the regime
of particle settling is responsible for the particle clustering and it merits a further investigation.
Unfortunately due to the high computational cost, at the present it was not possible to perform
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demarcating the onset of clustering. A possible critical value for the Galileo number could be
the bifurcation point of the wake of an isolated particle, Ga = 155 (cf. chapter §3). In a future
work the identifying of the critical Galileo number would allow more detailed analysis of the
mechanism of wake-induced particle attraction.

116

a detailed parameter study in order to determine an exact value of the critical Galileo number



Chapter 7

Particle motion

In this chapter the motion of the finite-size particles in case M121, M178 and ML178, in-
troduced in chapter §5, is investigated. Particularly the coupling phenomena related to the
influence of the particle-induced flow field upon the mean particle settling rate and the hy-
drodynamic forces exerted by the fluid on the particles are elucidated in detail. The main
question addressed here is whether the presence of multiple particles would lead to a net
increase or decrease of the mean particle settling rate. In the context of the particle settling
rate, commonly the relative velocity between the particles and the fluid is considered. This
leads to the question of the most appropriate definition of the fluid velocity “seen” by the
particles with respect to which the relative particle velocity is computed. This is addressed here
by providing a definition for the fluid velocity “seen” by the particles. Also of great interest
are the (statistical) consequences of the particle clustering on the motion of the particles. For
this reason a comprehensive analysis of the correlation between various particle and cluster
quantities is performed. Likewise, the contributions of the local flow field on the particle
velocity field and forces is identified and analyzed. Finally a limited study of the effect of the
solid volume fraction on the particle motion is investigated. For more detailed introduction to
the topic the reader is referred to sections §1.2.1 and §5. The chapter is organized as follows.
In section §7.1 analysis of the mean particle properties such as the particle settling velocity and
hydrodynamic forcesis performed. Here also a definition of the velocity “seen” by the particles
is provided and discussed. Section §7.2 is devoted to the analysis of the fluctuations of various
particle quantities. In particular the probability density functions and the Lagrangian statistics
are discussed. The chapter then closes in section §7.3 with a brief conclusion.

7.1 Mean particle settling velocity and hydrodynamic force

Before we proceed with the results, let us first provide a definition of the local fluid velocity
seen by the particles. As we will see the choice of the reference fluid velocity used for the
calculation of the particle relative velocity is vital for the understanding of the particle motion
in the present flow configurations.

7.1.1 Fluid velocity seen by the particle

In the context of the mean particle settling rate, commonly the relative velocity of the particles
to the fluid is considered. Thus, a reference fluid velocity that is used for the calculation of the
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relative velocity is required. For complex flows (multiple mobile particles, (pseudo) turbulence,
etc.) usually the free-stream fluid velocity, to which each particle is subjected, is unknown.
In such flow configurations usually the particles are assumed to be smaller than the smallest
relevant flow structures. This leads to the so called point-particles models, where, in case
of one-way coupling between the two phases, the relative velocity of the particles is often
calculated with respect to the fluid velocity at the particle’s center. For finite-size particles, as in
the present case, this approach is, however, not justified, due to two-way coupling phenomena
(cf. section §1.2.1). Since for such configurations there is no separation of scales, the main
challenge in determining the relative velocity is the calculation of the undisturbed free stream
fluid velocity, which is “seen” by the particles.

There have been several attempts to define the free stream fluid velocity “seen” by the
particles. Bagchi and Balachandar (2003) investigated the effect of homogeneous isotropic
turbulence on the drag and lift of a single stationary particle subjected to isotropic turbulent
flow field. They examined two different approximations of the undisturbed fluid velocity “seen”
by the particle. In their study this velocity was alternatively defined (i) as the fluid velocity at
the position of the particle in an otherwise identical particle-free simulation, or (ii) as the fluid
velocity averaged over a spherical volume around the particle in the corresponding particle-free
simulation. Later Zeng et al. (2008) simulated the flow over a fixed sphere in a non-periodical
channel. Similarly to the work of Bagchi and Balachandar (2003) they used the fluid velocity at
position of the particle center. Merle et al. (2005) investigated the forces acting on a bubble in
a turbulent pipe flow. A Taylor’s hypothesis was invoked to approximate the undisturbed fluid
velocity “seen” by the bubble without recurring to a particle-free companion simulation. The
authors of the just mentioned studies highlighted, however, that in case of finite-size particles
the use of the fluid velocity at the position of the particles is questionable. In more recent work
Lucci et al. (2010) investigated the modification of isotropic turbulence by particles with size
of the order of the Taylor length-scale in the absence of gravity. They proposed two definitions
of the fluid velocity “seen” by the particles: (i) the fluid velocity in direction of the particle
velocity vector taken at distance comparable to the Taylor micro-scale and (ii) the average of
the fluid velocity over a small spherical cap along the particle velocity vector taken at the same
distance. In both cases the definition of the fluid velocity “seen” by the particles is biased by
the choice of the direction in which the fluid velocity is considered. As noted by Kidanemariam
et al. (2013), the use of directional information from the instantaneous particle velocity is
rather questionable. Recently Bellani and Variano (2012a) defined a stochastic slip velocity for
particles of Taylor length-scale size. The definition of the slip velocity proposed by Bellani and
Variano (2012a) does not require any filtration of the flow phase velocity field. However, the
authors noted that this approach is applicable to cases where no preferential concentration of
the particles is present, otherwise they suggest once again the use of conditional averaging of
the flow field in vicinity of the particle.

Since inertial finite-size particles tend to “filter” the flow field (Qureshi et al., 2007) we
believe that the fluid velocity “seen” by the particles should be comprised from the local flow
field. Therefore, in the present work we use a definition of the fluid velocity seen by the
particles similar to that proposed by Kidanemariam et al. (2013), where the instantaneous
fluid velocity “seen” by the particles is approximated by the average of the fluid velocity located
on a spherical surface S of radius RS centered at the particle’s center location. As discussed
in Kidanemariam et al. (2013) the choice of the radius RS has to fulfill the following two
requirements: (i) the radius RS should be chosen large enough in order to avoid any possible
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influence of the flow field, due to the presence of the particle and (ii) RS should be chosen
sufficiently small for the result to be of relevance to the motion of the respective particle.
Please note that for sufficiently large number of particles and when the shell radius RS tends
to infinity the fluid velocity uSf tends to the globally averaged fluid velocity uf . In the present
work we chose the same averaging radius as Kidanemariam et al. (2013), i.e. we set for all
simulations RS = 1.5dp. In their work they used the result of three different direct numerical
simulations of type S121 and S178 for the calibration of the radius RS , thus we believe that the
choice of RS is justified in the present flow cases. For detailed definition of the fluid velocity
seen by the particles and a discussion of the chosen value for RS the reader is referred to
Kidanemariam et al. (2013). Hereafter, the so defined fluid velocity corresponding to the i-th
particle at instance t will be denoted by uSf (i, RS = 1.5dp, t). In the present work the radius
RS is kept constant in all three cases, thus, for sake of simplicity the parameter RS will be
omitted from the list of arguments of uSf , i.e. uSf (i, t) = uSf (i, RS = 1.5dp, t).

By definition the fluid velocity uSf samples only a subset of the fluid velocity uf and
accounts for the contribution of the local flow field in vicinity of the particles. Thus, it is
interesting to compare the statistical description of the particle conditioned fluid velocity uSf
with the unconditioned fluid velocity field uf . In order to do so, we compared the first and
second moments (mean value and standard deviation) of the vertical component of the fluid
velocities wSf (i, t) (∀i = 1 . . . Np) and wf (x, t), which can be found in table 7.1. It can be seen,
that in all flow cases the average value of the particle conditioned fluid velocity is smaller
than the average value of the unconditioned fluid velocity. Moreover, the smallest difference
was observed in the case with the lower Galileo number and accounts for approximately 3%
of the absolute value of the average particle settling velocity |ws|, indicating that the local
fluid velocity in vicinity of the particles is only marginally affected by the presence of the
particles and resembles closely the unconditioned average of the fluid velocity. On the other
hand, the difference becomes larger for the flow cases with the higher Galileo number and
accounts in case M178 for about 11% and in case ML178 for nearly 20% of the velocity |ws|.
This implies that the particle in case M178 and ML178 are on average surrounded by fluid
with significantly smaller vertical velocity than the box averaged value, i.e. they are located
inside regions with a downward fluid motion when compared to the globally averaged fluid
velocity. This is in line with the observation made in the previous chapter that the particles in
case M178 and case ML178 are organized in a clusters with columnar like shape. It appears
also that the values increase with the clustering level (cf. chapter §6; in case ML178 a higher
clustering level was observed than in case M178).

Regarding the standard deviation of the velocities uSf and uf , it can be seen that the
values increase with the Galileo number and the standard deviation of the particle conditioned

case (〈wSf 〉p,t − 〈wf 〉Ωf ,t)/wref σ(wSf )/wref σ(wf )/wref
M121 −0.0315 0.1262 0.2081
M178 −0.1155 0.1972 0.2407
ML178 −0.1965 0.2852 0.102

Table 7.1: Comparison of the first and second moments (mean value and standard deviation) of
the vertical component of the particle conditioned fluid velocity wSf (i, t) (∀i = 1 . . . Np) and the
unconditioned velocity field wf (x, t) for all three flow cases M121, M178, ML178. All values are
normalized with the absolute value of the time averaged mean particle settling velocity |〈wp,rel〉p,t|.
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local fluid velocity is significantly smaller than for the unconditioned velocity, except for case
ML178. Most probably the smaller value of the standard deviation of the unconditioned fluid
velocity in case ML178 can be originated in the smaller solid volume fraction. Please recall
that all the fluctuations in the carrier phase are due to the presence of the particles and the
solid volume fraction in case ML178 is factor of ten smaller than in case M178. That is, for
decreasing solid volume fraction and otherwise identical parameters it can be expected that
the overall intensity of the fluid velocity fluctuations in the computational box would steadily
decrease. On the other hand, it is interesting to note that the standard deviation of the local
fluid velocity uSf in case ML178 remains of the same order as in case M178, although with
higher value, which once again stems most probably from the higher clustering level observed
in case ML178.

Preliminarily, we can conclude that the particle conditioned averaging over a spherical
shell of diameter RS = 1.5dp reflects the fact that the particles do not sample the flow field
randomly and appears to acts like a spatial filter which tends to suppress small scale fluctuations.
However, as we will see later in chapter §8 the distribution of the particle conditioned fluid
velocity in case M121 and M178 are very similar to those of the unconditioned field, while in
case ML178 a significant difference between the two distributions can be observed.

7.1.2 Particle average settling velocity

Now let us turn to the average settling velocity of the particles. With the above definition
of the fluid velocity in vicinity of the particles, we can now define the instantaneous relative
velocity based upon the local reference value of the fluid velocity as:

uSp,rel(i, t) = uip(t)− uSf (xip, t), ∀i = 1 . . . Np. (7.1)

The definition of the particle relative velocity in equation 7.1 is expected to provide better
representation of the local flow conditions which affect the particle motion, since it accounts
for the local flow conditions of each individual particle. Please note that the definition of
the relative velocity in equation 7.1 differ from the conventional definition of the relative
velocity in equation 5.1 only in the choice of the reference fluid velocity. Thus, the difference
in the particle relative velocity reduces to the difference in the values of uSf and uf . The
instantaneous mean settling velocity of the particles with respect to the local fluid velocity can
be now simply computed by applying an average over the particle ensemble to the vertical
component of the velocity uSf , viz.:

wSs (t) = 〈wSp,rel(i, t)〉p. (7.2)

Hereafter, the particle Reynolds number based on the velocity wSs will be denoted by ReSp,rel
and is defined as:

ReSp,rel = |wSs |dp/ν. (7.3)

Figure 7.1 depicts the temporal evolution of the mean particle settling velocity wSs along
with the particle average of the conventional settling velocity ws, which was already briefly
discussed in section §5.2. The data is normalized as in figure 5.2 with the viscous velocity scale
based on the particle diameter, i.e. wsdp/ν. It can be observed that the temporal evolution of
the mean particle settling velocity wSs in case M121 resembles closely the temporal evolution
of the velocity ws. The velocity wSs remains essentially constant over the entire course of
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Figure 7.1: Average of the relative particle settling velocity, ws (equation 5.1) and wSs (equation 7.2),
for case M121 ( ), case M178 ( ) and case ML178 ( ) as function of time. The velocities
ws and wSs have been normalized by the ratio of the particle diameter dp and the kinematic viscosity ν.
Dashed lines indicate the terminal settling velocity of the single particle from case S121 ( ) and
case S178 ( ). The settling velocity with respect to the fluid velocity in the vicinity of the particles
as defined in equation 7.2 and is depicted by the circular symbols with corresponding color (•, •, •).

the simulation at absolute values slightly smaller than the values of |ws|. The corresponding
particle Reynolds number was evaluated to ReSp,rel = 137.1 and the difference between the two
velocities was measured to be approximately 3%. Please recall, that the difference between
the two values stems only from the difference in the values of the velocities 〈uSf 〉p and 〈uf 〉Ω,f ,
which was measured to be approximately 3% (cf. table 7.1). On the other hand, due to the
significant difference between the velocities uSf and uf in case M178 and ML178 the mean
particle settling rate wSs deviates significantly from the conventional average settling velocity
ws. In both cases the mean settling rate of the particles was measured to be smaller, but close
to that of the single particle from case S178. In case M178 the difference between the terminal
settling velocity in case S178 and the mean particle settling rate wSf was evaluated to be
3.3% and, surprisingly, in case ML178 even smaller difference of 1.4% was measured. Please
recall that the absolute value of the mean particle settling rate based on the unconditional
average of the fluid velocity was substantially larger than the terminal settling velocity of
the single particle from case S178. This results implies that the particles are preferentially
located (on average) in regions with negative fluid velocity fluctuations and mean values
of the fluid velocity smaller than the box-average. The graphs in figure 7.1suggest that the
choice of the reference fluid velocity “seen” by the particles could play a significant role in
the determination of the mean apparent velocity lag, especially when the particles exhibit
inhomogeneous spatial distribution. Further, this strengthen the remarks in the referenced
literature that an inhomogeneous particle distribution can lead to large spatial variation in the
particle relative velocity and that the local flow field should be incorporated in the calculation
of the mean particle settling rate.

As we saw in the previous chapter §6 the particles in case M178 and case ML178 agglom-
erate into clusters, i.e. regions experiencing high particle concentrations. Combined with the
above observations for the particle relative velocity it is tempting to relate the higher particle
relative velocity to the particle located inside clusters. In order to quantify this, we have
calculated the joint p.d.f. of the fluctuations of the particle settling velocity ws (equation 5.1)
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Figure 7.2: Joint p.d.f.s of the vertical component of the relative particle velocity fluctuations w′p,rel =
wp,rel − 〈wp,rel〉p,t and the fluctuations of the Voronoï cell volumes V ′i = Vi − 〈V 〉p,t. (a) Case M121,
(b) case M178 and (c) ML178. In all three plots the lines indicate contours at 0.2, 0.4, 0.6, 0.8 times the
maximum number of occurrences.

and the fluctuations of the Voronoï cell volume associated to the corresponding particle at
the corresponding time. Figure 7.2 depicts the corresponding p.d.f.s for all three cases. It can
be observed that in case M121, as expected, the two quantities correlates only weekly with
a correlation coefficient of 0.002. On the other hand, the correlation in the two flow cases,
where clustering was observed (M178 and ML178) a positive correlation between the Voronoï
volumes and the particle relative velocity can be observed. The graphs in figure 7.2b,c evidence
that particles associated with small Voronoï cells tend to poses faster than the average settling
velocities (in absolute value) and vice versa particles located in large Voronoï cells own smaller-
than-the-average settling velocities. Thereby, the correlation case ML178 appears to be more
pronounced than in case M178, as evidenced by the larger value of the correlation coefficient
which were evaluated to 0.347 and 0.4531 in case M178 and case ML178, respectively. This
confirms the above suggestion, that particles located inside clusters settle on average faster
than particles located in void regions.

As aforementioned, the particle in case M178 and ML178 are surrounded on average by
fluid with significantly smaller vertical velocity than the box averaged value, i.e. they are
located inside regions with a downward fluid motion when compared to the globally averaged
fluid velocity. Additionally the clusters in case M178 and case ML178 were observed to be
oriented in the vertical direction and to extend throughout the entire vertical length of the
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computational domain with clearly visible patterns of the horizontal projection (figures 6.1,
6.2 and 6.13). Thus, one could expect that the downward fluid motion correlates with the
higher velocity of the particles located inside clusters. This can be qualitatively illustrated in
figure 7.3, where the instantaneous position of the particles (viewed from the top) and the
instantaneous vertical average of the vertical component of the fluid velocity are illustrated.
The particles in figure 7.3 are colored by the fluctuations of their respective settling velocity
w′p,rel(i, t) and the vertical average of the fluid velocity fluctuations is calculated as:

ŵ′f (x, y, t) = 〈wf (x, t)〉z − 〈wf (x, t)〉Ωf , (7.4)

where the definition of the averaging operator 〈·〉z can be found in appendix A. It can be
observed that the vertical component of the relative velocity in case M178 and ML178 strongly
correlates with the spatial distribution of the particles. At locations with high (low) particle
concentration, particles with larger (smaller) absolute values than the average of the vertical
relative velocity are observed. Moreover, the companion figure for the vertically averaged
vertical component of the fluid velocity shows strong correlations with the regions with high
(low) particle concentration. A significantly smaller than the average fluid velocities are
observed at locations with notable particle agglomerations and vice versa for voids. This
indicates the presence of coherent flow structures occupying regions in the horizontal plane of
the order of the size of the particle clusters (cf. chapter §8, figures 8.1 - 8.2). The effect of the
solid volume fraction is clearly visible by a comparison of the two clustering cases. Although
the overall features of the flows in both cases are very similar, it can be observed that, as
expected, the void regions in case ML178 are significantly larger than in case M178 and the
deviation from the average value of both, the particle relative velocity and the fluid velocity
ŵ′f is smaller than in case M178. Time sequences of the plots for case M178 and case ML178
in figure 7.3 (not shown here) reveal that the flow structures (and the particle clusters) do not
change significantly with time.

In case M121, on the other hand, such strong correlations between the particle position
and the relative velocity are not clearly visible. On the contrary, fast and slowly settling
particles appear to be much less clearly segregated in the horizontal direction. Concerning the
vertically average fluid velocity, in case M121 significantly smaller values of ŵ′f than in the
cases M178 and ML178 are observed. Nevertheless, in case M121 a small but finite correlation
between the instantaneous particle settling velocity an the vertically averaged fluid velocity
can be observed, indicating the presence of, although weak, large scale fluid structures in the
background flow.

In order to better quantify the impact of the particle clustering on the particle settling
velocity we performed a particle-conditioned averaging of the vertical component of the
particle relative velocity wp,rel. This allows us to provide a local (macroscopic) view on the
relative distribution of the particle relative velocity in vicinity of the particle surface. The
averaging procedure corresponds to the particle-conditioned averaging of the hydrodynamic
force introduced in section 4.3.3. The number of samples used for the averaging is the same as
in the calculation of the particle-conditioned solid volume fraction in section 6.2. For more
details the reader is referred to appendix A. The particle-conditioned value of the settling
velocity wp,rel(i, t) will henceforth be denoted as w̃p,rel(x̃, z̃), i.e. w̃p,rel(x̃, z̃) = 〈wp,rel(i, t)〉p,t.

Figure 7.4 shows the map of the average velocity w̃p,rel for all three cases. The velocity w̃p,rel
has been normalized with the absolute value of the long-time average of the particle settling
velocity, i.e. |〈wp,rel〉p,t|. Note that, as the particle-conditioned average of the hydrodynamic
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Figure 7.3: (a,c,e) Top view of the particle locations at one instant in time. The particles are colored
according to the fluctuation of their settling velocity w′p,rel/〈wp,rel〉p,t, where w′p,rel = wp,rel−〈wp,rel〉p,t.
(b,d,f) Instantaneous, vertically-averaged fluid velocity fluctuations normalized with the instantaneous
box-average, ŵ′f (x, y, t)/〈wf (x, t)〉Ωf where ŵ′f (x, y, t) = 〈wf (x, t)〉z − 〈wf (x, t)〉Ωf . (a,b) Case M121
at t/τg = 1100.1, (c,d) case M178 at t/τg = 671.8 and (e,f) case ML178 at t/τg = 1167.1.

force, the quantity w̃p,rel is not invariant with respect to the vertical direction z̃. Thus, the
map of the particle-conditioned particle settling velocity is not symmetric with respect to
the horizontal axis x̃. Figure 7.4 clearly shows that in all three flow cases the probability of
finding a particle with higher than the average settling velocity is confined in the wake region
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Figure 7.4: Spatial map of the particle-conditioned average value of the settling velocity, w̃p,rel for (a)
case M121, (b) case M178 and (c) case ML178. The velocity w̃p,rel is plotted as function of the position
(x̃, z̃) with respect to a test particle (vertical plane passing through the center of the reference particle).

of the reference particle, confirming that the trailing particles are settling on average faster
than the average. In case M121 this effect is limited to a compact region extending up to
approximately 40dp downstream of the test particle, after which the velocity w̃p,rel adopts
values close to the average |〈wp,rel〉p,t|. It can be observed that the domain of influence of the
reference particle in the horizontal direction is confined in a narrow region of the order of the
particle diameter. In case M178 and case ML178 on the other hand, the particle-conditioned
average of the particle settling velocity shows features similar to the particle-conditioned solid
volume fraction φconds , i.e. it exhibits an anisotropic spatial distribution oriented in the vertical
direction, which extends downstream from the test particle throughout the entire vertical
length of the computational domain. The absolute values of the particle settling velocity along
this vertical stripe is significantly larger than the ensemble average. Similar to φconds this region
extends in the horizontal direction approximately to 10 particle diameter from the test particle.

The evolution of the particle-conditioned velocity w̃p,rel with the distance from the reference
particle can be studied more conveniently by considering the profiles of w̃p,rel along the vertical
and the horizontal axes through the center of the reference particle, which are depicted in
figure 7.5. In the horizontal direction (figure 7.5a) the particles in case M121 settle on average
with smaller settling velocity than the global average for distances up to 5dp, beyond this
distance the settling velocity is found to be equal to the global average. In case M178 the
opposite is observed: the particles in horizontal distances up to 5dp (extensions of the average
cluster) settle on average with higher velocities than the global average. For larger distances
(r̃x > 5dp) the settling velocity of the particles is found to be smaller than the average quantity.
In case ML178 the particle settling velocity is found to be for all distances smaller than the
global average.

In the vertical direction (figure 7.5b) it can be seen that in case M121 the particle settling
velocity upstream from the reference particle decreases quickly with decreasing distance to the
reference particle. Downstream from the test particle the particle-conditioned settling velocity
increases slowly towards the average global average value, which is reached approximately
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Figure 7.5: Variation of the particle conditioned average value w̃p,rel from figure 7.4 along the two axis
passing through the center of the reference particle, i.e. (x̃, z̃) = (0, 0). (a) in the horizontal direction
(x̃, z̃) = (r̃x, 0). (b) in the vertical direction (x̃, z̃) = (0, z̃). r̃x denotes the radial distance from the
particle surface. Case M121 ( ). Case M178 ( ). Case ML178 ( ).

at z̃ = 48dp from the particle surface. In the clustering cases M178 and ML178 the velocity
w̃p,rel experience similar behavior, it increases at much smaller rate than in case M121, not
reaching the global average value as expected. Regarding the leading particles upstream from
the reference particle (i.e. negative values of z̃) it is found that they settle, on average, faster
than the global average at any distances.

We can preliminarily conclude that the definition of the velocity “seen” by the particles
may play a significant role for the particle motion. We found out that the particles in case
M178 and ML178 settle, locally, at significantly slower rate, close to that of a single particle,
than when a global reference value of the fluid velocity is considered. Moreover, the particles
are preferentially located in regions with downward fluid motion. The settling velocity of the
particles was found to correlate with the particle concentration, with the particles settling on
average faster in regions with higher concentration than the global average. Joint p.d.f.s of the
particle settling velocity fluctuations and the fluctuations of the Voronoï cell volume quantified
this observations. Moreover, it was shown that the fluid velocity correlates with the particle
clusters and was found to be on average smaller in regions with higher particle concentration
than the global average and vice versa for voids.

Particle-conditioned average of the settling velocity revealed that the settling velocity is
spatially distributed in an anisotropic manner, featuring similar pattern as the local solid
volume fraction discussed in chapter §6. In all three flow cases it was found that the particles
downstream of the reference particle settle at higher rates than the global average. The
domain of influence of the reference particle in case M121 was found to be substantially
smaller than in case M178 and ML178. The length scales which can be extracted from
the particle-conditioned analysis of the settling velocity correspond closely to that obtained
from the particle-conditioned average of the solid volume fraction, providing another way of
characterizing the geometry of the particle clusters themselves.

7.1.3 Particle Hydrodynamic force

In this section the hydrodynamic force exerted by the fluid on the particles is investigated.
For the present configurations the drag force (i.e. the vertical component of the force in the
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Figure 7.6: Temporal evolution of the relative turbulence intensity as function of time. Solid lines
Ir =

√
〈u′i,fu′i,f 〉Ωf /3/ws, dashed lines IrV =

√
〈w′fw′f 〉Ωf /ws. Case M121 ( , ), case M178

( , ) and case ML178 ( , ).

present flow cases) was identified in section §1.2.1 as one of the most important hydrodynamic
parameters. Thus, the focus in the present section will be on the drag force of the particles.
The drag force is often expressed in the form of the particle drag coefficient. Despite the large
body of literature (section §1.2.1), the study of the drag coefficient of the particles is by far
not trivial, especially in the presence of multiple freely moving particles, which introduce
additional complexities due to hydrodynamic interactions between the particles. As introduced
in section §1.2.1 a large number of works were devoted to the study of the drag coefficient. In
most of the studies the coupling effects of the flow field on the motion and the hydrodynamic
forces of the particles were investigated. In this context, the so called relative turbulence
intensity is used as parameter to characterize the interaction between the particles and the
(pseudo) turbulent flow field. Before we turn to the results of the hydrodynamic force, let us
first briefly discuss the relative turbulence intensities of the flow fields observed in the present
flow configurations.

The relative turbulence intensity is often defined as the ratio between the intensity of the
incoming fluid fluctuations and the apparent slip velocity of the particles. In isotropic flows
the definition of the relative turbulence intensity is often based upon the three-component
(pseudo) turbulent intensities, viz.:

Ir = (〈u′f,iu′f,i〉Ωf /3)1/2/ws, (7.5)

whereas in cases with unidirectional mean flow (here in the z-coordinate direction) the
following definition is commonly employed:

IrV = (〈w′fw′f 〉Ωf )1/2/ws. (7.6)

By definition the relative turbulence intensity measures the influence of the fluid fluctuations
on the particle settling and reflects the relative importance of the flow (IrV � 1), or the
settling of the particles (IrV � 1). In the limit of IrV → 0, the fluid motion is expected to have
negligible effects on the particle settling, whereas for IrV →∞, the gravity induced relative
motion is expected to be irrelevant.
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Figure 7.6 depicts the temporal evolution of the relative turbulence intensity IrV (Ir) for all
three flow configurations. Although, the flow in the present simulations is not considered to be
turbulent in the general sense, the relative turbulence intensities in the present simulations are
showed to be comparable to the turbulence levels often considered in studies of the influence
of background turbulence upon the particle motion, e.g. Wu and Faeth (1994); Bagchi and
Balachandar (2003, 2004); Yang and Shy (2005); Legendre et al. (2006); Poelma et al. (2007);
Snyder et al. (2008); Amoura et al. (2010). It can be observed that the relative turbulence
intensity exhibits similar temporal evolution as the fluid velocity fluctuations (cf. figure 5.3).
In case M121 the values of IrV (Ir) reach quickly their asymptotic value and as the fluid
velocity fluctuations, experience similar low frequent fluctuations with time scale of the order
of 1000τg. In case M178 the values of IrV (Ir) increase more slowly and oscillate around their
asymptotic value with comparably shorter period. The relative turbulence intensity clearly
shows dependence with the solid volume fraction, the values of IrV (Ir) in case ML178 are
significantly smaller than in case M178. The temporal evolution of the relative turbulence
intensity in case ML178 shows an uptrend, suggesting that the flow may still develop. This
suggests the presence of low frequent oscillation with time scales of the order of 1000τg, which
is opposite to the temporal evolution in case M178 (please note that the simulated time in
case ML178 is longer than in case M178). A much longer simulation times may be required
until the flow field reaches a statistically steady state. This needs to be addressed in a future
study. The relative turbulent intensities IrV (Ir) observed in the present work ranges from
approximately 0.12 (0.07) in case ML178 to 0.2 (0.12) in case M121 and 0.25 (0.15) in case
M178. Therefore, we can assume that in the present flow configurations the fluid motion may
significantly affect the motion of the particles.

Now let us turn to the average drag force experienced by the particles. It is common
practice to specify the drag force in the form of the drag coefficient. Commonly the mean drag
coefficient of the particles is defined as:

Cd = 〈fz〉p
1
2ρfApw

2
s

, (7.7)

where ρf is the fluid density and Ap = πr2
p is the projection area of the particles. As can be seen

the definition of the mean drag coefficient depends on the particle relative velocity, hence the
definition of the mean fluid velocity seen by the particle is crucial for the determination of the
mean drag coefficient. As shown above, the mean fluid velocity seen by the particles obtained
by the global averaging over the entire volume occupied by the fluid differ substantially from
that obtained by using the local fluid velocity in vicinity of the particles, especially when the
particles do not sample the computational volume homogeneously. Therefore, additionally to
the definition of the drag coefficient in equation 7.7 we employ the following definition based
on the local relative velocity wSs (equation 7.2):

CSd = 〈fz〉p
1
2ρfAp(wSs )2 . (7.8)

It can be shown that the fractional difference between the two definitions of the drag coeffi-
cients Cd and CSd can be expressed as:

|CSd | − |Cd|
|CSd |

= 1−
(
|wSs |
|ws|

)2

. (7.9)
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Figure 7.7: (a) Time evolution of the particle ensemble average of the vertical component of the
hydrodynamic force, fz, for case M121 ( ), case M178 ( ) and case ML178 ( ). The
force is normalized by the reference force defined in equation 3.7. The circular symbols depict the
hydrodynamic force when normalized by the reference force based on the local fluid velocity uSf (•, •,
•). (b) Mean particle drag coefficient for case M121, case M178 and case ML178 (color coding as in
sub-figure (a)). Open symbols represent the time average of the of the values of the circular symbols in
sub-figure (a). Filled symbols represent the time average of the hydrodynamic force (line plots) shown
in sub-figure (a) at the stationary state. Black dashed line ( ) corresponds to the standard drag
curve (Clift et al., 1978, table 5.2, s. 112) and the blue dashed line ( ) corresponds to the drag
coefficient as defined by Schiller and Naumann (1933).

For case M121 this difference calculates to 6.2% and in the cases M178 and ML178 to 24.8%
and 30.6%, respectively, indicating the large influence of the definition of the fluid velocity
seen by the particles, especially in the clustering flow cases.

Figure 7.7a depicts the temporal evolution of the mean particle drag coefficient Cd and
CSd for all three cases. It can be observed that the particle drag coefficient according to the
definitions in equations 7.7 and 7.8 experience similar evolution with time as the corresponding
mean particle settling rates ws and wSs (cf. figure 7.1). In case M121 the curve of the drag
coefficient remains essentially flat over the entire course of the simulation, whereas in case
M178 and case ML178 the coefficient Cd experiences small temporal fluctuations. On the
other hand, the values of CSd are approximately constant during the simulation. In figure 7.7b
the time averaged of the coefficients Cd and CSd is shown. Please note that the average in
all three cases is taken at times at which the flows are considered as statistically steady. For
comparison the standard drag curves as defined in Clift et al. (1978, table 5.2, s. 112) and
Schiller and Naumann (1933) are shown as well. Henceforth, the drag coefficients computed
according to the correlations of Clift et al. (1978) and Schiller and Naumann (1933) will
be denoted by CCliftd and CSNd respectively. As can be seen the values of Cd and CSd in case
M121 are larger than the predictions of Clift et al. (1978) and Schiller and Naumann (1933),
whereas in case M178 and ML178 the values of Cd (CSd ) are over (under) predicted by CCliftd

and CSNd . Here we would like to stress that the values of CCliftd and CSNd are obtained for a
single fixed particle in uniform flow, which is in strong contrast to the flow conditions in the
present study. For better comparison the exact values of the drag coefficients Cd, CSd , CCliftd

and CSNd are shown in table 7.2.
In order to investigate the effects of mobility and clustering on the mean drag experienced

by the particles, we have compared the values of the mean drag coefficient Cd obtained from
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case Rep,rel (ReSp,rel) IrV CCliftd CSNd 〈Cd〉t 〈Cid〉p,t 〈CSd 〉t 〈C
Si
d 〉p,t 〈C

−
d 〉t 〈C

+
d 〉t

M121 141.1 (137.1) 0.203 0.914 0.93 0.98 1.058 1.042 1.068 1.338 0.754
M178 260.5 (225.7) 0.253 0.687 0.725 0.635 0.725 0.83 0.863 0.991 0.450
ML178 275.6 (230.4) 0.117 0.673 0.71 0.621 0.657 0.80 0.81 0.819 0.619

Table 7.2: Comparison of various definitions of the drag coefficient for the mean particle drag in all
three cases M121, M178 and ML178: CCliftd according to the relation in Clift et al. (1978, table 5.2, s.
112); CSNd according to the relation in Schiller and Naumann (1933); Cd, 〈Cid〉p,t, CSd , 〈CSid 〉p,t as in
equations 7.7 - 7.11; C+

d (C−d ) indicate the drag coefficient based on the mean drag force plus (minus)
the r.m.s. particle force in the streamwise direction, normalized by the reference force based upon the
mean slip velocity ws plus (minus) the r.m.s. streamwise fluid velocity.

the simulations with the fixed particles (F121 and F178) and the mobile particles (M121 and
M178). In the case with the smaller Reynolds number (Rep,rel = 141) the observed values
of Cd in case M121 are slightly smaller than in case F121, with the difference measuring
approximately 3.9%. The difference becomes even smaller, approximately 2.16%, when instead
the value of CSd is used in caseM121 for comparison. This indicates that the effect of mobility in
case M121, under this configurations (particle-to-fluid density ratio and solid volume fraction)
has only minor effect on the mean drag experienced by the particles. On the other hand the
difference between the values of Cd in case F178 and M178 was measured to be as high as
20.6% with significantly smaller values in the case of mobile particles M178. Indicating that the
inhomogeneous particle distribution in case M178 leads to a significant reduction of the mean
drag coefficient of the particles (based on the global average values). However, a significantly
different picture is observed, when the value of the drag coefficient based on the local fluid
velocity CSd is considered in case M178. The difference than reduces to 3.7%, indicating that
locally the particles in case F178 and M178 are exposed to flow conditions causing similar
drag values.

Please recall that the values of the mean drag force in the fixed particle simulations F121
and F178 resembled closely the values of the drag force of the single particles in case S121 and
S178. Thus, the difference between the drag of the single settling particle and the mean drag
Cd (CSd ) of the multiple settling particles results in the case with Rep,rel = 141 to 2.2% (4%)
and in the case with Rep,rel = 245 to 18.6% (6.4%), respectively. It appears that the higher
mean settling rate of the particles ws in case M178 (when compared to the single particle)
resulting, most probably, from the agglomeration of the particles into clusters correlates with
the significantly smaller values of the drag coefficient. Therefore, it is tempting to relate the
smaller drag observed in case M178 to the particles located inside clusters.

In order to investigate the effect of the clusters on the particle drag more qualitatively, we
have computed, the joint distribution of the Voronoï volume fluctuations and the instantaneous
fluctuations of the normalized drag force experienced by each individual particle Cid, where Cid
is defined as:

Cid(t) = fz(i, t)
1
2ρfApw

2
p,rel(i, t)

, ∀i = 1, . . . , Np. (7.10)

The corresponding joint distribution can be found in figure 7.8 for all three cases. It can be
observed that similar to the joint p.d.f. of the Voronoï cell volume and the particle settling
velocity, the two quantities in case M121 correlates weekly with a correlation coefficient of
0.002. On the other hand, the graphs for case M178 and case ML178 evidence a positive
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Figure 7.8: Joint p.d.f.s of the drag coefficient fluctuations C ′d = Cid − 〈Cid〉p,t and the fluctuations of
the Voronoï cell volumes V ′i = Vi − 〈V 〉p,t. (a) Case M121, (b) case M178 and (c) case ML178. In all
three plots the lines indicate contours at 0.2, 0.4, 0.6, 0.8 times the maximum number of occurrences.

correlation between the Voronoï volumes and the particle drag coefficient. Particles associated
with small Voronoï cells (i.e. particles located inside clusters) tend to have smaller than the
average drag coefficient and vice versa for voids. Similar as in figure 7.2 the correlation in
case ML178 appears to be more pronounced than in case M178, resulting in larger values of
the correlation coefficient which was calculated to 0.315 in case ML178 and to 0.471 in case
ML178. This implies that the higher clustering levels in case ML178 correspond to smaller
values of the drag coefficient than in case M178 (cf. table 7.2). We have further calculated
the drag coefficient in the clustering cases M178 and ML178 conditioned on the location of
the particles, i.e. we calculated the drag coefficient for all particles located inside clusters
and voids respectively. In case M178 it was observed that the drag of the particles located
inside clusters (voids) was 2.3% (2.5%) smaller (larger) than the average. In case ML178,
however the difference between the drag of the particles associated with clusters (voids) from
the average was found to be substantially larger, viz. 12.1% (21.6%) smaller (larger) than the
average drag inside clusters (voids).

The smaller deviation of the mean drag coefficient CSd based on the local fluid velocity wSs
from the values of the drag coefficient in of the single particle simulations S121, S178, respec-
tively the fixed particles F121, F178 indicates that the local instantaneous drag experienced
by the particles is less dependent on the spatial distribution of the particles. An evidence of
this can be found in the corresponding joint p.d.f. (plot omitted) of the Voronoï cell volume
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fluctuations and the instantaneous drag coefficient based on the local fluid velocity CSid , which
is defined as:

CSid (i, t) = fz(i, t)
1
2ρfAp(w

S
p,rel(i, t))2 , ∀i = 1, . . . , Np. (7.11)

The corresponding correlation coefficients was measured in case M121 to 0.007, whereas the
values for case M178 and case ML178 were evaluated to much smaller values of 0.021 and
0.019, respectively.

For the particle Reynolds numbers as in the present flow cases, it is known that the drag
coefficient depends in a non-linear manner on the particle Reynolds number (Clift et al., 1978).
As discussed above, the mean drag is however dependent on the definition of the mean fluid
velocity seen by the particle. The non-linear dependence of the mean drag can be represented
by the difference of drag coefficient defined in equation 7.7 (equation 7.8) and the particle
ensemble average of the coefficient defined in equation 7.10 (equation 7.11) (Bagchi and
Balachandar, 2003), i.e. ∆Cd(t) = Cd(t)− 〈Cid(t)〉p (∆CSd (t) = CSd (t)− 〈CSid (t)〉p). Table 7.3
depicts the time averaged values of ∆Cd and ∆CSd for all three cases. Concerning the difference
of ∆Cd, the largest difference is observed for case M178 and measures approximately 14%,
while in case M121 and ML178 similar values can be observed, viz. 〈∆Cd〉t = 7.3% and
〈∆Cd〉t = 5.8% respectively. It is interesting to note that the difference of the drag coefficient
based on the local fluid velocity in vicinity of the particles 〈∆CSd 〉t measure in all three cases
significantly smaller values than 〈∆Cd〉t with the largest value again observed in case ML178.
This results indicate that the non-linear drag effect is largest in case M178, where the largest
values of the relative turbulence intensity IrV were measured. As noted above, high values of
the relative turbulent intensity would lead to large variations of the particle relative velocity,
hence large variation in the drag coefficient of the individual particles (e.g. Cid). Consequently
the particle ensemble average of the drag coefficient Cid can deviate from the mean drag based
on the average particle relative velocity Cd. Therefore, non-linear drag dependence is expected
to be significant for large levels of the relative turbulence intensity. The substantial difference
〈∆Cd〉t measured for case M178 also suggest the importance of the particle clustering or
potential preferential particle trajectory on the mean drag. However, as evidenced in table 7.3,
the difference 〈∆CSd 〉t was measured to be similar for all values of the relative turbulence
intensity showing only weak dependence wit IrV . This indicates that the definition based on
the local relative velocity is somehow more robust with respect to the values of the relative
turbulence intensity in the present flow configurations.

The non-linear drag effect can be further investigated by considering the mean drag force
plus (minus) the r.m.s. drag force normalized by the reference force based upon the mean slip

case 〈∆Cd〉t 〈∆CSd 〉t
M121 7.3% 2.5%
M178 14% 3.9%
ML178 5.8% 1.25%

Table 7.3: Difference between the time average of the drag coefficients defined in equations 7.7 and
7.10 (equations 7.8 and 7.11), i.e.: 〈∆Cd〉t = 〈Cd − 〈Cid〉p〉t (〈∆CSd 〉t = 〈CSd − 〈C

Si
d 〉p〉t).
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Figure 7.9: Spatial map of the particle-conditioned average value of the vertical hydrodynamic force,
〈f̃z〉p for (a) case M121, (b) case M178 and (c) case ML178. The velocity 〈f̃z〉p is plotted as function
of the position (r̃x, z̃) with respect to a test particle (vertical plane passing through the center of the
reference particle).

velocity ws plus (minus) the r.m.s. of the vertical component of the fluid velocity, viz.:

C±d (t) = 〈fz〉p ± σ(fz)
1
2ρfAp(ws ± σ(wp,rel))2 . (7.12)

The non-linear drag effect manifests itself in a larger increase of the drag coefficient C−d than a
decrease of C+

d , i.e. in the non-linear drag regime the drag of the particles decrease at a slower
rate with the particle Reynolds number than the rate at which the Reynolds number increases.
The time averaged values for all three cases are depicted in table 7.2. As can be observed, the
values of both 〈C−d 〉t and 〈C+

d 〉t deviate significantly from the mean drag coefficient 〈Cd〉t with
bias towards 〈C−d 〉t leading to a net increase of the drag coefficient. In particular the value
of the drag coefficient 〈C+

d 〉t in case M121 was measured to be 22% smaller than the average
value 〈Cd〉t, whereas the value of 〈C−d 〉t was 26% larger than 〈Cd〉t. In case M178, where the
relative turbulence intensity is the largest, the drag coefficients 〈C+

d 〉t and 〈C−d 〉t deviate from
the averaged value by approximately 29% and 35% respectively. The corresponding values
in case ML178 were calculated to 21% and 24% for 〈C+

d 〉t and 〈C−d 〉t. Therefore, even for
particles with a normal distributed velocity field, the distribution of the normalized drag force
will eventually deviate from the normal distribution. We have checked this by performing this
experiment of Monte-Carlo type (plots omitted), that indeed this leads to a net increase of
the drag coefficient. More qualitative analysis for the present flow cases can be performed by
studying the probability distribution of the hydrodynamic force, which will be conducted in
the next section.

In order to investigate the microscopic properties of the hydrodynamic force we have
performed particle-conditioned averaging of the vertical component of the hydrodynamic
force exerted by the fluid on the particle. The averaging is performed in the same way as in
section §4.3.3. Figure 7.9 shows the two-dimensional map of the vertical component of the
particle averaged force, 〈f̃(x̃, z̃)〉p,t. The force has been normalized with the absolute value of
the unconditioned long-time average of the vertical component of the hydrodynamic force,
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Figure 7.10: Variation of the particle conditioned average value of 〈f̃z〉p from figure 7.9 along the
two axis passing through the center of the reference particle, i.e. (x̃, z̃) = (0, 0). (a) in the horizontal
direction (x̃, z̃) = (r̃x, 0). (b) in the vertical direction (x̃, z̃) = (0, z̃). r̃x denotes the radial distance
from the particle surface in the horizontal direction. Case M121 ( ). Case M178 ( ). Case
ML178 ( ).

i.e. |〈fz〉p,t|. As can be seen the particle conditioned vertical component of the hydrodynamic
force experience the same patterning as the particle conditioned settling velocity in figure 7.4.
In all three cases the spatial distribution of 〈f̃z〉p,t in the vertical plane is highly anisotropic
oriented preferentially in the vertical direction. In all three cases the vertical component
of the hydrodynamic force downstream from the reference particle is significantly smaller
than the average value. In case M121 the averaged value is recovered approximately 60dp
downstream from the particle. In case M178 and ML178 on the other hand, the pattern
extends throughout the entire vertical length of the computational domain. In case M178 the
vertical stripe with values of the drag force smaller than the mean extends in the horizontal
direction approximately 5dp on both sides of the reference particle (almost independent from
the vertical coordinate z̃). However, the domain of influence of the reference particle in case
ML178 is observed to be much wider in the horizontal direction than in case M178, extending
almost 40dp, which is in line with the observation in figure 7.4. Comparison with figure 7.4
clearly shows the correlation of the particle settling velocity with the drag force, i.e. the regions
with higher than the average particle settling velocity corresponds to the regions with smaller
than the average drag force.

The profiles of the particle-averaged drag force on the horizontal and vertical axis through
the center of the test particle are shown in figure 7.10. In the horizontal direction it can be
observed that in all three cases close to the test particle the force 〈f̃z〉p,t is larger than the
average force. In case M121 the force decreases with the horizontal distance and converges
for r̃x > 5dp towards the average value. In the two clustering cases the force decreases and
becomes smaller than the average for distances approximately up to 5dp in case M178 and
10dp in case ML178. Please note that this extensions corresponds roughly to the horizontal
extensions of the particle clusters. Beyond this distances the force becomes larger than the
average force and converges slowly towards unity.

Regarding the vertical direction downstream from the reference particle, the drag force
decreases immediately behind the test particle after which it increases slowly towards its
asymptotic value. In all three cases the minimum of the particle-conditioned drag force appear
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to be at approximately the same distance of 1.3dp behind the reference particle. As can be seen
the force drops nearly 45% in all three flow cases. While in case M121 the normalized force
reaches unity, in the clustering cases M178 and ML178 the force do not converge to unity in
the present configurations.

In this section we studied the dominant component of the hydrodynamic force. The results
showed that the drag coefficient (normalized drag force), based on the unconditioned particle
settling velocity ws in the clustering cases is significantly smaller than the standard drag
and the hydrodynamic force of the corresponding simulations with single settling particle.
This was largely due to the strong clustering observed in both cases M178 and ML178, as
evidenced by the joint distribution of the Voronoï cell volume and the fluctuations of the drag
coefficient. In case M121 however, the difference was measured to be much smaller. Further,
we showed that the deviation of the drag force was the largest in the case with the largest
relative turbulence intensity and vice versa the smallest deviation was observed for the smallest
value of the relative turbulence intensity. When the particle relative velocity based on the
local fluid velocity, wSs , was used for the normalization of the drag force, the drag coefficient
in all three cases was found to be close to that of a single particle. Moreover, the deviation
from the average was substantially smaller than when ws was used. As expected, the effect
of the non-linear drag was found to be more prominent in the case with the largest relative
turbulence intensity, leading to a net increase of the drag. Finally, particle-conditioned average
of the drag force showed an anisotropic spatial distribution of the hydrodynamic force and a
strong correlation with the particle settling velocity. The results for the particle hydrodynamic
force and the particle settling velocity appear to support the above suggested wake attraction
mechanism responsible for the clustering of the particles, i.e. particles in the wake of a leading
particle tend to experience smaller drag and have larger settling velocity than the leading one.

7.2 Fluctuating quantities

In this section the influence of the self-induced pseudo-turbulent flow field upon the motion
of the particles and the resulting statistics, such as the fluctuations and the distribution of (i)
the particle translational and angular velocity components and (ii) the force and torque of
the particles, is going to be discussed. The Lagrangian particle statistics are presented and
discussed as well.

Besides the mean particle settling velocity, the fluctuations of the particle velocity are of
particular interest, especially since the surprising theoretical divergence of the particle velocity
fluctuations for particles settling in Stokes flows showed by Caflisch and Luke (1985). Since
then, a significant amount of theoretical as well as experimental and numerical works were
accumulated. However, most of the studies considered low Reynolds number flows, e.g. Koch
and Shaqfeh (1991); Koch (1993); Nicolai and Guazzelli (1995). Recent studies of Bunner
and Tryggvason (1999); Cartellier and Riviére (2001); Climent and Maxey (2003) and Yin
and Koch (2008) considered flows with finite but small particle Reynolds number of the order
of O(10). A recent comprehensive review on the topic can be found in Guazzelli and Hinch
(2011). Surprisingly, our review of the literature revealed, that little is known about the
particle velocity fluctuations of particles settling with particle Reynolds number of the order
of O(100). As soon as the sedimentation of many particles is considered, the motion of the
particles is influenced by the neighboring particles as result from the large scale hydrodynamic
interactions between the particles. Thus, in most of the mentioned works, the particle wakes
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were inferred to be the key factor responsible for the particle velocity fluctuations. Furthermore,
the hydrodynamic interaction between the particles could lead to change of the micro-structure
of the dispersed phase without even changing the macroscopic structure of the suspension
(as in case M121, cf. section 6.3). Therefore, the micro-structure of the dispersed phase was
identified also as one of the key parameters determining the particle velocity fluctuations.
Consequently, even very dilute mono-disperse suspensions with small Reynolds number and no
evidence of particle agglomeration will encounter deviations of the particle velocity from its
mean.

Let us return to the fluctuations of the particle translational velocity. In section §5.2 the
initial transient and the time evolution of the particle velocity fluctuations was already briefly
discussed (figure 5.3b). As aforementioned, the velocity of the particles in all three cases
experienced significant fluctuations where the vertical component can reach a maximum
value of up to 25% (case M178) of the terminal settling velocity. Moreover, the fluctuations
of the particle velocity evidenced strong anisotropy, the fluctuations of the vertical velocity
component in all three cases are approximately 2.2 times the fluctuations of the horizontal
velocity components. This suggests, that significant amount of momentum is transferred from
the vertical to the horizontal direction in all three cases. Please recall that asymptotically an
isolated particle in case S121 settles with a constant velocity along a straight axi-symmetric
trajectory, while an isolated particle in case S178 settles steadily along an oblique path in a
random horizontal direction. Therefore, ensemble average of many realizations of isolated
particles as in case S121 would lead to zero r.m.s. values of the particle velocity. However, the
same ensemble averaging for many particles as in case S178 would lead to non-zero value of
the r.m.s. of the horizontal component of the particle velocity, due to the randomness of the
horizontal orientation of the velocity vector. In particular, it can be shown that the normalized
r.m.s. value of the horizontal velocity component (e.g. considering the x-direction) results in:

〈u′pu′p〉
1/2
p

ws
= upH
upV

1√
2
, (7.13)

where upH and upV are the absolute values of the particle velocity in the horizontal plane
and in the vertical direction, respectively, obtained from the simulation of an isolated particle.
The quantity in equation 7.13 was evaluated in cases M178 to 0.11 and in case ML178 to
0.09. This values proved to be larger than the value obtained for an ensemble of cases S178,
i.e. 〈u′pu′p〉

1/2
p /ws = 0.065 (Uhlmann and Dušek, 2014). This results show that the simple

superposition of isolated particles settling in an uniform undisturbed flow cannot approximate
satisfactory the velocity fluctuation amplitude of the particles in case M178 and ML178.
Moreover, such a superposition yields a zero fluctuation amplitude of the vertical particle
velocity component, which is clearly not true in the present flow configurations. However,
there is a clear dependence with the solid volume fraction. As one would expect, in the limit
of vanishing solid volume fraction (Φs → 0) a simple superposition will eventually reproduce
the velocity fluctuation amplitude. Unfortunately, due to high computational cost we were not
able to determine the critical value of the solid volume fraction and this needs to be addressed
in future works.

The strong anisotropy of the particle velocity fluctuations is not unusual for sedimenting
suspensions and was observed in the majority of the studies considering the sedimentation
or the rise of particles. The work of Parthasarathy and Faeth (1990b) is one of the most
relevant studies to the present work. They performed experiments of particles settling under
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the influence of gravity in an nearly stagnant water bath with particle Reynolds number larger
than 150. The authors observed significant fluctuations of the cross stream velocity particularly
for particles with particle Reynolds number larger than 150 and concluded that one of the
factors responsible for this behavior are the unsteady lateral forces on the particles due to eddy
shedding at higher terminal particle Reynolds number. Recently, Zenit et al. (2001) performed
experiments of mono-disperse bubbles rising in a vertical channel with high Reynolds number.
They reported values of the bubble velocity variance in the order of O(0.1) and the variance
ratio of the vertical to the horizontal velocity components was measured to be 2.01. Surprisingly,
similar values of the vertical to horizontal particle velocity ratio were observed in the studies
with small, but finite Reynolds numbers, e.g. Bunner and Tryggvason (1999) and Climent and
Maxey (2003) reported a ratio of three and Bunner and Tryggvason (2002) observed a value
of approximately two for the lowest volume fraction considered in their studies.

As next we will decompose the particle velocity in order to investigate the different
contributions to the fluctuations of the particle velocity, especially those resulting from the
motion of the fluid surrounding the particles. Using the definition of the fluid velocity seen by
the particle, uSf (cf. section §7.1.1), it can be shown that the variance of the particle velocity
components can be decomposed as follows (Uhlmann and Doychev, 2014), e.g. for the vertical
velocity component:

〈w′pw′p〉p = 〈wS ′f wS ′f 〉p + 〈wS ′p,relwS ′p,rel〉p + 2〈wS ′p,relwS ′f 〉p, (7.14)

where all velocity fluctuations are defined with respect to the instantaneous particle ensemble
average:

w′p(t) = wp(t)− 〈wp(t)〉p, (7.15)

wS ′p,rel(t) = wSp,rel(t)− 〈wSp,rel(t)〉p, (7.16)

wS ′f (t) = wSf (t)− 〈wSf (t)〉p. (7.17)

The relation in equation 7.14 defines implicitly the contributions to the particle velocity
variance stemming from the (r.h.s. of equation 7.14 from left to right) (i) fluctuations of the
fluid velocity in the vicinity of the particles, (ii) particles’ relative motion with respect to the
local fluid velocity and (iii) cross correlation between the former two velocity fluctuations.

The variance of the vertical particle velocity component and the above introduced three
contributions to it are depicted in figure 7.11 for all three cases (note that this is the square of
the quantity shown in figure 5.3b). It can be observed that in all three cases the contribution
from the cross-correlation 〈wS ′p,relwS ′f 〉p is substantially smaller than the remaining two con-
tributions, indicating that the fluctuations of the local fluid velocity and the particle velocity
are only weakly coupled. This confirms the observations made in the previous section §7.1.3
that the drag coefficient based on the local relative velocity wSs correlates weakly with the
location of the particles in the flow. In all three cases the dominant contribution stems from
the fluid velocity in vicinity of the particles 〈wS ′f wS ′f 〉p and it accounts for approximately 61.5%
in case M121 and for 82% and 59.3% in the cases M178 and ML178, respectively. However,
the values in the corresponding flow cases differ significantly. In case M178 the time average
value of 〈wS ′f wS ′f 〉p/w2

ref is approximately three times larger than in case M121 and 2.33 times
larger than in case ML178. Moreover, its temporal evolution exhibits a similar shape as the
total particle velocity fluctuation energy. On the other hand, the energy of the fluctuations of
the particle velocity relative to the surrounding fluid, 〈wS ′p,relwS ′p,rel〉p/w2

ref , is in all three cases
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Figure 7.11: Variance of the particle vertical velocity component, 〈w′pw′p〉p ( ), and its three
contributions (cf. equation 7.13): 〈wS ′f wS ′f 〉p (×), 〈wS ′p,relwS ′p,rel〉p (◦), 2〈wS ′p,relwS ′f 〉p (4). (a) Case
M121. (b) Case M178. (c) Case ML178.

approximately constant in time and have nearly the same contribution to the total fluctuation
of the particle velocity 〈w′pw′p〉p/w2

ref . Comparison between the three flow cases revealed
that the actual difference between the observed values is rather small, when compared to
the difference in the local fluid velocity contributions. The time average in case M178 was
evaluated to be approximately 23.7% larger than in case M121 and nearly 57% larger than in
case ML178. The rather flat curves of 〈w′pw′p〉p/w2

ref in figure 7.11 suggest that the temporal
behavior of the energy of the local fluid velocity fluctuations is responsible for the shape of the
total particle velocity fluctuation energy.

The above results imply that the larger overall fluctuating energy in case M178 is mostly
due to an increase of the fluctuating energy of the fluid velocity seen by the particles. When
comparing the clustering and the non-clustering flow cases, it is tempting to relate the higher
fluctuating energy of the particle velocity in case M178 to the occurrence of particle clustering
and therewith resulting increase of the energy of the surrounding fluid velocity which the
particles experience, wS ′f . However in case ML178, at the same Galileo number and smaller
solid volume fraction, the fluctuating energy is observed to be smaller than in case M178
(recall, that the clustering in case ML178 is stronger than in case M178). The variation of the
fluctuating energy of the particle velocity, respectively, their contributions between all three
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cases is, however, consistent with the values of the relative turbulence intensity observed in the
corresponding simulations. The largest fluctuating energy is measured for the highest values
of the relative turbulence intensity. Therefore, the relative turbulence intensity could be used
as a indirect measure of the variance of the particle velocity.

Concerning the horizontal component of the particle velocity the above analysis obtains
qualitatively the same results (plots omitted), i.e. the fluctuations of the local fluid velocity uS ′f
are the dominant contribution to the fluctuation of the particle velocity and responsible for
their temporal evolution.

The fluctuations of the horizontal particle velocity (cf. figure 5.3b) indicate that the flow
field induces motion of the particles in the horizontal direction. Recall that an isolated particle
in case M121 settles steadily on a vertical path, while an isolated particle in case S178 settles
steadily along an oblique path in a random horizontal direction (cf. chapter §3). Thus, the
question arise to what extent the motion of the single particle is relevant for the motion of the
particle suspension. For this reason we have investigated the distribution of the instantaneous
angle α of a particle’s trajectory relative to the average fluid velocity with respect to the vertical
axis z. This study will allow us to investigate the influence of the presence of multiple particles
on the settling regime of the individual particles in the particle suspension. The angle α can be
simply calculated by the following relation:

α(i, t) = tan−1


√
u2
p,rel(i, t) + v2

p,rel(t)
|wp,rel(i, t)|

. (7.18)

Figure 7.12a depicts the probability density function of the angle α as computed in equation
7.18. As can be seen the most probable angles in the flow cases M178 and ML178 is close to
that of the single particle from case S178 (depicted by the dashed vertical line). This indicates
that, at the considered solid volume fractions and despite the strong agglomerations found in
M178 and ML178, the motion of the particles is on average close to that of a corresponding
isolated particle. The relative difference to the angle of the single particle was calculated in
case M178 to 7.4% and, surprisingly, in case ML178 to only 2.1%. The standard deviation in
case M178 (i.e. σ(α) = 4.3 degrees) was found to be larger than in case ML178 (i.e. σ(α) = 3.1
degrees). On the other hand, in case M121 the most probable angle deviates substantially from
that of an isolated particle (which is equal to zero). The peak observed in the p.d.f. was found
at α = 3.2 degrees. The standard deviation was measured at slightly smaller (larger) value
σ(α) = 3.7 than in cases M178 (ML178). Again, the deviation from the mean value correlates
with the values of the relative turbulence intensity. The non-zero value of the most probable
angle in case M121 indicates that the hydrodynamic interactions with the particle-induced
pseudo-turbulent flow field have large effect on the instantaneous motion of the individual
particles.

The decay of the fluctuations of the angle α from the mean can be better discussed in
a semi-log scale, as shown in figure 7.12b. As can be seen, the right tails of the p.d.f.s for
sufficiently large α exhibit purely exponential decay, i.e. p.d.f.(α) ∼ exp (−aα) with positive
values for a. In case M178 the exponential behavior is clearly visible for α & 15 degrees,
whereas in case M121 the exponential decay (at the same rate) matches a small range of
angles around α ≈ 30 degrees. Concerning case ML178, the decay is at faster rate than in the
flow cases with the higher value of the solid volume fraction.

The fluctuations of the particle velocity in the horizontal direction as well as the broad
probability distribution of the angle α indicate that the particles are most probably subjected
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Figure 7.12: Probability density function of the angle α between the relative particle velocity vector and
the vertical axis, defined as tan (α) = (u2

p,rel + v2
p,rel)1/2/|wp,rel|, measured in degrees, for case M121

( ), case M178 ( ) and case ML178 ( ). The vertical dashed line ( ) denotes the
value obtained in the single particle simulation S178. (b) shows the same data in a semi-log scale. The
blue dashed line ( ) is proportional to exp (−aα) with a = 0.285, whereas the blue chain-dotted
line ( ) corresponds to decay rate of a = 0.385.

to rotation around their own axis, especially in cases M178 and ML178. In the following the
fluctuations of the particle angular velocity will be discussed. Figure 7.13 depicts the temporal
evolution of the fluctuations of the particle angular velocity for all three cases. It can be
observed that in all three cases the amplitude of the fluctuations of the particle angular velocity
components is significantly smaller than of the particle translational velocity (cf. figure 5.3b).
In all three flow cases the angular velocity fluctuations exhibit anisotropic behavior (horizontal
component larger than the vertical component), due to the predominant vertical motion of the
particles and the fluid, respectively. Please note, that fluctuations of the vertical fluid velocity
are mainly responsible for the rotation around the horizontal axis, while the rotation around
the vertical axis is generated by fluctuations of the horizontal fluid velocity component. In case
M121 the fluctuations for both angular velocity components reach quickly their asymptotic
value and the curves remain rather flat over the entire course of the simulation. On the other
hand, in case M178 the fluctuating energy increase more slowly with time and reach their
asymptotic value after approximately 200τg. Please recall that the particles statistics in case
ML178, at the time the simulation is started, are already at steady state, thus the large initial
values for the fluctuations in case ML178.

The current results appear to be consistent with the observations in Kajishima (2004a) with
values of the horizontal angular velocity fluctuations being of the same order of magnitude as
as in the present work. In their work the authors considered similar flow configuration as in
the present study and investigated the influence of the particle rotation on the particle clusters.
Further they argued that due to a Magnus force generated by the rotation of the particles
tend to destabilize the particle agglomerations leading to periodical break-up of the particle
clusters. For the clustering cases in the present work we could not find statistical evidence of
this statement. In fact, as we saw in figure 6.6 the variance of the normalized Voronoï volumes
fluctuates in time, but the fluctuations remain rather small. However, the Voronoï analysis
provides a global view of the clustering, thus a further detailed analysis of the particles inside
and on the periphery of clusters is required.
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Figure 7.13: Temporal evolution of the fluctuating energy of the particle angular velocity components
for case M121 ( , ), case M178 ( , ) and case ML178 ( , ). Solid lines
correspond to horizontal velocity components (α = 1, 2), dashed lines show the vertical velocity
component (α = 3). The reference velocity wref denotes the absolute value of the terminal settling
velocity |w∞| obtained from the single particle simulations S121 and S178.

7.2.1 Probability distribution functions

As next the probability distribution of particle related quantities such as the particle transla-
tional and angular velocities, particle torque and force acting upon the particles are going to
be discussed. The number of samples used for the calculation of the p.d.f.s in this section was
in all three cases of the order of O(108) - O(109), assuring statistical convergence.

Particle velocity:
Figure 7.14 depicts the probability distribution function (p.d.f.) of the particle relative velocity
components with respect to the global averaged fluid velocity (i.e. wp,rel) for all three cases.
As can be seen the particle velocity p.d.f.s in all flow cases exhibit distribution different from
the Gaussian distribution. Moreover the fluctuations of the horizontal velocity components
exhibit strong super-Gaussian distribution, where the vertical velocity component experience
distribution close to the Gaussian. The non-Gaussian shape of the p.d.f.s is further quantified
by the calculation of the higher moments of the distribution, in particular we have calculated
the third and the fourth moments of the p.d.f.s in figure 7.14, known as the skewness and the
kurtosis (flatness) of the probability density distribution. The exact values of the skewness
and the flatness of the corresponding p.d.f.s in all three cases can be found in tables 7.4 - 7.5.
As expected, the probability density function of the horizontal velocity component is in all
three cases symmetric, which is confirmed by the zero values of the skewness. The distribution
of the vertical velocity component, on the other hand, is in all flow cases negatively skewed,
indicating the higher probability of finding particles with smaller than the mean velocity (note
that larger negative values imply higher settling velocities). The largest value of the skewness
is observed in case ML178 where also the highest clustering levels are observed. As can be
seen, the vertical component of the particle relative velocity exhibits similar intermittency as
the Gaussian distribution and indeed the values of the fourth moment, which measures the
intermittency of the distribution, of the vertical velocity component measures values close to
three. Regarding the horizontal velocity component, it is interesting to note that the highest
value of the kurtosis is measured in the non-clustering case M121, experiencing value approx-
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Figure 7.14: Probability density functions of the particle velocity components for (a) case M121, (b)
case M178 and (c) case ML178. Horizontal components ( ), vertical component ( ). Gaussian
distribution ( ).

imately two times the values in the other two flow cases. It can be observed that the p.d.f.
of the horizontal velocity component in case M121 exhibits increased probability of finding
“extreme” events with values of approximately ±6 standard deviations. Similar shape of the
velocity p.d.f. with similar kurtosis values was observed in the work of Martínez-Mercado et al.
(2010), where the clustering of bubbles rising in a pseudo-turbulent flow was experimentally
studied. Comparable values for the fourth moment of the particle velocity were reported by
Voth et al. (2002); Volk et al. (2011), where the dynamics of neutrally buoyant particles in a
turbulent flow was studied. The authors reported values of the kurtosis in the range 2.4− 3.2.
More recently Martínez-Mercado et al. (2012) measured the kurtosis of the velocity of light
particles in a homogeneous isotropic turbulence to be close to that of a Gaussian distribution.

Consistent across all three cases the particle relative velocity experience distribution differ-
ent than Gaussian. Thus, it appears that the pseudo-turbulent flow field (wake-induced flow
field) in the present cases have a systematic effect on the particle relative velocity different
from that induced by a classic homogeneous isotropic turbulence (Aliseda et al., 2002; Bunner
and Tryggvason, 2002; Volk et al., 2011; Bellani and Variano, 2012b; Martínez-Mercado et al.,
2012), where the particle velocities were observed to have essentially a Gaussian distribution.

Particle angular velocity:
Now let us turn to the distribution of the particle angular velocity components depicted in
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Figure 7.15: Probability density functions of the particle angular velocity components for (a) case M121,
(b) case M178 and (c) case ML178. Color coding as in figure 7.14.

figure 7.15. It can be observed that the angular velocity in all flow cases have strong intermit-
tent character. The horizontal components of the angular velocity experience in all flow cases
similar skewness values as the translational particle velocity (i.e. symmetric distributions),
except in case ML178, where a slightly negative value of the skewness is measured. However,
the flatness values are larger in all flow cases than for the linear particle velocity, indicating
that the distribution of the horizontal angular velocity component is more intermittent. The
largest value of the p.d.f.’s flatness was again observed in case M121. Concerning the vertical
component of the particle angular velocity, the probability density functions are in contrast
to that of the linear particle velocity symmetric with nearly zero skewness. This is mainly
due to the invariance of the flow field in the horizontal direction (recall, that the relative
motion of the fluid in the horizontal directions generates rotation around the vertical axis).
The intermittency of the angular velocity fluctuations in the vertical direction is however
significant in comparison to that of the horizontal components. In case ML178 the fourth
moment of the p.d.f. was evaluated to 29.54 being almost three times larger than in case M178.
It is interesting to note that the flatness in the clustering case M178 is smaller than in the
non-clustering case M121. The distribution of the angular velocity in case M178 appear to
be similar to that obtained in the experimental work of Zimmermann et al. (2011), where
the rotation intermittency experienced by large neutrally buoyant particles in a turbulent flow
was investigated. The authors reported values of the flatness for the horizontal component
of approximately four, where in case M178 we measured 4.58. Comparing the flatness values
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Figure 7.16: Probability density functions of the particle force components for (a) case M121, (b) case
M178 and (c) case ML178. Color coding as in figure 7.14.

of the vertical angular velocity component for all flow cases, it appears that the values are
inversely correlated to the relative turbulence intensity, i.e. for the smallest values of IrV the
largest values of the flatness and vice versa.

Hydrodynamic force:
Let us now turn to the distributions of the acceleration of the particles. The particle accelera-

tion is directly linked by Newton’s law to the hydrodynamic force acting upon the particles,
thus studying the hydrodynamic force of the particles is equivalent to studying the particle
acceleration. The distribution of the particle acceleration has received recently a lot of at-
tention from the scientific community. A recent review of the state of the art on the topic
can be found in a review paper by Toschi and Bodenschatz (2009). The study of the particle
acceleration is of particular interest, since the acceleration statistics reflects directly the action
of the hydrodynamic forces upon the particles. Moreover, the segregation and the clustering of
the particles were linked to the particle acceleration (Bec et al., 2006; Toschi and Bodenschatz,
2009). The probability distribution function of the particle acceleration for the present cases
is depicted in figure 7.16. Here we would like to highlight that we have filtered all particle
records corresponding to particle collisions in order to avoid the contribution of the artificial
repulsion force used in the modeling of the solid-solid contacts. A simple visual examination
of figure 7.16 reveals that the p.d.f.s of the particle acceleration are highly non-Gaussian
with wide tails indicating the high probability for the occurrence of extreme events. This is
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in line with the observations made in the literature that the particle acceleration statistics,
even for heavy finite-size particles, are highly intermittent (Bec et al., 2006; Ayyalasomayajula
et al., 2006; Volk et al., 2008; Qureshi et al., 2008; Calzavarini et al., 2009a; Prakash et al.,
2012). Most of this studies considered, however, the interaction of particles or bubbles with a
turbulent carrier flow, while in the present flow configurations the interaction of the particles
with a self-induced pseudo-turbulent flow is studied. More insight on the distribution of the
particle acceleration statistics can be gained by analyzing the higher moments of the particle
acceleration distribution. Considering the horizontal component, in all three flow cases the
distribution is observed to be symmetric with zero skewness, confirming the isotropy of the flow
in the horizontal direction. The vertical component of the hydrodynamic force, on the other
hand, is positively skewed in all three flow cases with skewness values of 1.76 in case M121
and 1.68 and 1.71 in the clustering cases M178 and ML178, respectively. This indicates that
the probability of finding larger than the average values of the drag force is higher than finding
smaller values. This is in line with the results obtained in section §7.1.3 for the hydrodynamic
force of the particles and supports the aforementioned non-linear drag effect, i.e. in the present
flow conditions, the drag coefficient decays more slowly with increasing Reynolds number than
Re−1

p,rel. This would lead to a positively skewed distribution of the drag force even in case of
symmetric distribution of the velocity fluctuations as noted by García-Villalba et al. (2012),
where the sedimentation of finite-size particle in a plane vertical channel under turbulent
conditions was studied. For negatively skewed distribution of the velocity fluctuations, as in
the present flow cases, this effect is expected to be even more prominent. Regarding case
M121 and M178, our results appear to support this argument by measuring the larger value
of the skewness in case M121, where the larger (negative) value of the skewness of the
particle velocity p.d.f. is observed. On the other, hand the results in case M178 appear to be in
contradiction with this argument, thus requiring further investigation.

Considering the fourth moment of the acceleration distribution, reveals that in all three
flow cases the flatness values of the vertical component of the particle acceleration is more
intermittent than the horizontal component. Regarding the effect of the Galileo number, the
flatness values of the particle acceleration p.d.f. for both components are in the clustering
case M178 smaller than in the non-clustering case M121. For the horizontal components the
flatness value in case M121 is nearly 40% larger than in case M178, while for the vertical
component the flatness in case M121 is approximately 50% larger than in case M178. The
smaller values of the particle acceleration flatness in case M178 indicates that the probability
of finding extreme events in the particle acceleration are on average smaller than in case
M121. Extreme events in the particle acceleration are often related to sudden short time
changes of the particle velocity as result of the hydrodynamic interaction with the surrounding
flow field (here we exclude contributions related to particle-particle collisions). Thus, the
intermittency of the particle acceleration is generally believed to be a consequence of the fluid
motion’s small-scale intermittency (Qureshi et al., 2007). So, the question arise of the levels of
intermittency of the local flow field surrounding the particles in the present configurations. In
order to address this question, we have calculated the probability density function of the fluid
velocity in vicinity of the particles (cf. section §8, figure 8.5). It turned out that indeed the local
flow field in case M178 is less intermittent than in case M121, experiencing smaller flatness
values, which supports the above considerations. The exact values of the corresponding p.d.f.s’
higher moments can be found in tables 8.1 - 8.2. This indicates that the flow field induced
by the particles and the particle cluster in case M178, although with higher intensity, leads
to attenuation of the probability for the particles’ hydrodynamic force to experience extreme
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Figure 7.17: Probability density functions of the particle acceleration ap components for case M121
( ), case M178 ( ) and case ML178 ( ). (a) horizontal component and (b) vertical
component. The particle acceleration has been normalized by the characteristic acceleration ag = u2

g/dp
with ug defined as in equation 2.11.

events (in terms of the standard deviation of the hydrodynamic force). With respect to the solid
volume fraction, i.e. case ML178, the results for the intermittency of the particle acceleration
appear to support the above considerations. The flatness values in case ML178 are larger than
in case M178, stemming (as conjectured above) most probably from the larger intermittency
of the local fluid velocity uSf in case ML178.

However, the higher intermittency of the hydrodynamic force in case M121 than in case
M178 does not imply a higher intensity of the force fluctuations. Please note that the force in
figure 7.16 is normalized by its standard deviation, which is in case M178 larger than in case
M121. The standard deviation for the horizontal (vertical) force components in case M178 is
approximately 57% (6.7%) larger than in case M121. In fact, as we saw in section §6.2 the
particles in case M121 are more homogeneously distributed than in case M178 (even than
a random distributed particles), additionally the relative intensity of the flow is significantly
smaller than in case M178. As result, the occurrence of extreme events due to hydrodynamic
interactions of the particles in case M121 is expected to be less frequent than in case M178.
Therefore, any occurrence of such an event would have a larger contribution (weight) to
the intermittency (flatness value) of the particle acceleration, which would result in higher
intermittency. Similarly, due to the significantly smaller solid volume fraction in case ML178
than in case M178, the probability for the particles’ hydrodynamic force to experience extreme
events would decrease, thus increasing the relative contribution of such an event to the
intermittency of the hydrodynamic force.

As a matter of fact, the probability to find large deviations from the average value of
the hydrodynamic force is higher in case M178 than in case M121 or case ML178. This
can be best illustrated by considering the non-normalized p.d.f.s (no scaling by the standard
deviation) of the particle acceleration components, which are depicted in figure 7.17. The
particle acceleration, ap, have been normalized by the characteristic acceleration ag, viz. ap/ag,
where ag = u2

g/dp with ug defined as in equation 2.11. It can be observed that, indeed, the
intermittency is highest in case M178. The distribution of the particle acceleration components
in case M121 and case ML178 are not as broad as in case M178, indicating the smaller
standard deviation in the corresponding flow cases. We have evaluated the flatness values
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Figure 7.18: Probability density functions of the particle torque components for (a) case M121, (b) case
M178 and (c) case ML178. Color coding as in figure 7.14.

in case M178 for the horizontal (vertical) component to 8.24 (10.26), whereas in case M121
a flatness value of 6.94 (2.59) was observed. The exact values for the third and the fourth
moments of the p.d.f.s from figure 7.17 can be found in table 7.6.

As aforementioned, the particle acceleration is related to the instantaneous changes of
the particle velocity. Therefore, the particle acceleration is often investigated by studying the
particle velocity increments for very small time increments, i.e.:

δup,i(τsep) = u′p,i(t+ τsep)− u′p,i(t), (7.19)

where τsep is the time increment. We checked (plots omitted) that indeed the distribution of
the velocity increment δup,i(τsep) at very small values of τsep (note, that smallest value for τsep
is limited by the time step of the simulation) resembles closely the distribution of the particle
acceleration. On the other hand, for sufficiently long time increments at which the velocity
signals are completely decorrelated, García-Villalba et al. (2012) showed that the kurtosis
values of the increment will have an asymptotic value of K(δup,i) = K(u′p,i)/2 + 3/2. Indeed,
in all flow cases this values were obtained, except for case M178, where for the largest time
increment the asymptotic value was observed to be slightly larger than the predicted one.
This is most probably due to the long correlation times of the particle velocity in case M178
resulting from the particle clustering (as we will see in the next section §7.2.2).

In the end, let us mention that the clustering of the particles appear to have similar effect
as the so called sampling effect (particles tend to sample regions of the flow with low vorticity)
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case S(up) S(wp) S(fp,h) S(fp,z) S(ωp,x) S(ωp,z) S(tp,x) S(tp,z)
M121 0.01 −0.42 0.0 1.76 0.01 0.01 −0.01 0.0
M178 0.0 −0.34 0.0 1.68 0.0 0.01 0.0 0.0
ML178 0.0 −0.73 0.0 1.71 −0.02 −0.13 0.01 0.05

Table 7.4: Skewness of the probability density functions of the particle velocity, force, angular velocity
and torque components for all three cases M121, M178, ML178. Data corresponds to the p.d.f.s in
figures 7.14 - 7.18.

case K(up) K(wp) K(fp,h) K(fp,z) K(ωp,x) K(ωp,z) K(tp,x) K(tp,z)
M121 7.86 3.53 7.51 15.04 10.66 17.05 13.23 19.21
M178 3.46 2.90 4.51 7.08 4.58 10.45 6.87 13.47
ML178 3.13 3.62 6.26 15.73 5.53 29.54 12.30 28.15

Table 7.5: Kurtosis of the probability density functions of the particle velocity, force, angular velocity
and torque components for all three cases M121, M178, ML178. Data corresponds to the p.d.f.s in
figures 7.14 - 7.18.

case σ(ap,x) σ(ap,z) S(ap,x) S(ap,z) K(ap,x) K(ap,z)
M121 0.03 0.06 0.0 0.13 6.94 2.59
M178 0.07 0.09 0.01 0.34 8.24 10.26
ML178 0.04 0.05 0.01 0.43 8.28 7.13

Table 7.6: Standard deviation, skewness and kurtosis of the probability density functions of the particle
acceleration for all three cases M121, M178, ML178. Data corresponds to the p.d.f.s in figure 7.17.

in turbulent flows (Fessler et al., 1994). We would like to stress that the particle clutering in
the present case has completely different origin than that observed for turbulent flows as in
Fessler et al. (1994). For more detailed discussion of the phenomenology of the sampling effect
for finite-size particles we refer the interested reader to the discussion in Qureshi et al. (2008).

Particle torque:
The distribution of the angular acceleration, i.e. particle torque, is depicted in figure 7.18. It
can be observed that the distribution of the particle torque in all three flow cases is highly
non-Gaussian with high probable occurrence of extreme events. The third moment of the p.d.f.s
reveal that the distribution in all flow cases is symmetric with zero skewness. Considering
the flatness values, it appears that the particle torque is more intermittent than the particle
acceleration with higher flatness values for both components of the particle torque. It is
interesting to note that the flatness values observed in the present simulations are considerably
higher than the observed in Zimmermann et al. (2011), where they report values of K = 7± 1,
whereas the flatness in our case can reach values as high as K ≈ 28 (case ML178). However,
the flow considered in Zimmermann et al. (2011) is highly turbulent with Reλ ∼ 300 and the
particle considered in their experiments was neutrally buoyant with size of the order of the
integral length scale D/Lint ∼ 0.6. For the present numerical experiments the pressure force
does not contribute to the torque applied at the particle center. Thus, the angular acceleration
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has only a single contribution from the viscous hydrodynamic stresses:

Ipω̇p = TH , (7.20)

where TH =
∫
S rc × (τ · n)dσ with rc being the distance vector from the particle center,

τ = ρfν(∂ufi/∂xj + ∂ufj/∂xi) the viscous stress tensor, n the outward pointing normal vector
at the particle surface and S the surface of the sphere. In the above equation Ip = ρpD

5π/60
denotes the moment of inertia in case of a homogeneous mass density. Thus, it is tempting to
relate the local flow field experienced by the particles to the high values of the particle torque
intermittency and merits further investigation in future works.

7.2.2 Lagrangian statistics

Let us now turn to the analysis of the correlation times of the Lagrangian statistics. The study
of the Lagrangian statistics, such as the Lagrangian autocorrelations will provide further insight
into the multiscale interaction between the dispersed phase and the carrier phase. Moreover,
the study of the Lagrangian statistics will help to reveal the complex particle response to the
flow field as the particles settle throughout the computational domain. In the following we will
discuss the Lagrangian autocorrelation of various particle quantities, such as the particle linear
and angular velocities and the hydrodynamic force and torque exerted upon the particles by
the fluid.

The Lagrangian autocorrelation function of the fluctuations of a particle related quantity
ψ′i(t) = ψi(t)− 〈ψ(t)〉p is defined as follows:

Rpψiψi(t, τsep) = 1∫ Tn
T0

ψ′i(t)ψ′i(t)dt

∫ Tn

T0
ψ′i(t)ψ′i(t+ τsep)dt, (7.21)

where τsep denotes the time increment and the interval [T0, Tn] defines some time interval of
interest. Please note that in the above equation no summation is implied over the repeated
indices. The Lagrangian autocorrelation function is normalized by the autocovariance and
gives a measure of how long a particle quantity is correlated with its value at some earlier time.
For statistically stationary flows, the autocorrelation function is independent of the initial time
t and depends only on the separation time τsep.

First let us discuss the Lagrangian autocorrelation of the particle velocity components,
which are depicted in figure 7.19. The Lagrangian particle velocity autocorrelation could
be interpreted as a measure of the particle dispersion and is related to it by the well known
Taylors’s theorem (Taylor, 1921):

〈Y 2(T )〉 = 2〈u′u′〉
∫ Tn

T0

∫ t

0
Ruu(τ)dτdt, (7.22)

where Ruu(τ) is the Lagrangian autocorrelation function of the fluctuating velocity following a
fluid point u′(t). The equations are valid for the dispersion of heavy particles, by substituting
the particle velocity for the velocity u′. Hence, the study of the Lagrangian particle velocity
autocorrelation has been of great interest in the past. Yudine (1959) studied the process of
dispersion of heavy particles with large terminal velocities, later Csanady (1963) investigated
the turbulent diffusion of heavy particles in the atmosphere. They developed the physical ideas
behind the so called crossing trajectories and the associated continuity effect which are related
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Figure 7.19: Lagrangian autocorrelation of the particle velocity components as function of time lag τsep
for (a) case M121, (b) case M178 and (c) case ML178. Line coding: horizontal component ( ),
vertical components ( ), Langevin approximation RLuαuα ≈ exp(−τsep/Tint), ( ). The insets
show a closeup of the same data for small separation times τsep. The dashed blue lines represents
the osculating parabola at τ = 0. The values of the integral time scale and the Taylor micro-scale are
reported in tables 7.7 - 7.8.

to the evolution of the particle velocity autocorrelation. Later Snyder and Lumely (1971)
performed measurements of the Lagrangian particle velocity autocorrelation in a turbulent
flow. Squires and Eaton (1991) investigated the effect of the particle drift and particle inertia
of heavy particles in a isotropic (decaying) turbulence on the particle Lagrangian velocity
autocorrelation. They found out that particles with high inertia exhibit higher correlation
coefficients and the Lagrangian correlation of the particles in direction of the particle drift
velocity was more persistent than the autocorrelation in the directions perpendicular to the
particle drift velocity. More recently Ahmed and Elghobashi (2001) investigated the particle
dispersion in a homogeneous turbulent shear flow. They performed a DNS of small point
particles with one-way coupling and observed the crossing trajectory effect and continuity
effect on the Lagrangian particle velocity autocorrelation. Bunner and Tryggvason (2002)
investigated the dispersion of bubbles by a pseudo turbulence generated by the motion of
the bubbles. Similar to the work of Squires and Eaton (1991) they stated that the vertical
(streamwise) fluctuating velocity component remains correlated for longer times than the
horizontal components.
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Particle velocity:
The Lagrangian autocorrelation functions of the particle velocity components for all three flow
cases are depicted in figure 7.19. It can be observed that the anisotropic character of the flow
is also reflected in the particle velocity Lagrangian autocorrelation function. In all cases the
vertical (streamwise) component of the particle velocity is correlated over long time period,
whereas the horizontal components decay more rapidly and actually become negative for small
time separations before converging to its asymptotic value (i.e. zero) for long separation time.

While all flow cases experience negative loops (negative correlation) for small time separa-
tions of the horizontal velocity components, the rate at which the correlation decays towards
zero and the time at which the minimum values are observed vary between the cases. The
fastest decay is observed in case M178 with reaching the first minimum value of Ruu at
τsep = 16.3τg. The corresponding values for case M121 and case M178 are measured to
τsep = 46.6τg and τsep = 84.9τg, respectively. It appears that the time at which the minimum is
observed correlates with the relative turbulence intensity of the flow. The occurrence of the
negative loops for small time separations are often related to the continuity effect mentioned
above. The continuity effect, as defined in Csanady (1963), implies the existence of a backflow
(directed upward with respect to the mean flow) necessary to satisfy continuity in the con-
tinuous phase. As can be seen the autocorrelation of the horizontal velocity component after
reaching its initial minimum appear to exhibit some small oscillation with prominent positive
peaks that decay quickly with increase of the separation time. The frequency of this oscillations
appear to correlate with the frequency of similar oscillations of the correlation function of
the vertical velocity component (best seen in case M121). The intervals seem to correspond
to an average return time defined as the ratio of the vertical extension of the computational
domain Lz and the apparent velocity lag wp,lag. The average return time in case M121 was
evaluated to 290τg gravitational time units, whereas in case M178 and ML178 the average
return time was calculated to 117.1τg and 110.6τg, respectively. As can be taken from the figure
this values are in good agreement with the time intervals at which the peaks in the Lagrangian
autocorrelation occur.

Let us first consider case M121, where the oscillations are most prominent. A possible
reason for this oscillations could be the existence of coherent flow structures in conjunction
with the periodic boundary conditions, causing the particles to encounter a similar flow field
after an average return time. This implies, that this flow structures are temporally correlated
over long time periods. For the time period simulated in the present work we observed up to
four such prominent peaks of the Lagrangian autocorrelation function in case M121. Thus, a
lower bound of the time scale of this structures can be estimated to be at least four turnover
periods.

Concerning caseM178, no such prominent peaks in the Lagrangian autocorrelation function
of the vertical velocity component can be observed, despite the smaller extension of the
computational domain in the vertical direction, when compared to case M121. As discussed
in the previous chapter §6 the flow structures in case M178 are extending throughout the
entire computational domain, i.e. for the present configuration the structures appear to have
an infinite length. Thereby, the particles as they settle through the computational domain, tend
to experience on average the similar flow environment (infinite flow structures) leading to the
absence of a prominent peaks in the autocorrelation in case M178. On the other hand in case
ML178, the smaller value of the solid volume fraction appears to reduce this effect, leading to
the two peaks in the Lagrangian autocorrelation function in figure 7.19c.
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Despite the statistical bias of the particle velocity autocorrelation due to the finite stream-
wise length of the computational domain we calculated the integral time scale by integrating
the autocorrelation functions:

Tint =
∫ ∞

0
Rpuαuα(τ)dτ (7.23)

The values for both cases and the different velocity components are presented in table 7.7.
The integral time scale provides an estimation of the time period over which the particle
velocity components remain correlated. Concerning the horizontal velocity component, the
integral time scale in case M121 was measured to Tint = 6.98τg, whereas in he clustering
cases significantly larger values were obtained, viz. Tint = 14.38τg and Tint = 8.78τg in
case M178 and ML178, respectively. As can be taken from the figure, the vertical velocity
component remains correlated over substantially longer time intervals. The integral time scales
were evaluated in case M121 to Tint = 68.8τg and in case M178 (ML178) to Tint = 106.6τg
(Tint = 122.9τg), respectively. The large integral time scales of the vertical velocity component
are mostly due to the strong particle clustering and the resulting coherent flow structures,
which are evidenced in case M178 and case ML178. This kind of vertically elongated flow
structure facilitate the existence of the large integral time scales of vertical velocity component
in cases M178 and ML178. Comparison of the integral time scale of the horizontal and the
vertical velocity components evidences once again the strong anisotropy of the dispersed phase.

As aforementioned, the Lagrangian autocorrelation function is related to the dispersion of
the particles (Taylor, 1921). In the past, several studies have been devoted to the modeling
of the particle dispersion, viz. Pozorski and Minier (1998); Pai and Subramaniam (2012);
Iliopoulos et al. (2003). A large number of the studies related to the particle dispersion are often
based on a Langevin type of equation for the dispersion of the particles. This models assume
that the autocorrelation function of the particle velocity follows an exponential decay and the
Lagrangian autocorrelation function can be approximated as RLuαuα = exp (−τ/Tint). Due to
the exponential nature of the Langevin model, such models are not capable of capturing the
continuity effect (negative loops in the velocity autocorrelation) described above. Nevertheless,
we have applied the above approximation of the particle velocity autocorrelation for the present
simulations. The function RLuαuα is superposed in figure 7.19 for comparison. The integral time
scale determined from the Lagrangian autocorrelation function was used in the determination
of RLuαuα . Computing the integral time scale by integration of the Langevin function results in
a very good agreement with the integral time scales obtained form the simulations, indicating
the exponential decay of the Lagrangian autocorrelation function. The corresponding values
are presented for completeness in table 7.7.

Now let us turn to the short time behavior of the Lagrangian autocorrelation function. As
aforementioned, the initial decay of the particle velocity autocorrelation experience different
temporal behavior in the three flow cases. The initial decay can be characterized through the
Taylor micro-scale, which measures for the horizontal velocity components 4.78, 3.08 and 4.05
gravitational time units. This is in line with the observations made above that autocorrelation
in case M178 decay at the fastest rate. For the vertical component of the particle velocity
similar trend is observed, the smallest value of the Taylor micro-scale is measured in case
M178, i.e. τλ(wp) = 7.67τg. Comparison with the value for case ML178 (τλ(wp) = 7.74τg)
reveals that the solid volume fraction has only a minor effect on the short time behavior of
the vertical component of the particle velocity, with slightly larger (0.9%) Taylor micros-scale
in case ML178. The largest value is, consequently, observed in case M121 and measures
τλ(wp) = 8.65τg. The Taylor micro-scale for all velocity components for both cases can be
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Figure 7.20: Same as in figure 7.19, but for the particle angular velocity components.

found in table 7.7. It is interesting to note that despite the faster initial decay of the particle
velocity autocorrelation in the clustering cases M178 and ML178, the velocity is correlated
over longer time intervals than in case M121.

The overall evolution of the Lagrangian autocorrelation function is in line with the ob-
servations made in the above mentioned references (Squires and Eaton, 1991; Bunner and
Tryggvason, 2002), evidencing longer correlation times of the vertical velocity component.
Please note that the particle respectively the bubble Reynolds number in this works are an order
of magnitude smaller than the Reynolds number of the particles considered in the present study.
Moreover, the analysis of the Lagrangian particle velocity autocorrelation function showed that
the initial decay of the correlation function in case M178 is fastest for all velocity components
and slowest in case M121. Regarding the long time behavior, the same trend was observed for
the horizontal velocity components, while the opposite was observed for the vertical velocity
components, which was accounted as direct result from the particle clustering in case M178.
Moreover, the strong anisotropy of the flow caused a anisotropy of the integral time scale as
well as of the Taylor micro-scale.

Particle angular velocity:
Figure 7.20 depicts the autocorrelation function of the particle angular velocity components
for all three flow cases. As can be seen the correlation functions in all flow cases behave very
similar, the autocorrelation for both components decays quickly without experiencing negative
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values. The autocorrelation function for the horizontal component decays, however, more
slowly than for the vertical component and the difference is largest in case ML178, while
in case M178 the smallest difference between the decay rates of the autocorrelation of both
velocity components is observed. This can be best seen by comparing the Taylor micro-scales
of the horizontal and vertical components. For this purposes we calculated the ratio of the
corresponding Taylor micro-scales, viz. τxzλ = τxλ/τ

z
λ . In case M121 this ratio was evaluated

to τxzλ = 1.98, whereas in case M178 and case ML178 we obtained τxzλ = 1.4 and τxzλ = 1.8.
Comparison of the Taylor micro-scale values for the three flow cases reveals that the initial
decay in the clustering cases is faster than in the non-clustering case M121. Similar as for the
particle velocity, the smaller value of the solid volume fraction lead to a small increase of the
initial decay rate, which is evident by the larger values of the Taylor micro-scale in case ML178
than in case M178.

Regarding the integral time scale, the horizontal components in all flow cases are correlated
over longer time intervals than the vertical components (recall that vertical fluid velocity
generates rotation of the particles around the horizontal axis and vice versa). The relatively
similar values between the clustering and the non-clustering cases implies that the particle
clustering does not significantly affect the long time behavior of the particle angular velocity
autocorrelation. However, the effect the solid volume fraction appear to affect the long time
behavior of the horizontal angular velocity component with approximately 50% larger value of
the integral time scale in case ML178 than in case M178.

Here again the approximation of the decay rate through an exponential function of a
Langevin type agrees very well with the rsults obtained from the simulations. The exact values
of the integral time scale and the Taylor micro-scale are depicted in table 7.7. Unfortunately,
we could not find any reference data relevant to our simulations in the literature to compare
with and hope that this study will arouse the interest of the scientific community.

Particle hydrodynamic force:
We now present the autocorrelation function of the hydrodynamic forces, which are exerted
upon the particles by the flow field. As mentioned above the hydrodynamic force of the
particles is directly related to the particle acceleration and both will be used in the following
interchangeably. Figure 7.21 depicts the autocorrelation of the particle acceleration for both
cases. Here we would like to note, that in the process of calculation of the autocorrelation
function, the influence of particle collisions was excluded by neglecting all particles which are
colliding in a particular time interval [t, t+ τsep]. As a consequence, the largest time interval is
limited to the largest collision free interval, leading to the shorter time intervals over which
the correlation functions were computed in comparison to the particle velocity and angular
velocity.

As can be seen the autocorrelation functions in all flow cases exhibits very similar behavior.
Both components of the particle hydrodynamic force decay quickly and experience negative
loops. Moreover, the correlation of the horizontal component of the hydrodynamic force decays
more quickly than the correlation of the vertical component. The autocorrelation function of
the horizontal (vertical) component first cross the zero axis after approximately 2.33τg (4.6τg)
in case M121, whereas in case M178 this time is evaluated to 1.69τg (2.81τg) and to 2.25τg
(3.24τg) in case ML178. This values appear to be in good agreement with the values reported
by Yeung and Pope (1989), where the authors studied numerically the Lagrangian statistics
of homogeneous isotropic turbulence. The authors identified that the characteristic time at
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Figure 7.21: Same as in figure 7.19, but for the components of the particle hydrodynamic force.

which the autocorrelation of the vertical component first crosses the zero line is approximately
2.2τη (τη denotes the Kolmogorov time scale). This was shown to apply also to finite size
particles with size larger than the Kolmogorov length scale, e.g. Mordant et al. (2004); Xu
and Bodenschatz (2008). The mentioned works considered however turbulent flows with
high turbulent intensities. Mordant et al. (2004) also calculated the autocorrelation of the
acceleration magnitude and showed that it decays much slower than the correlation of the
components, they attributed this to the intermittency of the turbulent flow. In contrast to
Mordant et al. (2004) we did not observe such a behavior, the correlation function of the
acceleration magnitude (not shown here) followed the evolution of the correlation function of
the vertical component, indicating the dominance of the vertical component of the particle
acceleration in the present flow configurations. Assuming that the gravitational time scale is
the relevant time scale of the small scales, the present results appear to be in a reasonably
good agreement with the value observed in Mordant et al. (2004); Xu and Bodenschatz (2008).
Please note that the value of 2.2τη is observed for a highly turbulent flows with wide range
of Reynolds numbers. Nevertheless, the value in case M178 and case ML178 shows better
agreement with the value observed in the literature than that obtained in case M121.

Similar to the correlation functions of the particle velocity and angular velocity, the initial
decay of the correlation functions for both components in case M178 is faster than in case
M121, as evidenced by the larger values of the Taylor micro-scale in case M121 than in case
M178 (exact values of the correlation function for both cases can be found in table 7.8). The
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same tendency was also observed in the long time behavior of the autocorrelation function, as
the integral time scales in caseM121 shows higher values than in caseM178. As for the particle
angular velocity, the particle clustering in case M178 appears to have only a minor influence
on the temporal dynamics of the hydrodynamic forces, since they are mostly influenced by the
flow field in vicinity of the particles.

Regarding case ML178, the results are consistent with that obtained for the particle
translational and angular velocities, i.e. the values of the Taylor micro-scale and the integral
time scale are larger than in the case with the higher solid volume fraction ML178, indicating
faster initial decay and longer long time correlation of the hydrodynamic force.

A characteristic time for the evolution of a particle response to flow changes can be obtained
from the autocorrelation function of the particle acceleration by integrating the correlation
function over its positive part:

TI =
∫ τ0

0
Rpfαfα(τ)dτ, τ0 = min

τ
{Rpfαfα(τ) = 0}, (7.24)

where τ0 is the first zero crossing time (Calzavarini et al., 2009b). For the horizontal (vertical)
component in case M121 we obtained TI = 1.2τg (TI = 1.58τg), whereas in case M178
the values are evaluated to TI = 0.83τg (TI = 1.09τg) and in case ML178 to TI = 1.063τg
(TI = 1.29τg). This implies that the characteristic time of the forcing experienced by the
particles is longer in case M121 and case M178 than in case M178. This is in line with the
observations made in section §7.1.3 and §7.2.1, that due to the higher relative turbulence
intensity the particle force in case M178 is more frequently subjected to extreme events, which
would lead eventually to faster decorrelation of the hydrodynamic force than in case M121
and ML178.

Finally, we would like to note that the short-living character of the particle acceleration
and the overall evolution of the correlation function appears to be in line with previous studies
of the particle acceleration, e.g. (Voth et al., 1998, 2002; Mordant et al., 2004; Volk et al.,
2008; Xu and Bodenschatz, 2008; Homann and Bec, 2009; Calzavarini et al., 2009b; Volk
et al., 2011). However, most of this studies considered highly turbulent flows, where a pseudo
turbulent flow is considered in the present study.

Particle torque:
Finally, let us briefly discuss the autocorrelation function of the particle torque, which is de-
picted for all three flow cases in figure 7.22. As the autocorrelation of the particle acceleration,
the autocorrelation of the particle torque was calculated by discarding all particle time records
that are incorporated in particle-particle collisions, thus the maximum length of the time
interval considered for the calculation of the correlation function is shorter, as in the case
of the autocorrelation of the particle acceleration. It can be observed that the correlation
function of the particle torque components experience similar evolution with time as the
particle force. The correlation function for both components decays quickly and negative loops
at small separation times with small negative values can be observed. Beyond this times, the
correlation function converges rapidly towards its asymptotic value, indicating the complete
decorrelation of the particle torque. As can be observed in the close-ups (insets of figure 7.22),
the vertical component of the particle torque decorrelates faster than the horizontal component
and the decay rate in all three cases appear to be very similar, showing small, but noticeable
difference in the initial decay of the correlation functions. As aforementioned, the initial
decay of the autocorrelation function is best represented by the Taylor micro-scale, which
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Figure 7.22: Same as in figure 7.19, but for the components of the particle torque.

is shown in table 7.7 for both components. Please consult table 7.7 for exact values of the
Taylor micro-scale. Detailed study of the Taylor micro-scale values of both components in all
three flow cases reveals that the difference between the initial decay of the horizontal and
the vertical components is the smallest in case M178, where as in case M121 and ML178 the
difference is very similar. As for the particle angular velocity, the decay of the autocorrelation
function is well approximated by an exponential function of Langevin type. The same trend is
observed in the long time behavior of the autocorrelation function. The integral time scale
of the torque components in case M121 are larger than on case M178 and case ML178. As
result the correlation function of the particle torque shows virtually an isotropic character.
Please note that as in the case of the angular velocity, the dominant torque component is in the
horizontal direction. Finally, we would like to note that our research of the literature did not
show any information about the temporal dynamics of the particle torque.

7.3 Conclusion

In the present chapter we have investigated the dynamics of heavy finite-size particles settling
in an initially quiescent fluid. We considered the three flow cases M121, M178 and ML178
introduced in chapter §5.

A comprehensive study of the particle settling velocity has been performed. When computed
with respect to the volume averaged fluid velocity, it was observed that the particles in the
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case τλ(up) τλ(wp) τλ(ωp,x) τλ(ωp,z) τλ(fp,h) τλ(fp,z) τλ(tp,x) τλ(tp,z)
M121 4.78 8.65 5.41 2.73 1.7 2.3 1.7 1.3
M178 3.08 7.67 2.66 1.95 1.05 1.25 0.84 0.75
ML178 4.5 7.74 3.69 2.08 1.23 1.40 1.02 0.77

Table 7.7: Taylor micro-scale, τλ calculated from the autocorrelation functions of the particle linear and
angular velocity components as well as for the particle hydrodynamic force and torque components for
all three flow cases M121, M178 and ML178. Data corresponds to the autocorrelation functions from
figures 7.19 - 7.22. All values have been scaled with the gravitational time scale τg.

case Tint(up) Tint(wp) Tint(ωp,x) Tint(ωp,z) Tint(fp,h) Tint(fp,z) Tint(tp,x) Tint(tp,z)

M121 6.98 68.77 9.13 2.93 1.21 1.58 1.06 0.77
(7.00) (68.83) (9.15) (2.94) (1.21) (1.59) (1.06) (0.78)

M178 4.38 106.6 6.07 3.04 0.83 1.09 0.59 0.51
(4.39) (106.5) (6.08) (3.04) (0.83) (1.1) (0.59) (0.52)

ML178 8.78 122.9 10.24 3.13 1.059 1.27 0.72 0.597
(8.79) (114.3) (10.25) (3.13) (1.06) (1.27) (0.73) (0.598)

Table 7.8: Integral time scale, Tint, for the autocorrelation functions of the particle linear and angular
velocity components as well as for the particle hydrodynamic force and torque components for all three
flow cases M121, M178 and ML178. Data corresponds to the autocorrelation functions from figures
7.19 - 7.22. The integral time scale was calculated as the integral of the Lagrangian autocorrelation
function, Tint =

∫∞
0 Rαα(τ)dτ . Additionally the integral time scale (the value in the brackets) as

estimated by a Langevin model is given as well, TL =
∫ τ

0 exp(−τsep/Tint). All values have been scaled
with the gravitational time scale τg.

flow cases with the higher Galileo number, where strong agglomerations of the particles were
observed, settle on average faster than an isolated particle with the same parameters (case S121
and case S178). However, when the particle relative velocity is computed with respect to the
local fluid velocity, using our definition of the fluid velocity seen by the particles (equation 7.1),
we determined the average particle relative velocity to be similar to the one of a corresponding
isolated particle at both investigated Galileo numbers. As a consequence, the particles in
the clustering case were found to be preferentially located in regions with downward fluid
motion (when compared to the box averaged fluid velocity). Moreover, it was found that the
settling velocity of the particles correlate with the particle concentration in case M178 and
case ML178, with the particles settling on average faster than the average in regions with high
particle concentration. Particle conditioned averaging revealed that the particle velocity is
spatially distributed in an anisotropic manner, i.e. in vertically oriented structures extending
in the clustering cases throughout the entire vertical length of the computational domain. In
all flow cases it was shown that the particles located downstream of a test particle settle, on
average, at higher rates than the global average. The length scales extracted from the particle
conditioned analysis corresponded closely to that obtained in section §6.

Concerning the fluctuations of the particle motion, it is found that a simple superposition
of isolated particle data cannot account for the observed amplitudes of the particle suspension.
However, the levels of anisotropy of the particle velocity fluctuations proved to be in good
agreement with similar works in the literature (e.g. Parthasarathy and Faeth (1990b)). As
expected, the highest intensity was observed in the clustering case M178. A decomposition
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of the particle velocity variance was performed, which separates the contribution due to
the particle motion with respect to the surrounding fluid from the contribution due to the
fluctuations of the fluid velocity in vicinity of the particles. The decomposition revealed that
the larger fluctuations of the particle vertical velocity component in the clustering case is due
to an increase of the fluctuating energy of the fluid velocity seen by the particles, which also
dominate the temporal evolution (shape of the curve) of the total particle velocity fluctuation
energy. The results revealed that the observed increase in the particle velocity fluctuations
amplitude in case M178 is due to a substantial amount of particles being located in clusters or
void regions, which constitute large scale fluid velocity fluctuations with respect to the volume
averaged value. With regard to the effect of the solid volume fraction, the results indicated a
correlation with the relative turbulence intensity. The largest fluctuating energy is measured
for the highest values of the relative turbulence intensity.

We have further performed a detailed study of the vertical component of the particle
hydrodynamic force. The results evidenced that in the clustering cases the particle drag
coefficient (normalized drag force with respect to the unconditioned mean particle settling
velocity ws) is significantly smaller than the drag of the corresponding single particle simulation
S178. This was attributed to the strong clustering of the particles in case M178 and ML178.
Further, we have showed that the deviation from the average value of the drag correlates
with the relative turbulence intensity. The largest deviation was observed in the case with the
largest value of the relative turbulence intensity and vice versa. The mean drag based on the
average of the instantaneous drag experienced by the individual particles with respect to the
local fluid velocity wSs was found to be close to the drag of the single particle in case S121 and
case S178. The effect of the non-linear drag proved to be more prominent in the case with the
largest relative turbulence intensity, leading to a net increase of the drag coefficient. Particle
conditioned average of the particle hydrodynamic force showed, as the particle velocity, an
anisotropic spatial distribution and a strong correlation with the particle settling velocity.

The results for the particle hydrodynamic force and the particle relative velocity appear to
support the so called wake attraction mechanism responsible for the phenomenon of drafting-
kissing-tumbling (Hu et al., 1993) (particles in the wake of a leading particle tend to experience
smaller drag and have larger settling velocity than the leading one), thus leading most probably
to the clustering of the particles in case M178 and ML178.

Study of the probability density function of the particle velocity components revealed that
the particle velocity in all three case experienced distribution different from the Gaussian
distribution, indicating that the pseudo-turbulent flow field in the present simulations have
a systematic effect on the particle relative velocity, different from that induced by a classic
homogeneous turbulence. The largest deviation of the particle velocity p.d.f.s was observed in
case M121. In fact, the distribution of all particle quantities (particle translational and vertical
velocity, particle hydrodynamic force and torque) was more intermittent in the non-clustering
case than in the clustering ones. The probability density function of the particle hydrodynamic
force evidenced for all cases positive skewness, which was attributed to the non-linear drag
effect (García-Villalba et al., 2012). The intermittency of the particle acceleration was related
to the intermittency of the fluid small-scale motion in vicinity of the particles.

Finally we have performed a Lagrangian analysis of particle related quantities. It was found
out that the vertical velocity component remained correlated over longer time intervals than
the horizontal velocity component. The particle agglomeration in case M178 and case ML178
caused a substantial increase of the correlation time, when compared to the non-clustering
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case. Moreover, the finite size of the computational domain was evidenced to have an effect
upon the decay of the autocorrelation function, implying that an even longer computational
domains are required. Study of the correlation function for the particle acceleration showed
that the characteristic time of the forcing experienced by the particles was very similar in all
three cases with small bias towards sorter times in case M178. Comparison of the results in
case M178 and case ML178 revealed that the smaller value of the solid volume fraction leads
to an increase of the correlation times for all particle related quantities.

A more qualitative results for the effect of the particle clustering can be obtained by
performing a conditioning of the above statistics on the position of the particles by using
the intrinsic cluster definition (cf. section §6), e.g. calculating of the particle velocity and
hydrodynamic force distribution for particles located in clusters or void regions. As evidenced,
the local flow field in vicinity of the particles has a significant effect upon the particle statistics,
especially on the particle velocity and hydrodynamic force, thus a more detailed study of the
consequences for a specific non-linear drag model need to be further investigated in future
works.
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Chapter 8

Flow field induced by the particles

One common feature of dispersed two-phase flows is that the relative motion of the dispersed
phase with respect to the continuous phase will result in generation of velocity fluctuations
in the continuous phase. Even the motion of a single particle in an ambient fluid at very low
Reynolds numbers will generate disturbances in the liquid. The agitation of the flow field will
become even more complicated in the case of multiple freely moving particles. The turbulence
generated solely by the settling (rising) of heavy (light) particles in a fluid otherwise at rest has
been shown to have different characteristics from the conventional turbulence in the absence
of the dispersed phase, which is mainly caused by velocity gradients in the liquid. To emphasis
this difference, the particle-induced turbulence is often referred to as pseudo-turbulence. In
the past, the interaction of the classical shear-induced turbulence with the dispersed phase
has been subjected to numerous studies in the scientific community and is still considered as
not completely understood and was identified in section §1.2.2 as one of the (main) open
questions with regard to particulate flows. A study of the literature revealed, that surprisingly
little is known about the flow field generated by settling particles. For example, the decay
rate of the energy spectra of the flow appears to experience different behavior than the classic
turbulence and until now there is still no definitive explanation for this difference. Motivated
by these observations, the objective of the following sections is to determine the intensity
of the self-induced fluid motion. This analysis is different, but related to the study of the
modulation of existing (background) turbulence due to the addition of particles. The following
analysis aims at the characterizing the pseudo-turbulence of the flow field and will involve
two parts. In the first part the integral statistics of the flow field, such as standard deviation,
probability distribution of the fluid velocity field, turbulent kinetic energy budget and spectra
(section §8.2) are discussed, then the turbulent kinetic budget and energy spectra and the
corresponding two-point correlation are analyzed (sections §8.3 and §8.4). In the second
part the local properties of the flow field in the vicinity of the particles are investigated. This
involves the averaging of the flow field and fluctuations conditioned on the particle positions,
as well as the mean particle wake statistics (section §8.5). Finally, the chapter is closed in
section §8.6 by brief summary and recommendations for future works.

8.1 Qualitative flow description

Before we proceed with the results, let us first give some visual impressions of the flow field.
Figures 8.1 and 8.2 depict iso-surfaces of the negative velocity fluctuations of the vertical fluid
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Figure 8.1: (a) Iso-surfaces of the vertical fluid velocity fluctuations w′f (with respect to the box-averaged
value) in case M178 at one instant in the statistically steady regime. The velocity has been box-averaged
with a filter of 5dp. The graph shows a value of −0.25ug. (b) The same graph along with the particle
positions, but viewed from the top.

velocity component (with respect to the box-averaged value) for both clustering cases, M178
and ML178. The iso-surfaces corresponds to w′f = −0.25ug. It can be immediately observed
that the flow field in both cases exhibits columnar like vertical flow structures extending
throughout the entire vertical length of the computational domain. Please note that similar
structures for positive fluid fluctuations (w′f = 0.25ug) can be observed located in the interspace
between the structures observed in figures 8.1 and 8.2 (plot omitted). The graphs in sub-figures
(b) show the fluid fluctuation of w′f along with the instantaneous particle positions viewed from
the top. Clearly the vertical structures observed in sub-figures (a) correlate with the particle
position and with the local agglomeration of particles. The negative fluid velocity “streamers”
encompass regions with high particle number density. This is best observed in figure 8.2b for
case ML178, where large number of particles are located in the cores of such flow structures
and large void regions with no evidence of such structures are observed. This is in line with
the observations made in figure 7.3, where the negative fluctuations of the vertically averaged
fluid velocity were shown to correlate with the location of the particle clusters and the increase
of the particle settling velocity. Further, figures 8.1 and 8.2 confirm that the particles are
preferentially located in regions with downward fluid motion. In figure 8.3 the vortices in the
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Figure 8.2: The same as in figure 8.1, but for case ML178.

particle wakes are visualized by the vortex eduction criterion proposed by Jeong and Hussain
(1995). The graphs in the figures show selected sub-domains of the computational domain
containing a part of one strong downward current. It can be observed that in both cases large
number of particles are located inside this currents, where complex interaction between the
wakes of the particles takes place. On the other hand, in the void regions surrounding the
downward currents the wakes of the particles are observed to be close to the double-threaded
wake of an isolated particle at the same Galileo number (cf. case S178, figure 3.7).

In Case M121, where the amplitude of the fluctuations is much smaller and the particles
are more evenly distributed, such large flow structures are not encountered (plot omitted) and
the wakes of the individual particles consist of attached toroidal vortex ring, similar to those
found in the corresponding single particle simulation (cf. case S121, figure 3.6).

8.2 Statistics of the fluctuating field

The correct prediction of the flow induced by the movement of particles have been always
of great interest to the scientific community. As aforementioned, the particles in the present
flow cases were placed into an initially quiescent fluid. Therefore, any fluid motion results
from the motion of the particles, which in turn is only due to the gravitational potential. In
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Figure 8.3: Iso-surfaces of the vortex eduction criterion proposed by Jeong and Hussain (1995) at a
value of λ2 = −0.27u2

g/d
2
p (green color) showing a sub-volume of size 32dp × 32dp × 58dp at the same

instant as in figures 8.1 - 8.2. (a) case M178 and (b) case ML178. The iso-surface of the vertical fluid
velocity component is at the same iso-value as in figures 8.1 - 8.2.

the present cases, due to the relatively high relative velocity between the two phases, the flow
field generated by the settling particles is expected to be dominated by the particle wakes. In
such flows, the decay of the velocity disturbance, generated by a particle, with the distance
to the particle play an important role. Before we proceed with the results let us give a short
overview over what is known from the literature.

For dilute suspensions the principle of superposition of the disturbances caused by a single
particle in the flow is widely used for the modeling of the velocity fluctuations in the fluid.
Most of the models based on the superposition principle assume that the dispersed phase is
homogeneously distributed and thereby the hydrodynamic interaction between the particles is
relatively small. For such flows, the contribution of individual particles can be summed up. In
the limit of vanishing solid volume fraction and very small Reynolds numbers (Rep,rel � 1),
the Stokes solution predicts that the flow perturbations behind the particles decay as r−1,
where r is the distance from the particle. Similar to the particle velocity fluctuations, Caflisch
and Luke (1985) showed that due to the slow decay, the superposition of the flow induced
by multiple settling particles will lead to the divergence of the fluid velocity variance with
the size of the domain under consideration. At finite Reynolds numbers a wake develops
behind the particles, wherein the velocity behind the particle decays as r−1 in the laminar
case and r−2/3 in the turbulent case (Pope, 2000), which again results in the divergence of
the velocity variance (Parthasarathy and Faeth, 1990a; Mizukami et al., 1992). Parthasarathy
and Faeth (1990a) studied the sedimentation of spherical particles in a nearly stagnant water
bath in the very dilute regime with solid volume fraction Φs < 0.01% for three different
particle Reynolds numbers, 38, 156 and 545. They used the principle of superposition to predict
the fluid velocity fluctuations. They authors overcome the divergence of the fluid velocity
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fluctuations, by assuming that the wake of a single particle vanishes for distances larger than
175 particle diameters. The attenuation of the particle wakes in a settling suspension of
particles with moderate to large Reynolds numbers was identified as one of the main reasons
for the convergence of the velocity variance. For moderate Reynolds numbers in the order of
O(10), Koch (1993) proposed a screening mechanism of the velocity behind the particles, due
to a deficit of a particle in the wake of the reference particle. Different mechanisms for the
wake attenuation for dispersed two-phase flows with large Reynolds numbers can be identified
and more detailed discussion can be found in Risso et al. (2008).

In a recent work Ellingsen and Risso (2001) studied the rise of a single bubble at high
Reynolds number. They stated that the velocity fluctuations induced by the bubble had two
contributions, one due to the potential flow and second due to the wake of the bubble. An
analytical description of the contribution of the potential flow to the fluid velocity variance can
be derived. In a pioneering work, Batchelor (1967) provided analytical description of the flow
field induced by the moving of sphere in an unbounded irrotational flow. He stated that the
fluid disturbance behind the sphere decays as r−3, which is sufficient for the calculation of the
fluid velocity variance in dispersed flows with multiple particles. Based on this, a prediction
of the fluid velocity variance for dilute suspension can be derived by integrating the velocity
induced by a single particle over the volume occupied by the fluid and multiplying by the solid
volume fraction, viz.:

〈u′f,iu′f,i〉 =

 3/20 0 0
0 3/20 0
0 0 4/20

Φsw
2
p,rel (8.1)

This model assumes an inviscid fluid and does not consider the influence of the particle wakes
and the local distribution of the dispersed phase. As can be immediately seen, the approxima-
tion in equation 8.1 describes nearly isotropic fluid fluctuations. Thus, the application of the
above approximation in case of pseudo turbulence, where the flow is dominated by the wakes
of particles settling with high velocity and was proven to be highly anisotropic, is questionable.
Nevertheless, this approximation for the velocity variance was applied to high Reynolds number
bubbly flows: Biesheuvel and Wijngaarden (1984) studied the velocity fluctuations in a dilute
bubbly flow with high Reynolds numbers. The bubbles were assumed to be spherical and the
viscous forces were assumed to play only a minor role. The boundary layer and the velocity
fluctuations were also neglected and thus the results should be treated with reservation. Later
Lance and Bataille (1991) also adapted the potential approximation in their experimental
study of the rise of large bubbles with high Reynolds number in grid turbulence. They reported
that the velocity variance was mainly due to the potential flow and that the wake contribution
was less than 20% from the total variance. Their results showed to be, nevertheless, well
approximated by the potential flow approximation. Finally we want to remark, that the velocity
variance based on the potential approximation still depends on the solid volume fraction and
increases with increasing volume fraction. Zenit et al. (2001) performed experiments of bubble
suspension with high Reynolds number and low Weber number (the Weber number measures
the relative importance of the fluid’s inertia compared to its surface tension). They compared
the variance due to the potential approximation with their results and observed that the
variance was strongly underestimated by the potential approximation. Bunner and Tryggvason
(2002) studied the dynamics of homogeneous bubbly flow with Reynolds number in the order
of O(10) by means of DNS. They reported that the estimated values were roughly 20% from
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the simulated values. This indicates that the contributions of the wakes to the total variance is
substantial and is the dominating part to the fluid variance.

As mentioned above, the velocity variance in the fluid was observed to have contributions
stemming from the potential flow and the particle wakes together. Therefore, models for
the velocity variance should account for the velocity disturbances due to the particle wake.
The wake by itself can be decomposed in three different regions, which would have different
contributions to the velocity fluctuations in the liquid. Comprehensive studies on the particle
(bubble) wakes were performed in the past with aim to identify the different regions of
the wake. Chen and Faeth (2000) investigated the turbulent properties of the inter-wake
region of homogeneous dilute particle laden flow. They considered similar experimental setup
and parameters range as Parthasarathy and Faeth (1990a) and drawn analogies between
the turbulent inter-wake region and the grid-generated turbulence and suggested that the
wake-induced disturbances correspond to the developing region of grid-generated turbulence,
whereas the inter-wake region corresponds either to the initial or final decay regions of grid-
generated turbulence. Risso and Ellingsen (2002) and Risso et al. (2008) identified three
different regions of the particle wake: (i) region close to the reference particle, where the flow
is similar to that induced by a single particle, (ii) further behind the particle, an intermediate
region, where the hydrodynamic interactions between the particles play a crucial role and
the fluid velocity decays faster than behind a single particle and (iii) asymptotic region far
behind the particle, where the fluid velocity reaches asymptotic value and is independent in
the distance from the particle. Therefore, the different contributions and influence of this
regions have to be considered for the particular case.

Now let us turn to the present results. The Reynolds stress tensor for the region occupied
by the fluid is defined as:

〈u′f,iu′f,j〉Ωf = 1
Ωf

∫
Ωf
u′f,iu

′
f,jdV . (8.2)

In the above equation the velocity fluctuations are computed with respect to the box-averaged
mean fluid velocity, i.e. u′f,i = uf,i − 〈uf,i〉Ωf . For exact definition of the averaging operator
the reader is referred to appendix A. Due to symmetry in the horizontal direction and the
absence of walls, the off-diagonal components of the tensor are identically zero and the velocity
correlations in the horizontal directions are equal, i.e. 〈u′fu′f 〉Ωf = 〈v′fv′f 〉Ωf . Thus, in the
following discussion only the horizontal component and the vertical component are going to
be considered. Henceforth, the horizontal component of the fluid velocity fluctuations will be
for convenience abbreviated as 〈u′fu′f 〉Ωf . Finally, the r.m.s. of the fluid velocity components
can be calculated as the square root of the horizontal and vertical Reynolds stresses.

The temporal evolution of the fluid velocity fluctuations was already briefly discussed in
section §5.2, figure 5.3a. The velocity field in case M178 experienced larger fluctuations than
in case M121. In case M121 the r.m.s. values in lateral direction showed small increase over
long time, while the fluctuations in vertical direction seem to have a long time oscillating
behavior. The fluctuations for both velocity components in case M121 remained over the entire
course of the simulation essentially flat, while the fluctuations in both clustering cases M178
and ML178 exhibit prominent temporal fluctuations, which were more distinctive for the
vertical velocity component. Similar evolution of the fluid velocity fluctuations was observed in
the numerical studies of Kajishima and Takiguchi (2002); Kajishima (2004a). The peaks in the
fluctuations of the vertical fluid velocity component were related in their work to the life cycle
of the particle clusters. As noted by the authors, the particles located in clusters tend to settle
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faster than the average and they generate a downward motion of the fluid surrounding the
clusters, which results in the increasing of the amplitude of the fluid velocity fluctuations of the
vertical velocity component (cf. section §7.1). The break-up of the clusters caused respectively
attenuation of the velocity fluctuations. Following their reasoning we estimated the life time
of the particle clusters in case M178 to be approximately 550τg. Unfortunately, we were not
able to compute the autocorrelation of the fluid velocity, which would provide more qualitative
analysis of the temporal evolution and behavior of the flow field. This needs to be addressed
in future studies.

As a result of the wake-induced character of the fluid motion, in all three cases the
fluid velocity fluctuations exhibit strong anisotropy with the vertical component being highly
dominant. This high level of anisotropy suggest strong effects of the particle wakes, where
the mean particle wake contributes to the fluctuating velocity field. The anisotropy of the
flow field has been commonly observed in studies of pseudo-turbulence. Parthasarathy and
Faeth (1990a) have made similar observations, where experiments of particles settling in an
ambient fluid were performed. As in the present cases, they observed, that the fluctuations
of the vertical fluid velocity component are significantly larger than the fluctuations of the
horizontal velocity components, roughly by a factor of two. However, in their experiments the
relative turbulence intensity is an order of magnitude smaller than in the present cases, except
in case ML178 where similar values are observed (cf. figure 7.6). Bunner and Tryggvason
(2002) also observed strongly anisotropic Reynolds stresses, in the lowest gas volume fraction.
They noted the value of the ratio of the vertical to horizontal fluid velocity fluctuations to be
3.3. However, the considered volume fraction is four times larger than in the present study.
More recently Kajishima (2004a) studied the collective behavior of solid particles in a particle
induced turbulence by means of DNS and observed similar value of the ratio between the
vertical and horizontal fluid velocity fluctuations as in the present study. In their work they
particularly studied the influence of particle rotation and loading ratio on the interaction
between particle clusters and particle-induced turbulence. The particle Reynolds number in
Kajishima (2004a), however, was on average larger than 300, which is slightly larger than in
the present flow cases M178 and ML178.

The high anisotropy of the flow field fluctuations suggest that the application of the
potential flow model may not provide reasonable predictions for the fluid velocity variance.
Nevertheless, we applied the potential flow prediction (equation 8.1) to the present data and
calculated an approximation of the long time mean velocity fluctuations. The potential model
under predicted the simulated values (e.g. 〈w′fw′f 〉Ωf ) substantially by a factor of 6.6 in case
M121, by a factor 7.6 and 12 in case M178 and case ML178, respectively. This result implies
that the influence of the wakes and the hydrodynamic interaction in the inter-wake region
play significant role and need to be considered in future models for the fluid velocity variance.
Similar values of the ratio between the observed and predicted variance values were also
observed in the literature, e.g. Zenit et al. (2001) and Bunner and Tryggvason (2002). Bunner
and Tryggvason (2002) report ratio of five, which is reasonably close to the values observed
here, despite the order of magnitude smaller Reynolds number they considered. In the limit of
vanishing small particle Reynolds numbers (Rep → 0) the influence of the wake is expected to
decrease and eventually for very small Reynolds numbers the difference to the potential model
would continually decrease as well.

As aforementioned, the method of superposition is widely used in dilute suspensions. In
order to assess the applicability of such model for the present flow conditions and investigate
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how well the fluctuations induced by single particle scale with that of multiple particles, we
calculated the volume compensated ratio of the velocity fluctuations between the flow cases
with single and multiple particles. For case M121 the difference between the multiple particles
and the single particle is calculated to 8% and for cases M178 and ML178 to 30% and 35.8%,
respectively. This implies that due to the clustering in case M178 and ML178, the fluid velocity
variance cannot be simply calculated as superposition of the velocity variance induced by the
single particle in case S178. This is in line with the observations made for the particle velocity
fluctuations in section §7.2. Please recall that one of the constraints of the superposition
principle was the homogeneous distribution of the dispersed phase, where in case M178 and
case ML178 large inhomogeneities (strong clustering) of the particle distribution is observed.
However, in case M121 the superposition principle appear to reasonably approximate the
fluctuations induced by the particle suspension.

Parthasarathy and Faeth (1990a) proposed theoretical predictions for the velocity fluctua-
tions in the liquid based on the linear superposition principle. They identified three different
components, which contribute to the particle induced flow field: (i) modulation in the potential
flow region, (ii) modulation due to the mean properties of the wake and (iii) modulation
due to the turbulent properties of the wake. All three components can be evaluated sepa-
rately and thus the relative level of influence of each one can be assessed for the particular
flow problem. By using the asymptotic wake properties and as mentioned above terminating
integration at r/dp = 175, the following expressions for the fluid velocity fluctuations were
obtained (Parthasarathy and Faeth, 1990a):

〈u′fu′f 〉
1/2
Ωf /wref = Cu[εdp(θ/dp)2/3/w3

ref ]1/2 (8.3)

〈w′fw′f 〉
1/2
Ωf /wref = Cw[εdp(θ/dp)2/3/w3

ref ]1/2 (8.4)

In the above equations the reference velocity was taken to be the terminal settling velocity
of the isolated particles in the cases S121 and S178. The parameter εdp(θ/dp)2/3/w3

ref on
the right hand sides was denoted by the authors as the dissipation factor and is function
of the dissipation rate ε, the particle diameter dp, the reference velocity wref and the wake
momentum diameter θ = (Cdd2

p/8)1/2, where Cd is the particle drag coefficient. The constants
Cu and Cw result from the time integration and depend on the length of the wake, which
was taken to be 175 particle diameter. At this distance the mean velocity defect was observed
in Parthasarathy and Faeth (1990a) to be comparable to the ambient velocity fluctuations
and suggests that the wake properties were indistinguishable from the surrounding flow field.
The exact values of the constants Cu and Cw are going to be discussed in the following. For
more detailed derivation of the above equations we refer the reader to the aforementioned
reference. Note that the above equations 8.3 and 8.4 already contain the contributions of the
above mentioned three components. Finally, let us note that the constants Cu and Cw were
calculated in Parthasarathy and Faeth (1990a) to Cu = 4.63 and Cw = 6.84.

Figure 8.4 depicts the values of the fluctuations for the horizontal and the vertical fluid
velocity components for all three cases along the values approximated by the above described
model of Parthasarathy and Faeth (1990a). Let us first discuss the results for case M121.
Since no particle clustering was observed for this case and the particle Reynolds number is
fairly close to the Reynolds number discussed in Parthasarathy and Faeth (1990a), we expect
that the predictions for the fluid velocity variance should be reasonable. Since the vertical
velocity component is the dominant one in the present simulations, the correct prediction of
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the vertical component velocity fluctuations is going to be critical for the particular model.
Therefore, we first applied the above model for the vertical velocity component. First, the
predicted velocity fluctuations over estimated the values observed in the simulation by as
much as 27.5%. However, if we neglect the contribution due to the turbulent wake, i.e. only
considering the mean properties of the wake and the potential flow region, the model yields
very good approximation for the simulated fluid velocity fluctuations. The difference between
the predicted and the simulated value was evaluated to 3.8%. The constant Cw without the
contribution of the turbulent wake was calculated to Cw = 4.72. In order for the model to
predict correctly the fluid velocity fluctuations for the horizontal component, the constant Cu
needs to represent the level of anisotropy in the flow, since the fluctuations of both components
are function of the same dissipation factor. Thus, we calculated the constant Cu to be equal to a
fraction of the coefficient Cw corresponding to the level of anisotropy, i.e. Cu = Cw/α, where α
represents the observed anisotropy level. By doing this, we obtained Cu = 1.1, which provided
very good agreement with the result from the simulation. Similar approach was undertaken
in Mizukami et al. (1992), where they applied the above model for the prediction of the
velocity fluctuations generated by the settling of spherical glass beads through stagnant air.
They observed degree of anisotropy of roughly two and proposed to calculate the constant as
Cu = Cw/2, which in their case agreed well with the measured velocity fluctuations. Here we
would like to note that we used the drag coefficient from the simulation and not the standard
drag approximation as in Clift et al. (1978). By resolving the equations 8.3 and 8.4 one obtains
that the velocity fluctuations are proportional to the two-third power of the drag coefficient,
i.e.:

〈w′fw′f 〉
1/2
Ωf /wref ∼ φ

1/2
s C

2/3
d . (8.5)

Thus, the correct representation of the drag coefficient is crucial for the application of the
present model and any deviation of the simulated drag coefficient from the standard drag
coefficient will affect the prediction for the velocity fluctuations with the difference to the
power of two-third.

Concerning case M178 and case ML178, we would like first to recall, that the above model
assumes that the particle distribution is homogeneous, which is clearly not true in cases M178
and ML178, as shown in section §6. Nevertheless, we applied the above model in order to
assess the applicability of the model for cases with non-homogeneous particle distribution. By
using the constant Cw = 6.84 provided by Parthasarathy and Faeth (1990a), the model under
estimates the velocity fluctuations for the vertical component obtained from the simulation
M178 by as much as 20%, whereas in case ML178 the difference was calculated to 49.3%. As
one would expect the larger difference is measured for the case with the higher clustering level.
This clearly proves the limits of the above model for non-homogeneously distributed particles.
The coefficient Cu was again obtained as a fraction of Cw proportional to the anisotropy levels
observed in case M178 and case ML178, leading to the same deviations for the horizontal
velocity component (note that in equations 8.3 - 8.4 the only difference is the value of the
coefficients Cu and Cw). Neglecting of the turbulent part of the particle wake (as expected)
lead to an increase of the deviation from the simulated values.

Now let us turn to the distribution of the fluid velocity. Figure 8.5 depicts the probability
density function of the horizontal and vertical fluid velocity components for all three flow cases.
As can be observed both velocity components exhibit super-Gaussian distribution with the
horizontal velocity component being more intermittent than the vertical component, except
for case ML178 where the opposite is observed. As for the fixed particle simulations F121
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Figure 8.4: Fluid velocity fluctuations of the (a) horizontal and (b) vertical velocity components obtained
from the simulations, case M121 (�), case M178 (�) and case ML178 (�). The data is plotted along
with the results from Parthasarathy and Faeth (1990a) and Mizukami et al. (1992), �, �, M, N, ◦,
•. The black star (?) corresponds to the value predicted by the model in equations 8.3 - 8.4 without
consideration for the turbulent part of the wake. The reference velocity wref was chosen to be the
terminal settling velocity for the single particle from cases S121 and S178. dp denotes the particle
diameter, θ = (Cdd2

p/8)1/2 is the wake momentum diameter and ε is the dissipation rate. The black
dashed line corresponds to the constant Cw = 6.84.

and F178, the horizontal velocity component in case M121 and case M178 is approximately
symmetrically distributed about its mean value, exhibiting only small skewness values of the
order of O(10−2). The values of the fourth moment of the p.d.f.s reveal that the horizontal
velocity component in the clustering case M178 is less intermittent than the non-clustering
flow case M121. The values of the flatness in case M121 were measured to 10.4, whereas in
case M178 nearly the half of this value was observed, i.e. K(uf ) = 5.01. Comparison with the
flatness values for the fixed particle simulations shows that, for the present configurations,
the mobility of the particles leads to decrease of the velocity intermittency, regardless if the
particles agglomerate into clusters or not. In fact, the decrease of the flatness value of the
horizontal velocity component appear to be in both cases by a similar factor, i.e. factor of 2.6
in the non-clustering case and 2.9 in the flow case with the higher particle Reynolds number.

Concerning the vertical velocity component, the velocity in case M121 and case M178
are negatively skewed, experiencing skewness values of S(wf ) = −1.58 in case M121 and
S(wf ) = −1.29 in case M178. This indicates that intense velocity fluctuations occur more
frequently in the downward direction than in the upward direction. As for the fixed particle
simulations, this can be attributed to the wakes character of the flow, where fluid is entrained
in the wakes of the particles. However, the here observed values are significantly smaller
than in the case for fixed particles, suggesting that the mean wake in the present cases may
be significantly attenuated compared to the mean wake of the fixed particle assemblies (as
we will see in section §8.5, indeed, the mean wake of the particles in the present cases with
mobile particles is attenuated, when compared to the wake of the fixed particle simulations).
Figure 8.5 shows that the p.d.f. of the vertical fluid velocity component in case M121 exhibits
similar prominent increase of the probability to find extreme values of the fluid velocity of the
order of 6 standard deviations smaller than the mean value, which is manifested by a prominent
peak in the p.d.f.. This feature can be accounted to the wake character of the flow. For values
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Figure 8.5: Probability density function of the horizontal (α = 1, 2) and vertical (α = 3) components of
the flow velocities uSf (black color) and uf (green color) (a) for case M121, (b) case M178 and (c) case
ML178. Line coding: horizontal component ( , ); vertical component ( , ); Gaussian
distribution ( ).

of the solid volume fraction, as in the present study, the perturbed flow field by the particles
contributes only to smaller number of velocity samples. Since this samples contribute to the
most of the velocity fluctuations, the contribution of the flow field in vicinity of the particles
to the total distribution consist mainly of an increase of the probability density function for
large values of the velocity fluctuations. On the other hand in case M178, this feature appear
to be attenuated by the motion of the particles, indicating that the fluctuations of the vertical
fluid velocity component in case M178 are with less probability subjected to extreme events
(large deviations of the mean value) than in case M121. This is evidenced also by the smaller
flatness value of the vertical fluid velocity component in case M178 (K(wf ) = 6.34) than in
case M121 (K(wf ) = 8.27). Again, comparison with the values obtained for the fixed particle
simulations F121 and F178 reveals, that the motion of the particles leads to a decrease of both
the intermittency and the skewness of the vertical fluid velocity component.

Regarding the effect of the solid volume fraction, the fluid velocity in case ML178 is more
intermittent than in case M178, especially for the vertical velocity component, where the
flatness value is approximately 2.5 times larger than in case M178. However, the difference
for the horizontal velocity component is rather small and was measured to be less than 6%,
indicating that the distribution of the horizontal fluid velocity is relatively independent of the
solid volume fraction. The skewness of the fluid velocity increases as well for both velocity
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components in case ML178, which stems most probably from the stronger levels of clustering
observed in case ML178. The occurrence of the above mentioned peak at large negative values
of the fluid velocity fluctuations moved further away from the mean value and is observed to be
at approximately−10 standard deviations, causing also an increase of the velocity intermittency.
As mentioned above, this increase of the probability for the occurrence of negative fluctuations
is related to the particle wakes. With decreasing of the sold volume fraction (i.e. number of
particles) the number of wakes and thus the samples of the flow field located in the wake of a
particle decrease accordingly. However, the less probable occurrence leads to higher values
of the velocity flatness. The values of the skewness and the flatness for both fluid velocity
components and all flow cases can be found in tables 8.1 - 8.2.

In order to better investigate the flow field in vicinity of the particles, we have calculated
the probability density function of the particle conditioned fluid velocity uSf , which is also
depicted in figure 8.5. It can be observed that in case M121 and case M178 the fluid velocity is
less intermittent than the unconditioned fluid velocity, evidenced by the smaller values of the
fluid velocity flatness. The values of the skewness are reduced in all cases as well. Please refer
to tables 8.1 and 8.2 for the exact values. This indicates that the fluid velocity in the vicinity of
each individual particle is very similar and its p.d.f.s resemble the shape of the unconditioned
p.d.f.. The overall distribution in case ML178 appears to follow the same trend as in case
M178, except for the vertical velocity component, where the largest difference is observed.
The distribution of the velocity wSf in case ML178 shows similar features as the one in case
M178, indicating that the local flow field in both cases is very similar and nearly independent
of the solid volume fraction (for the present flow conditions). The difference between the
standard deviation of the vertical velocity component in case M178 and case ML178 measures
only 3.1%. Similar observations were made for example by Risso and Ellingsen (2002), where
the velocity fluctuations induced by a homogeneous dispersion of bubbles was investigated.
The authors distinguished two regions in the flow: (i) in vicinity of the particles they found
the flow to be similar to that generated by isolated bubble and as a consequence the fluid
fluctuations herein do not depend on the solid volume fraction; (ii) in the second region (the
complementary region) they stated that the velocity fluctuations are controlled by non-linear
interactions between the wakes of all particles and evolve in a self-similar manner as the Φ0.4

s .
The p.d.f. of the total fluctuations is then the sum of the p.d.f.s of the fluid velocity in this two
regions weighted by the relative volume fraction they occupy. In order to address the scaling of
the fluid velocity fluctuations with the solid volume fraction, we studied the standard deviation
of the fluid velocity in case M178 and case ML178 (recall, the only difference between this two
cases is the value of Φs, which is in case ML178 factor of ten smaller than in case M178). For
the vertical component the standard deviation in case M178 was evaluated to σ(wf ) = 0.23,
whereas in case ML178 significantly smaller value was measured, i.e. σ(wf ) = 0.11. As next
we applied the scaling of the fluid velocity as proposed by Risso and Ellingsen (2002), viz. the

case S(up) S(uSp ) S(wp) S(wSp )
M121 0.09 0.01 −1.58 −1.58
M178 0.007 −0.01 −1.29 −1.0
ML178 −0.005 0 −2.2 −1.90

Table 8.1: Skewness of the probability density functions of the components of the fluid velocities uf
and uSf for all three cases M121, M178, ML178. Data corresponds to the p.d.f.s in figure 8.5.
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case K(up) K(uSp ) K(wp) K(wSp )
M121 10.4 7.76 8.27 7.18
M178 5.01 4.68 6.34 4.56
ML178 5.30 5.68 15.23 8.27

Table 8.2: Kurtosis of the probability density functions of the components of the fluid velocities uf and
uSf for all three cases M121, M178, ML178. Data corresponds to the p.d.f.s in figure 8.5.

fluid velocity was normalized by w∞(Φs/Φref )0.4, where w∞ is the terminal settling velocity of
an isolated particle (case S178), Φs the solid volume fraction and Φref is some reference solid
volume fraction and was chosen in the present work as the solid volume fraction in caseML178.
With this scaling the standard deviation calculates to σ(wf ) = 0.099 and σ(wf ) = 0.011 in case
M178 and case ML178, respectively. Thus, the difference between the standard deviation in
both cases reduces to approximately 15%. It is interesting to note, that the scaling of the fluid
velocity with the solid volume fraction is incompatible with the summation of the contributions
of individual wakes, which would provide a p.d.f. with moments all proportional to the solid
volume fraction (Risso et al., 2008). Moreover, the scaling of the fluid velocity depends on
the velocity scale of a single particle, which is clearly independent of the volume fraction as
noted by (Riboux et al., 2010). Similar observations for the fluid velocity distribution and the
standard deviation were made recently by the numerical investigations of Risso et al. (2008);
Riboux et al. (2010, 2013). The values of the normalized standard deviation were found to be
in very good agreement with the values reported in Riboux et al. (2010).

8.3 Energy budget

In the following, the kinetic energy balance of the flow field for the present flow conditions is
discussed. To this end, the different contributions to the turbulent kinetic energy (TKE) are
identified and their relative importance to the total kinetic energy is studied. This study is
of particular interest, since it allows us to investigate the energy production and dissipation
of the dispersed phase. Please recall, that the fluctuations in the flow field are solely due to
the relative motion of the particles with respect to the fluid. Therefore, this analysis is a good
starting point for the study and modeling of turbulent particulate flows and especially the
contributions of the dispersed phase to the kinetic energy of the fluid.

Before we proceed with the analysis, let us introduce the kinetic energy equation for the
present flow conditions. As introduced in section §5, the only driving force in the present
cases M121, M178 and ML178 is the gravitational acceleration. This allows us to make
some simplifications of the kinetic energy equation, leading to the following form of the TKE
equation:

D̄k

D̄t
= −ε+ Ψb + Ψp, (8.6)

where k = 〈Φfu
′
f,iu
′
f,i〉Ω/2 is the turbulent kinetic energy (TKE) averaged over the entire

domain, ε = 2ν〈sijsij〉Ω is the average dissipation rate, where sij = (u′i,j + u′j,i)/2 is the
fluctuating rate of the strain tensor, Ψb is the buoyancy force, which represents the work done
by the gravitational potential and Ψp is the correlation between the fluid velocity and the
forcing term due to the presence of the particles. The fluid indicator function is denoted by Φf
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(cf. appendix A) and the differential operator D̄/D̄t is defined in equation D.72 in appendix D.
The buoyancy term Ψb is defined as follows:

Ψb = wsΦs

(
ρp
ρf
− 1

)
gz, (8.7)

where ws is the averaged relative velocity between the two phases (cf. equation 5.2) and Φs is
the solid volume fraction. The contribution to the TKE stemming from the dispersed phase is
given by:

Ψp = 〈Φfu
′
f,if
′
p,i〉Ω (8.8)

where fp,i is the hydrodynamic force which imposes the rigid body motion of the particles on
the fluid. This term is also known as the two-way coupling term and was studied recently for
the case of finite-size particles in homogeneous isotropic turbulence in the absence of gravity
by Lucci et al. (2010). For statistically steady state the term on the left hand side vanishes and
the equation reduces to the following form:

ε = Ψb + Ψp (8.9)

As can be seen the contributions to the TKE from the dispersed phase is compensated by the
dissipation rate of the TKE. For heavy particles (ρp/ρf > 1) and gravity acting opposite to the
vertical direction, the first term on the right hand side of equation 8.9 is always positive and
acts as a source of TKE. Considering the term Ψp, no a-priory allegation of its sign can be made
and further analysis is required to determine whether Ψp acts as sink or source of TKE. For
detailed derivation of the turbulent kinetic energy equation and detailed definition of all terms
the reader is referred to appendix D.

Figure 8.6 depicts the budget of the turbulent kinetic energy of the flow field (the contribu-
tions of all four terms in equation 8.6) as function of time for all three cases. As can be seen the
TKE energy is dominated by the gravitational potential Ψb and the dissipation rate ε, whereas
the two-way coupling term and the rate of change of TKE are in all cases negligibly small. As
expected the potential energy act as a source of turbulent kinetic energy in all three cases and
is compensated by the dissipation rate, which acts as a sink of TKE. Concerning the effect of
the Galileo number, figure 8.6 reveals that the potential energy in case M178 is larger than in
case M121 due to the higher relative particle velocity. The difference between both cases was
evaluated to 19.9%. With respect to the effect of the solid volume fraction, as can be seen in
equation 8.7 the potential energy is a linear function of the solid volume fraction and indeed
the value of Ψb is in case ML178 approximately ten times smaller than in case M178. The rate
of change of the TKE (term on the left hand side in equation 8.6) was measured in all three
cases to be positive and of the order of O(10−6), indicating that the flow systems are in all
three flow cases at statistically steady state. The two-way coupling term Ψp, although small in
magnitude, turned out to be in all three cases negative, indicating that the fluctuating particle
motion acts on average as a sink of kinetic energy in the present flow cases. It is interesting to
note that in the study of Lucci et al. (2010) this term was found to have systematically positive
values. Ferrante and Elghobashi (2003) found the term to have both negative and positive
values, thus acting as a source or sink of TKE. This circumstance indicates that understanding
of the exact physical mechanisms leading to the sign of the two-way coupling term is not
complete and a more detailed study is required in future works, especially in the presence
of background turbulence. Finally, let us mention that in number of experimental studies
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Figure 8.6: The four terms in the average kinetic energy equation 8.6: rate of change term dtEk ( ),
rate of dissipation ε ( ), average work due to potential energy wp,relφs(ρp/ρf − 1)gz ( ) and
correlation between the fluctuating velocity ad particle force 〈u′f,ifp,i〉Ω ( ). All quantities are
normalized with the particle scale u3

g/dp. (a) case M121, (b) case M178 and (c) case ML178.

Parthasarathy and Faeth (1990b); Mizukami et al. (1992); Lee et al. (2003) the kinetic energy
due to the gravitational potential is used as a surrogate for the value of the dissipation rate,
neglecting the two-way coupling and assuming a statistically steady state. As can be seen
from figure 8.6 our data appear to support this hypothesis. We have checked that indeed the
term Ψb is a good approximation of the total dissipation in the flow field by calculation the
dissipation rate of the flow, i.e. ε = 〈sijsij〉Ω. The difference in all three cases was evaluated to
be less than 7% (case ML178).

8.4 Energy spectrum and two-point correlations of the flow field

Figure 8.7 shows the one-dimensional energy spectrum of the flow field for all three flow
cases, M121, M178 and ML178. The energy spectrum is calculated as in equation 4.6 and is
normalized by the respective maximum value in each case. As introduced in section §1.2.2
the energy spectrum in dispersed bubble flows is observed to exhibit a decay −3 power law
with the wave number κ. In the case of fixed particles, in section §4.3.2 was showed that the
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particle-induced flow field indeed followed a −3 power law. The objectives of the present
section is to investigate whether the energy spectrum of the flow field in case of mobile particles
under the present conditions exhibit a power law decay. First let us discuss the spectrum in
the horizontal direction (cf. figure 8.7(a,c,e)). Please note that due to the invariance of the
flow field in the horizontal direction, it is sufficient to consider the spectrum, for example only,
in the x-direction. The spectrum in the y-direction can be easily obtained by substituting the
v-component of the velocity for the u-component. It can be observed, that the energy spectrum
in the horizontal direction in all three flow cases exhibits regions with decay rates proportional
to κ−3

x . However, the scaling behavior is maintained in a smaller range of wave numbers,
compared to the fixed particle cases F121 and F178. The range in all three flow cases was
measured to extend approximately between κxdp = [3, 10], which is nearly four times smaller
than in the cases for the fixed particles. Beyond ten particle diameters, the energy spectrum
decays at faster rate of approximately κ−3.5

x . Comparing case M178 and case ML178 it is
evident form the graph that the fluid velocity spectra decay significantly faster in case ML178
than in case M178, practically disappearing for values of the wave number larger than 30dp.

Regarding the spectrum in the vertical direction (figure 8.7(b,d,f)), the decay rate in case
M121 deviates substantially from the −3 power law, whereas for fixed particles the opposite
behavior was observed (cf. §4.3.2). This indicates that the motion of the particles and thus the
dynamics of the hydrodynamic interaction between the particles play an important role for the
scaling exponent of the energy decay. Note, that in case M121, except for the micro-structure
in vicinity of the particles, the motion of the particles is relatively unaffected by the relative
motion of the particles to each other. Nevertheless, the energy spectrum in case M121 deviates
from that in the case of fixed particles.

On the other hand, in case M178 a −3 power law is observed for both velocity components
for a wide range of the wave numbers, ranging from approximately κxdp = 2 to κxdp = 68. As
a consequence, for the present flow conditions (particle-to-fluid density ratio, solid volume
fraction, mobile particles), the decay power law appear to be a function of the Galileo number.
Additionally, the comparison with the fixed particle case F178 suggest that the mobility of the
particles affects the decay rate of the energy spectra. In case ML178 the overall decay of the
energy spectrum for both velocity components appear to follow roughly the −3 power law, but
not as distinct as in case M178, indicating that the solid volume fraction has an effect upon
the decay power law as well. In a pioneering study Lance and Bataille (1991) showed that the
classical −5/3 power law is substituted by an exponent of −8/3 for increasing values of the
solid volume fraction. Thus, the present results appear to support the observations made in
their work.

As in the case of the fixed particles, the energy spectra in both components clearly show a re-
verse cascade process and the effect of the particles can be observed in the energy enhancement
at scales similar to the particle size.

Overall, the present results are in line with the observation from the literature. For example
Martínez-Mercado et al. (2010) measured a −3.2 decay rate, which is maintained for nearly
two decades of the wave number. They considered the agitations in the fluid induced by
bubbles with high Reynolds number of the order of 1000. Bunner and Tryggvason (2002)
observed a decay rate proportional to κ−3.5

x for bubble-induced flow field. A −3 scaling has
been also given by Risso et al. (2008); Riboux et al. (2010). In the latter work the authors
observed a −3 decay for wave numbers smaller than the particle wave number and a classical
−5/3 scaling for larger wave numbers independent of the solid volume fraction. In a numerical
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Figure 8.7: Energy spectra of fluid velocity fluctuations in case M121 (a,b), case M178 (c,d) and case
ML178 (e,f). Horizontal direction (a,c,e) and in the vertical directions (b,d,f). Color coding of the
velocity components: u: , v: and w: . The dashed magenta lines ( ) indicate
decay rates proportional to k−3

α .

study by Mazzitelli and Lohse (2009) of micro-bubbles a −5/3 decay power law was observed.
In their study the authors however neglected the wakes of the bubbles. Thus, as suggested
by Martínez-Mercado et al. (2010) the power law of the decay may be related to the wake
structure of the particles.

A number of different explanation of the different energy scaling in pseudo-turbulence
were proposed in the literature. Martínez-Mercado et al. (2010) argued that the hydrodynamic
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interactions, specifically the wakes of the particles are responsible for the −3 decay law. Similar
argument was used in the study performed by Riboux et al. (2010). On the other hand
Mendez-Diaz et al. (2013) argued that the specific details of the hydrodynamic interactions
between the particles did not influenced the fluid fluctuations and stated that the disorder of
the particle array is the reason fluid velocity fluctuations.

With respect to our results, the difference between case M178 and ML178 clearly indicates
that the scaling exponent does not (or at least weakly) depend on the solid volume fraction,
since in both cases very similar particle distribution is observed. Therefore, our results appear
to support more the argument of Martínez-Mercado et al. (2010) that the hydrodynamic
interactions among the particles, which depend on the solid volume fraction, are responsible
for the decay rate of he energy spectra. However, this merits further investigation and needs to
be addressed in future studies.

Finally, we would like to mention that all of the aforementioned works considered light
particles, i.e. bubbles, where here heavy finite-size particles are considered.

Now let us turn to the two-point correlation of the fluid velocity field. Figure 8.8 shows the
two-point correlation function for all three flow cases. It can be observed that the fluid velocity
components in case M121 decorrelate in the horizontal direction in a very similar manner. The
u and w velocity components first become negatively correlated at approximately rx/dp = 20
and beyond that distance remain negatively correlated at small values of −0.015. On the other
hand in the clustering cases, the fluid velocity components exhibit different evolution with the
radial distance in the horizontal direction. The vertical velocity component remains over longer
distances correlated than the horizontal velocity components. While the horizontal velocity
components decorrelate completely for large horizontal separations, the vertical component
in both cases M178 and ML178 remains negatively correlated. However, in case M178 the
value of the correlation function is significantly smaller than in case ML178. Closer look of the
two-point correlation function of the vertical velocity component reveals small oscillations with
the local maximum and minimum. The distance between this values represents approximately
the average distance between the particle clusters in the horizontal direction (cf. figure 6.2).
The large negative correlations of the vertical velocity component in case ML178 stems most
probably form the large void regions in which the fluid velocity remains correlated over longer
distances (cf. figure 6.13).

Regarding the two-point correlation in the vertical direction (figure 8.8 (b,d,f)), the hor-
izontal fluid velocity component in all three cases decorrelates completely for large vertical
separations. Thereby, the horizontal velocity component in case M121 and case ML178 evi-
dences negative loops with small negative values. Concerning the vertical velocity component,
the graphs in figure 8.8 show that the velocity remains correlated at separations of half the
box vertical length. Comparison with the correlation function for the fixed particle simulations
F121 and case F178, evidences that due to the clustering in cases M178 and ML178 the
vertical velocity remains correlated in the vertical direction over the entire vertical length of
the computational domain. This confirms the visual observations made in figures 8.1 and 8.2.
Moreover, the correlation function clearly shows dependence with the solid volume fraction,
experiencing substantially larger correlation values in case ML178 than in case M178. This is
mainly due to the higher clustering levels in case ML178 (section §6.2).
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Figure 8.8: Two-point spatial autocorrelation function of fluid velocity fluctuations in case M121 (a,b),
case M178 (c,d) and case ML178 (e,f) for separations in horizontal direction (a,c,e) and in the vertical
directions (b,d,f). Line styles as in figure 8.7.

8.5 Particle wakes

In this section we will present the particle conditioned flow field in vicinity of the particles.
To this end, the flow field in vicinity of the particles is conditionally averaged with respect to
a reference particle. The averaging is performed as in section §4.3.4, where more detailed
definition can be found. Figure 8.9 depicts contours of the vertical velocity component of
the particle-averaged velocity w̃f,rel/ug (equation 4.9), on a plane through the center of the
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Figure 8.9: Contour plot of the relative velocity w̃p,rel/ug in the plane parallel to the vertical axis passing
trough the particle center xp. (a) case M121. (a) case M178. (c) case ML178. Contours are shown for
values (0:0.2:0.8). The red line ( ) marks the extent of the recirculation region, i.e. w̃f,rel = 0. The
position of the z-axis is denoted by the black dashed line ( ). r̃x denotes the radial distance from
the reference particle in the horizontal direction.

test particle aligned with the vertical direction, resembling the mean particle wake. It can be
observed that the mean particle wake is in all three flow cases symmetric with respect to the
vertical axis. In fact, due to the invariance of the flow in the horizontal direction, the mean
particle wake is symmetric in the horizontal direction as well, this circumstance is already
accounted for in figure 8.9 and is denoted by the radial distance r̃x. The region encompassed by
the red line represents the recirculation region of the mean particle wake, i.e. w̃f,rel ≤ 0. Due to
the axi-symmetry of the mean wake, the recirculation length can be defined as in section §4.3.4
as the position on the vertical axis, where the velocity w̃f,rel changes sign. This can can be
also observed in the inset of figure 8.10, where the velocity profile of w̃f,rel on the vertical
axis is shown. We measured the recirculation length in case M121 to le = 0.839dp, which is
approximately 12% smaller than the value measured in the case with the fixed particles. In the
clustering case M178, the recirculation length was evaluated to le = 0.663dp, resulting in even
large difference of 36.8%. This indicates that the particle clustering in case ML178 lead to a
significant attenuation of the particle mean wake. The recirculation length was evaluated to
0.663dp. The attenuation of the recirculation length can be mainly attributed to the orientation
of the particle clusters in the vertical direction and to the increased probability of finding
another particle in the wake of the reference particle. On the other hand in case ML178,
the recirculation length of the average particle wake is measured to be substantially larger
than in case M178, evidencing that the solid volume fraction has a significant effect upon
the mean particle wake. The recirculation length in case ML178 is calculated to le = 0.923dp
being approximately 28.1% larger than on case M178. Although the particle in case ML178
agglomerate in similar clusters as in case M178, due to the smaller solid volume fraction, the
individual particle wakes are less disturbed by the presence of neighboring particles. It is
well known that the particle wakes and thus their recirculation length depend on the relative
turbulence intensity of the flow field. Increase of the relative turbulence intensity causes a
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decrease of the particle wake recirculation length. As showed in section §7.1.3, figure 7.6, the
smaller number of particles in case ML178 results in smaller relative turbulence intensity than
in case M178, which also supports the above made observations.

Finally, let us mention that the value of the recirculation length calculated in case M121
resembles well the value observed in García-Villalba et al. (2012) for multiple finite-size
particles settling in vertical channel flow. The authors reported the mean recirculation length
of the particles located in the core of the channel to be le = 0.86dp, which is approximately
2.3% larger than in case M121. The average Reynolds number of the particles located in the
core of the channel, where the influence of the walls is the smallest, is slightly smaller (6.4%)
than in case M121. Moreover, in the present case M121 nearly the same value of the relative
turbulence intensity is measured as in García-Villalba et al. (2012), viz. the value of IrV in case
M121 being 13% smaller than in García-Villalba et al. (2012). Further, comparison with the
recirculation length of a single fixed particle subjected to homogeneous isotropic turbulence
with similar value of the relative turbulence intensity as in Bagchi and Balachandar (2004)
proved to be in good agreement with the value in case M121. The difference was measured
to be approximately 3.5% with larger value in case M121. The above results imply that the
average wake of the particles in case M121 closely resembles the wake of a single particle in
otherwise similar flow conditions (w.r.t. the alues of IrV ). This is in line with the observations
made for case M121 throughout the current work, that the particles in case M121 settle on
average as an isolated particle. At this point we would like to point out that the flow conditions
and the flow structures in the above two references are significantly different from that in case
M121. Nevertheless, the effect on the recirculation length in all these cases appear to be very
similar.

On the other hand, comparison of the recirculation length of the mean particle wake in
the clustering cases differ significantly from that of a single particle. We have compared the
values of le in the cases M178 and ML178 with the results for fixed particle in homogeneous
isotropic turbulence with similar relative turbulence intensity (Bagchi and Balachandar, 2004).
It turned out, that due to the mobility and the clustering of the particles the recirculation
length in case M178 and case ML178 is 18.1% shorter than the reported value in Bagchi and
Balachandar (2004).

Concerning the profile of the vertical velocity component along the vertical axis passing
through the center of the reference particle (figure 8.10), it is observed that the velocity
experiences similar evolution as in the fixed particle simulations. The velocity w̃f,rel in all three
flow cases decays quickly for small distances upstream form the test particle and experience
negative values immediately behind the reference particle. The negative values of w̃f,rel
indicate the presence of the recirculation region in the particle wake. The minimum of the
velocity w̃f,rel is observed in all three cases at distance of approximately 0.81dp, except in case
ML178, where 0.86dp was measured. After reaching its minimum value in the recirculation
region, the velocity increases and converges steadily towards its asymptotic value. However,
the recovery of the wake downstream of the reference particle appear to be in all three cases
faster than in the fixed particle simulations. The rapid recovery is mainly due to the increased
relative turbulence intensity of the flow field and the herewith resulting enhancement of the
mixing.

Now let us turn to the velocity deficit in the average wake of the particles, which is shown
for all three flow cases in figure 8.11. It can be observed that in the present flow cases, for
small distances downstream from the reference particle, the fluid velocity in the particle wake
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Figure 8.10: Vertical component of the relative velocity on the center line passing trough the particle
center xp and parallel to the vertical axis. (a) Case M121. (b) Case M178. (c) case ML178. The
coordinate system is particle centered, i.e. origin at xp. The inset-figures show close-up view of the
recirculation region. The blue cross × marks the position at which w̃f,rel/ug changes sign. Negative
values of the x-axis correspond to upstream positions in front of the particle and positive values
represent the domain downstream of the test particle. The distance from the particle was normalized
by the particle diameter dp. The velocity is normalized with the gravitational velocity ug.

resembles the characteristic decay power law of a turbulent wake, i.e. it decays as z̃−2/3.
The range of distances, where this power law holds, is observed in all three flow cases for
distances up to z̃ = 1.8dp, which is significantly smaller than for the fixed particle simulations
(z̃ ≈ 2.6dp). In case M121 this region is followed by a region, where the velocity deficit
decays as a laminar wake, i.e. z̃−1. This range extends up to 16dp downstream from the
particle. Beyond this distance a −2 power law is observed. On the other hand, the results
for the clustering cases show that the −2/3 decay region is followed by a region, where the
velocity deficit decays at rates somehow larger than −1. At large distances (z̃ > 27dp) from
the reference particle the velocity deficit appears to decelerate and a small region with −1
power law is observed. Further downstream at distances larger than 50dp a decay rate similar
to −2 is observed. The decay of the velocity deficit proportional to z̃−2 was previously reported
for particles subjected to a turbulent flow environment (Wu and Faeth, 1994; Legendre et al.,
2006; Amoura et al., 2010). Legendre et al. (2006) noted that the change of slope to −2
takes place at a distance downstream from the reference particle where the velocity deficit and
the turbulence intensity are of the same order, i.e. ũd0 ≈ 〈u′fu′f 〉1/2. Closer look at our data
revealed that this observation holds for the present flow cases.
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ũd0
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M121 ( ), case M178 ( ) and case ML178 ( ). The dashed straight lines indicate decay
rates proportional to z̃−1 ( ), z̃−2 ( ) and z̃−2/3 ( ).

It is interesting to note that the fluid velocity deficit for the fixed particle simulations did
not exhibit a −2 power law. The present results indicate that the mobility of the particles and
the resulting dynamical interaction between the wakes of the individual particles changes the
decay behavior of the fluid velocity in the mean particle wake.

The spreading of the wake with the distance downstream from the reference particle
can be investigated by considering the half-width (equation 3.12) of the wake for different
downstream location from the test particle. Figure 8.12 depicts the evolution of the wake
half-width hwz with the distance from the particle for all three cases. It can be observed
that, as for the fixed particles, the half-width of the wake in case M121 experience linear
spreading. However, the observed slope of the linear function is in case M121 nearly three
times larger than in case F121, indicating that the averaged wake in the present case spreads
faster than in the case of fixed particles. On the other hand, in the clustering case M178
the wake is observed to be wider and to expands more quickly than in the non-clustering
case and the fixed particle simulations. Initially for distances up to ten particle diameter the
wake exhibits a linear spreading at rates significantly larger than in case F121. The slope
of the linear function was evaluated to be six times larger than the in case F178. Beyond
the distances of 10dp the half-width of the wake appear to converge to a asymptotic value of
hwz/dp = 1.8, as suggested by the flattening of the graph in figure 8.12. The asymptotic value
of hwz stems most probably from the cluster structures observed in cases M178 and ML178.
As showed in section §6.3 the particle spatial distribution conditioned on the position of the
particles evidenced a columnar like structure extending throughout the entire vertical length
of the computational box, that was confined in the horizontal direction. Similar evolution of
the wake half-width can be observed also for case ML178, indicating that the solid volume
fraction has only a marginal effect upon the spreading of the wake. For comparison, we have
additionally plotted the data from Bagchi and Balachandar (2004, p.104, figure 7) for a single
fixed particle subjected to homogeneous isotropic turbulence and in a uniform flow. As can
be seen, the rate of increase of the wake half-width in case M121 (represented by the black
dashed line) resembles very closely the slope observed for the particle subjected to uniform
flow. García-Villalba et al. (2012) reported also a value (ã) very close to the one observed in
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Figure 8.12: Cross-stream half-width of the average particle wake as function of the downstream
distance z̃. Case M121 (—•—, ). Case M178 (—•—, ). Case ML178 (—•—). Dashed
lines represent a linear fit of the spreading of the wake, hwz/rp = ãz̃/dp + b̃, with ã = 0.034, b̃ = 0.4
for case M121 and ã = 0.1, b̃ = 0.4 for case M178 and ML178. Open symbols (◦, �, �) represent
digitalized data for single fixed particle subjected to homogeneous isotropic turbulence form Bagchi
and Balachandar (2004, p.104, figure 7).

the present work. In cases M178 and ML178 we found that the rate of spreading for z̃ . 10dp
coincide with the rate observed in Bagchi and Balachandar (2004). Incidentally, the case
considered in Bagchi and Balachandar (2004) has similar particle Reynolds number as the
Reynolds number in case M178 and case ML178. This observations indicate that despite the
strong anisotropic clustering in cases M178 and ML178, the rate of spreading of the average
particle wake for small distances downstream form the reference particle is the same as for a
single fixed particle subjected to isotropic turbulence. As a consequence, the flow conditions
in case M178 and case ML178 to which the particles are subjected appear to be very close to
that of homogeneous isotropic turbulence and are relatively independent of the solid volume
fraction and the relative turbulence intensity of the flow (at least with respect to the wake
half-width). It is however surprising that the spreading of the wake for the assembly of fixed
particles in case F121 and case F178 experience different behavior (note, the particle in Bagchi
and Balachandar (2004) is also fixed in space). This circumstance needs to be addressed in
future studies.

In a theoretical work Eames et al. (2011) suggested that the rate of spreading is comparable
to the value of the relative turbulence intensity. As shown above, the results for the present
flow configurations do not support this relation, especially for the clustering cases where the
relative turbulence intensity of the flow vary approximately by a factor of two. The authors
assumed that the particle is subdued to a homogeneous isotropic turbulence, whereas in the
present work a pseudo-turbulent flow is considered. Thus, it is intriguing that our results
follow the trend observed in Bagchi and Balachandar (2004).

Finally let us turn to the self similarity of the mean particle wake. To this end we consider
the cross-stream profiles of the velocity ũd in the particle wake, which is shown in figure 8.13
for all three flow case at different downstream locations from the test particle. The velocity
deficit ũd is calculated as in equations 3.11, 3.13. It can be observed that the mean particle
wake experience indeed self similar behavior, the cross-stream profiles at different distance
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Figure 8.13: Profiles of the velocity deficit in the average particle wake as function of the cross-stream
coordinate x̃. The profile was taken at 4 different downstream locations, z̃/dp = [6, 10, 13, 17]. The
blue dashed ( ) line corresponds to a Gaussian function. The velocities ũd and ũd0 are defined
as in equations 3.11, 3.13. (a) Case M121. (b) Case M178. (c) case ML178. The coordinate system
(x̃, ỹ, z̃) is chosen as in figure 3.5. The distance from the particle center was normalized by the wake
half-width hwz.

from the reference particle collapse into a single curve following a Gaussian function. This
again confirms that the mean particle wake in case M121 resembles very closely the wake of a
isolated particle. For the clustering cases however, the velocity ũd follows a Gaussian function
only for distances up to x̃/hwz . 1. Beyond this distance the deviation from the velocity profile
deviates from the Gaussian profile, with the increasing difference for increasing downstream
distances. Most probably this can be accounted to the deviation of the wake half-width from
the linear rate for large downstream locations (cf. figure 8.12).

8.6 Conclusion

In this chapter we have presented and discussed results for the flow field induced by the
settling of finite-size heavy particles in an initially quiescent flow field. To this end, we have
considered the flow field induced by the particles from the three flow cases M121, M178 and
ML178 introduced in chapter §5. Thus, the fluid agitations in the present work are solely due
to the presence and the motion of the particles and are dominated by the particle wakes. The
overall conclusion is that the fluid velocity field, as the particle velocity, is highly anisotropic
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in all considered flow cases, with the vertical fluid velocity component being the dominant
one. The highest amplitude of the fluid velocity fluctuations was measured in the clustering
case M178, whereas the smallest were observed in case ML178. It was found out that the
particle induced flow field in case M121 was represented well by the flow field generated by
the fixed assembly of particles in case F121. Moreover, the local flow field of the particles in
case M121 is well resembled by the flow field of an isolated particles as in case S121. On the
other hand, in the clustering cases the flow field is significantly affected by the dynamics of the
particle clusters and the resulting hydrodynamical interactions of the individual particle wakes
led to substantial attenuation of the mean particle wake. In particular we have addressed the
following issues.

We have considered and discussed three widely used approaches for the prediction of the
amplitude of the fluid velocity variance. Due to the high anisotropy of the flow field, a potential
model for the fluid velocity fluctuations failed to provide reasonable approximations for the
amplitude of the velocity fluctuations. A simple superposition of the fluid velocity fluctuations
induced by the motion of an isolated particle in otherwise similar flow conditions, showed that
except in case M121, the mutual hydrodynamic interactions of the particle wakes lead to a
significant increase of the fluid velocity variance in the present cases. A detailed analysis of the
local flow field in vicinity of the particles in case M121 revealed to be very similar to that of an
isolated particle (case S121), leading to reasonable agreement of the predicted and observed
amplitude of the fluid velocity fluctuations in case M121. Moreover, the fluid motion induced
by the particle assembly in case M121 resembles closely the particle-induced agitations in
the simulations with fixed assembly of particles and otherwise same solid volume fraction
and particle Reynolds number Rep,rel (case F121). As a consequence, empirical models as
proposed by Parthasarathy and Faeth (1990a) lead to reasonable predictions of the amplitude
of the fluid velocity fluctuations. A detailed study of the different contributions to the total
fluctuations in the model by Parthasarathy and Faeth (1990a), revealed that the amplitude
of the fluid velocity fluctuations in case M121 are stemming from the mean properties of the
particle wakes and are close to that observed in laminar flows. In the clustering cases however
large deviations of the predicted value from the present results were observed, clearly showing
the limits of such models. Nevertheless, the overall trend was reproduced by the empirical
model of Parthasarathy and Faeth (1990a)

Study of the probability density functions of the fluid velocity components revealed that
in all three flow cases the flow field exhibits super-Gaussian distribution. The horizontal
velocity components proved to be nearly symmetric and highly intermittent, whereas the
vertical component were found to be negatively skewed. Comparison with the p.d.f.s from
the fixed particle simulations showed that the mobility of the particles lead to attenuation
of the intermittency of the fluid velocity, regardless if the particles agglomerate into clusters
or not. The value of the solid volume fraction showed to have only marginal effect upon
the distribution of the horizontal fluid velocity, while the vertical component in case M178
evidenced smaller intermittency. The distribution of the local fluid velocity in the vicinity of
the particles showed that the local flow field in the clustering cases is very similar and nearly
independent of the value of the solid volume fraction. This results proved to be in line with the
observations in the available literature, that the local flow field of the particles is independent
from the solid volume fraction. Further, the fluid velocity variance was evidenced to evolve
in a self-similar manner when scaled with the solid volume fraction (∼ Φ0.4

s ), confirming the
scaling proposed in Risso and Ellingsen (2002).
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We have identified the contributions to the turbulent kinetic energy for the present flow
conditions and studied their relative importance for the present flow cases. It was observed
that in all cases the turbulent kinetic energy was due to the work done by the gravitational
potential and was balanced by the dissipation rate. Comparison between the two clustering
cases showed that the potential energy was found to depend in a linear manner from the
solid volume fraction. The two-way coupling term was found to be in all three flow cases
negative but very small, thus acting in the present flow conditions as a sink of turbulent
kinetic energy, whereas a positive values were observed for neutrally buoyant particles in
homogeneous isotropic turbulence (Lucci et al., 2010). Thus a more detailed study is required
for the understanding of the exact physical mechanisms responsible for the sign of the two-way
coupling term.

The energy spectrum of the fluid velocity components evidenced features characteristic
to the energy decay in pseudo-turbulent flows. In the horizontal direction the fluid velocity
components in all three flow cases were found to follow a decay power law proportional to −3
and −3.5, respectively. Regarding the spectra in the vertical direction, the −3 power law was
found only for the clustering cases. The mobility of the particles proved to have a significant
effect on the decay rate of the energy spectrum in case M121. A comparison with the spectra
for the fixed particle assembly in case M178 showed that the distribution of the particles
does not affect the decay rate of the fluid velocity components. The particle wakes and the
hydrodynamic interactions between the wakes appeared to be the main reason for the decay
rate of the fluid velocity energy spectra. Finally, in all three case the energy spectrum showed
signs of a reverse cascade. We have additionally analyzed the two-point correlation function of
the fluid velocity in the present cases. It was observed that the vertical velocity component
in all three flow cases was positively correlated over the half-length of the computational
domain. In the clustering cases the correlation was found to be more prominent than in the
non-clustering case. Additionally the solid volume fraction proved to have, for the present flow
conditions, significant effect upon the two-point correlation function, with larger correlations
observed for the smaller values of Φs.

Finally, a comprehensive analysis of the mean particle wake was performed. To this end, we
have calculated the particle conditioned flow field in the vicinity of the particles. We found out
that the mean particle wake in all three flow cases was axi-symmetric and that the recirculation
length of the wake was significantly reduced, when compared to the mean wake from the fixed
particle simulations. In case M121, it was observed that the mean wake resembles closely
the statistical characteristics (apart from the value of the recirculation length) of the wake
of an isolated particle (case S121) and to be in good agreement with results for the mean
particle wake in substantially different background flow conditions. The clustering in cases
M178 and ML178 was found to have a significant effect upon the recirculation length, where
the attenuation was found to be more pronounced in case M178. The solid volume fraction
proved to have significant effect upon the length of the recirculation length as well. In contrast
to the fixed particle simulations, the velocity deficit in the particle wake evidenced regions
with decay rates proportional to −2. Our results confirmed that the change of the slope from
−1 to −2 of the decay rate of the fluid velocity deficit occur at locations in the wake, where
the velocity deficit is of the same order of magnitude as the fluid turbulence intensity.

The spreading of the mean particle wake in the present flow cases was found to be at faster
rates than for the flow cases with fixed particles. With respect to the effect of the particle
clusters, the mean particle wake in case M178 was found to be wider and to expand more
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quickly than in case M121. In the clustering cases, it was observed that for large downstream
distances (z̃ & 10dp) the spreading of the mean particle wake was at approximately constant
rate and the solid volume fraction was found to have only marginal effect on the spreading
of the mean particle wake. Comparison with the literature (Bagchi and Balachandar, 2004)
revealed that the spreading of the mean particle wake in case M121 followed the rate for a
single particle (with similar parameters and relative turbulence intensity) subjected to uniform
flow. On the other hand, in the clustering cases the spreading rate for z̃ . 10dp was found to
coincide with that of a single particle subjected to isotropic turbulence. These observations
indicated that the spreading of the wake, for small distances downstream form the particle,
was independent from the particle spatial distribution in cases M178 and ML178. Despite
the different statistical characteristics of the present flows and the homogeneous isotropic
turbulence, the effect on the particle spreading rate appear to be very similar. This and the
circumstance that the spreading of the wake for fixed particles differ from the observations in
the literature (note, the particle in Bagchi and Balachandar (2004) is fixed in space as well)
needs to be addressed in more detail in future studies.

The overall conclusion is that the flow field induced by the particles in the present flow
cases agrees well with the general observations in the literature. The particle motion in the
non-clustering case induced an agitations in the flow field similar to that induced by a fixed
assembly of particles with the same solid volume fraction and similar particle Reynolds number
Rep,rel. As a consequence, empirical models as proposed by Parthasarathy and Faeth (1990a)
lead to reasonable predictions of the amplitude of the fluid velocity fluctuations. On the other
hand, in the clustering cases significant deviations of the predicted fluid variance from the
variance observed in the simulations M178 and ML178 was evidenced. Thus, the effect of the
particle clusters on the fluid velocity fluctuations needs to be addressed in future studies. In
particular, it will be highly beneficial to isolate the contributions in the fluid velocity variance
due to the regions of the flow associated with particle clusters (cf. large vertical streamers in
figures 8.1 - 8.2). For this we plan to perform a analysis conditioned on the particle clusters
and voids, respectively. Unfortunately, we were not able to calculate the temporal correlations
for the flow field, which will allow us to study the temporal behavior of the flow field. The
knowledge of the fluid velocity autocorrelation will allow us further to investigate the theory
provided by Ferrante and Elghobashi (2003) for the sign of the two-way coupling term in the
turbulent kinetic energy equation.
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Chapter 9

Summary, conclusions and
recommendations for future works

Particulate two-phase flows are of particular interest in large number of environmental, natural
and technical processes. The fundamental understanding of the different mechanisms that
take place in such flows are of particular interest. Thus, a reliable and correct prediction of the
processes that take place in such flows is of great importance. Despite the importance and the
wide range of applications of particulate flows, the fundamental mechanisms involved in such
flows are far from being completely understood. One possible reason for this is the complex
characteristics of the flows under consideration. Unfortunately, the theoretical description of
the physical processes is only accessible for very limited flow conditions. Nowadays, most
relations for the prediction of quantities such as the average particle settling velocity, particle
drag coefficients, dispersion and distributions of the particles, amplitude of the fluid velocity
fluctuations are based on empirical relations, which are derived by considering a large number
of assumptions and simplifications of the problem under consideration. Therefore, the range
of applicability of such predictions is limited as well.

This thesis addresses some of the topics involved in the dynamics of particles settling
under the influence of gravity, as well the characteristics of the particle-induced flow field and
the herewith resulting two-way coupling mechanisms. Furthermore, this work contributes
to the understanding of the fundamental mechanisms involved in such flows by providing
and analyzing high fidelity data for flows with large number of heavy finite-size particles
settling under the influence of gravity. The problems considered in this thesis are simplified by
eliminating the influences due to wall effects, while allowing to focus solely on the fundamental
physics involved in such flows.

The problems in the present work are tackled by performing direct numerical simulations
employing an immersed boundary method for the representation of the fluid-solid interface.
Three different flow configurations have been considered in the present work: (i) the settling of
a single particle in a uniform unbounded flow, (ii) flow through a stationary array of randomly
distributed spheres and (iii) the settling of many particles in an initially quiescent flow field.
The main focus in this work was on the characterization of the particle induced flow field,
as well as the characterization of the particle velocities, hydrodynamic forces, wakes and the
spatial distribution of the particles. A more detailed discussion of this aspects can be found in
the conclusions of chapters §3 - §8.
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9.1 Settling of a single particle in an ambient fluid

Direct numerical simulations of the sedimentation of single heavy finite-size spherical particle
under the influence of gravity in an initially ambient flow field was studied. The settling of the
particle in two different settling regimes was considered, namely in the steady axi-symmetric
regime with Galileo number of Ga = 121 and in the steady oblique regime with Ga = 178. The
particle-to-fluid density ratio in both regimes was kept at value ρp/ρf = 1.5. Special care was
taken to ensure appropriate spatial and temporal resolutions for the particle motion.

The main objective was the characterization of the particle terminal settling velocity,
hydrodynamic forces and the wake structure of the single particle for both settling regimes. It
was found that the resolution of 15 and 24 grid points per particle diameter were sufficient for
the correct representation of the particle wake and hydrodynamic forces in both flow cases.
The results were in a very good agreement with the benchmark data from Uhlmann and Dušek
(2014). The obtained results showed that the characteristic features of the particle motion and
particle wake was correctly captured by the numerical method. For the axi-symmetric flow
case the particle wake was found to be axi-symmetric and consists of a toroidal vortex around
the particles. For the steady oblique regime the particle wake was observed to consist of a
double threaded wake with counter-rotating vortices. Various statistics, such as the particle
terminal settling velocity, particle drag coefficient and the oblique angle (only for the particle
with Ga = 178) proved to be in very good agreement with the reference data.

9.2 Flow through a stationary array of randomly distributed
spheres

The flow field induced by a uniform flow past an assembly of stationary randomly distributed
finite-size particles was investigated. Again two direct numerical simulations were considered.
The flow under consideration consisted of randomly distributed particles, with shape and size
as the particles considered in chapter §3. The number of particles in both cases was chosen
so that the solid volume fraction calculates to Φs = 0.005. For this values of Φs the flows are
considered as dilute. The spatial and temporal discretization was kept as in the simulations of
the single particles in chapter §3.

It was observed that in both flow cases the fluid velocity fluctuations are highly anisotropic
with the vertical component being the dominant one. This was attributed to the wake character
of the fluid velocity and the levels of anisotropy were in line with the observations from the
literature. The energy spectra of the fluid velocity was found to exhibit a decay power law
proportional to the power of −3 of the wave number, which is known to be a characteristic
feature of pseudo-turbulent flows. The fluid velocity fluctuations were decomposed in their
spatial and temporal contributions. The results evidenced that the flow field is unsteady and
that large-scale wake interactions are responsible for the fluctuations of the flow field. The
fluctuations with respect to the volume averaged mean flow field were found to be more
prominent than the fluctuations with respect to the temporal mean value, accounting for the
major contribution to the total fluctuations.

The mean particle drag coefficient was observed in both cases to resemble the drag
coefficient of the single particle simulations from chapter §3. Furthermore, the distribution
of the hydrodynamic force with respect to the position of a test particle was studied. The
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results revealed that in close proximity behind the reference particle, the drag coefficient of
the following particles was substantially smaller than of the leading particle. The domain of
influence downstream from the test particle was found to extend over distances of several tens
particle diameters from the reference particle.

Analysis of the average particle wake evidenced significant attenuation of the recirculation
length due to the presence of multiple particles. The velocity deficit in the particle wake was
found to decay at a rate similar as in a turbulent wake (i.e. with rate proportional to z̃−2/3)
for small distances downstream from the reference particle and as in a laminar wake (i.e.
proportional to z̃−1) further downstream. Moreover, the half-width of the particle wake was
found to evolve in a linear manner with the downstream distance from the reference particle.

9.3 Settling of many particles in an initially quiescent flow field

Direct numerical simulations of heavy finite-size particles freely settling in an unbounded
(initially) quiescent flow field were carried out. A total of three simulations were performed.
The first two simulations correspond to the fixed particle flow cases with the difference
that the particles are allowed to move freely in the computational domain. This flow cases
are unambiguously characterized by the triplets (ρp/ρf = 1.5,Ga = 121,Φs = 0.005) and
(ρp/ρf = 1.5,Ga = 178,Φs = 0.005). The third simulation was derived from the simulation
with the Galileo number of Ga = 178 (case M178) by reducing the number of particles by
factor of ten leading to the triplet (ρp/ρf = 1.5,Ga = 178,Φs = 0.0005). The spatial and
temporal resolutions were kept the same as in the simulations of the fixed particle assembly
from chapter §4. This allowed us to study the effects of the Galileo number (Ga = 121 and
Ga = 178) and the effect of the solid volume fraction (Φs = 0.005, and Φs = 0.0005).

The spatial structure of the dispersed phase in all three flow cases was investigated by
means of Voronoï analysis. Concerning the effect of the Galileo number, the particles in case
M178 sampled the flow in an inhomogeneous manner and evidenced strong clustering, while
no evidence of clustering was observed for the particles with Galileo number Ga = 121 (case
M121), on the contrary the particles were observed to be rather organized in slightly more
regular manner than a randomly distributed particles. The particle clusters in case M178 were
observed to be highly anisotropic columnar like structures extending in the vertical direction
over the entire length of the computational domain. Regarding the effect of the solid volume
fraction upon the particle clusters in case M178, it was observed that while the overall cluster
structure was maintained, the level of clustering increased with decrease of the solid volume
fraction (case ML178).

We have preformed a comprehensive study of the particle settling velocity. It was observed
that the reference fluid velocity could have a significant effect upon the mean particle settling
rate. We have defined and analyzed the properties of a fluid velocity seen by the particles. It
was found out, that the mean settling rate of the particles in the non-clustering case was similar
to that observed for an isolated particle. On the other hand, in the clustering case the average
particle settling velocity was observed to vary, depending on the definition of the reference
fluid velocity. When computed with the global average of the fluid velocity, the particles were
found to settle on average significantly faster than an isolated particle. However, when the
local fluid velocity is used the mean particle settling rate is measured to be close to that of a
single particle. The particles in the clustering cases were found to be preferentially located in
regions with downward fluid motion.
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We have identified and calculated the contributions to the particle velocity variance stem-
ming from the particle motion with respect to the surrounding fluid and the fluctuations of the
fluid velocity in vicinity of the particle. The results revealed that the larger fluctuations of the
particle velocity component in the clustering case M178 is due to an increase of the fluctuating
energy of the fluid velocity seen by the particles.

Study of the particle drag coefficient revealed that the non-linear drag effect lead to a net
increase of the drag and that it correlates with the relative turbulence intensity, i.e. the largest
effect was observed in case M178 , where the highest value of the relative turbulence intensity
is observed. Particle conditioned average showed that the particle settling velocity and drag
force are distributed in an anisotropic manner, viz. in vertically oriented structures.

Similarly, the fluid velocity field is in all three flow cases distributed in an anisotropic
manner. The highest amplitude of the fluid velocity fluctuations is measured in the clustering
case M178. It was observed that the flow field induced by the particles in case M121 resembles
well the flow field induced by the fixed particle assembly, indicating that the motion of the
particles has only a marginal effect upon the flow field. Moreover, the local flow field of
the particles in case M121 is very similar to that induced by single particle. Consequently,
an empirical model as in Parthasarathy and Faeth (1990a) proved to predict reasonably the
amplitude of the fluid velocity fluctuations in case M121. On the other hand, in the clustering
cases the flow field is significantly affected by the presence of the particles.

We have studied the turbulent kinetic energy (TKE) budget for the present flow cases. It
was observed that in all flow cases the TKE was due to work done by the gravitational potential
and was balanced by the dissipation rate. Moreover, the two-way coupling term was found to
be negative in all three flow cases, i.e. it acts as a sink of TKE.

The mean particle wake in the clustering cases was significantly attenuated due to the
particle motion and clustering. The statistical description of the flow field proved to be in line
with the observation in the literature.

9.4 Recommendation for future work

This thesis has covered large number of aspects involved in mono-dispersed particulate flows by
performing several direct numerical simulations of heavy finite-size particles settling under the
influence of gravity in an unbounded initially quiescent flow field. The simulations provided
high fidelity data sets, of both the particle and the fluid motion, of the assembly of large
numbers of particles at particle Reynolds numbers of the order of O(100). Nevertheless, review
of the literature revealed that the number of experiments and direct numerical simulations
of such flow configurations is clearly limited and a systematic exploration of the parameter
space is missing. Additional numerical and experimental parameter studies are required in
order to fully understand the effect of each control parameter of the system. It would be
highly beneficial, if the future studies are performed by the application of complementary
experimental and DNS studies, allowing the exploitation of the respective advantages of each
approach. Most of the existing studies are limited to either small particle Reynolds numbers,
small aspect ratios of the domain extensions to the particle size or sometimes even both. Ideally,
any future studies should consider set-ups in a parameter range that overcomes some of the
above mentioned limitations and close the existing knowledge gaps of the large number of
physical mechanisms that take place in such flows. In particular, we propose that future studies
should focus on the following (still not completely understood) issues.
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As evidenced in this work, the particles may sample the flow field in an inhomogeneous
manner and agglomerate into clusters. In our view, the exact mechanism responsible for the
formation of particle clusters are still not completely understood. We suggest that future works
could tackle this problem by identifying the role of the regime of settling of the individual
particles and its correlation with the wake instabilities of the individual particles. Thus,
simulations of particles settling in different regimes would be highly beneficial. For example,
to our knowledge there is virtually no information for the clustering of particles settling in the
chaotic regime (in the absence of background turbulence). In future works the identifying of
the critical Galileo number demarcating the onset of clustering would allow more detailed
analysis of the mechanisms of wake-induced clustering. Apart from this, the effects of the solid
volume fraction, particle rotation and relative turbulence intensity needs to be addressed in
detail in future studies.

With respect to the power law of the energy spectra observed in pseudo-turbulent flows
and its contributions to the turbulent kinetic energy in turbulent carrier flows, a further studies
are required. Especially the effect of the particle wakes and the hydrodynamic interactions
between the particles in the inter-wake regions needs to be further investigated. An open
question is the role of the relative turbulence intensity (or the so called bubblance parameter
(Rensen et al., 2005)) or the particle distribution for the power law of the energy spectra. In
the context of finite-size heavy rigid particles, relatively little is known about the turbulent
kinetic energy spectra and definitely needs to be addressed in future studies.

The correlation function of the flow field in this work revealed the one of the common
problems of the pre-existing studies (especially numerical simulations) is the size of the domain
under consideration. Unfortunately, there is no a-priory approach to estimate the required
size of the domain, which is further complicated by the long times the particles require to
reach a statistically steady state. Thus, it will be instrumental to consider large enough
domains, allowing for the correct estimation of length scales of large particle clusters and the
corresponding coherent flow structures. Additionally, the study of large Reynolds numbers
would contribute to the establishment of possible scaling laws that would contribute to the
development of numerical models.

The present work clearly indicated the limits of the capability of the available numerical
models to accurately predict the motion of the particles and the flow field over wide range
of parameters. Nevertheless, some of the models showed an encouraging results as for the
case of particles settling with Ga = 121, thus we think that the development of numerical
models should be further actively pursued. The available models could be further improved,
for example, by the knowledge of the local particle concentration along the particle trajectories,
or typical residence time of the particles in clusters or void regions.

This thesis considered mainly pseudo-turbulent flows, i.e. fluid fluctuations are generated
solely by the relative motion of the particles to the fluid. The future study of the two-way
coupling mechanisms, especially the turbulence modulation by the presence of the particles
for a-priory turbulent flows would be a logical consequence. This kind of analysis opens the
way to completely new perspectives and approaches and is still considered one of the most
challenging topics in particulate flows.

With respect to the present simulations, the results should be further analyzed in order
to understand some of the mechanisms involved in the present flows. In particular, a more
detailed analysis of the different particle and fluid statistics with respect to the particle clusters
should provide some insight into the statistical consequences of the particle clustering and
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will contribute for the improvement of the available numerical models. The richness of
the accumulated data with respect to the temporal evolution of the particles, could further
contribute to the study of the three dimensional and temporal behavior of the particle clusters
and provide insight into open questions as the time needed for the particle clusters to form
or break. Additionally, the investigation of the spatial correlation between clusters and the so
called super-clustering (study of the clusters of clusters) (Springel et al., 2005; Ramella et al.,
2001; Obligado, 2013) can be addressed. Due to the high efficiency of the Voronoï analysis,
the statistical footprint of the particles in the surrounding flow can be further investigated.

This is only a small part of the still open questions in particulate flows. The present simu-
lations showed that with the advance of the computational resources (and the experimental
techniques), the study and the understanding of the aforementioned issues and the revealing
of the secrets behind these processes is in reach and needs to be further pursued. The new
approaches open the way to a better understanding of the physics involved in particulate
flows under similar conditions and allow the consideration of more complex flows, such as the
presence of walls, higher Reynolds numbers and etc..
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Appendix A

Averaging procedures

In this section we provide a detailed definitions of the various averaging operators used in the
present work.

A.1 Phase averaging

Let us first define an indicator functions for both the fluid and the dispersed phase. An indicator
function for the fluid phase Φf (x, t) specifies whether a given point x in the computational
domain at certain time t is exclusively occupied by the fluid:

Φf (x, t) =
{

1 if x ∈ Ωf (t)
0 else

, (A.1)

where Ωf (t) denotes the part of the computational domain Ω which is occupied by the fluid at
time t. The corresponding indicator function for the dispersed phase Φp(x, t) can be readily
obtained as:

Φp(x, t) = 1− Φf (x, t). (A.2)

Based on the definitions in equations A.1 and A.2 a discrete counter of sample points occupied
by the carrier phase nf and by the dispersed phase np at certain time tm can be defined as
follows:

nf (tm) =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Φf (xijk, tm), ∀ m ∈ [1, Nf,t], (A.3)

np(tm) = NxNyNz − nf =
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Φp(xijk, tm), ∀ m ∈ [1, Np,t], (A.4)

where Nx, Ny and Nz are the number of grid nodes in the corresponding coordinate direction
and Nf,t (Np,t) is the number of available snapshots of the flow field (particles) in time. Please
note, that during the computation the number and size of the particles does not change and
thus the values of nf and np remain constant during the simulation.
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We define the time and space averaging of ψf (xijk, tm) as follows:

〈ψf 〉Ωf ,t = 1
Nf,t

Nf,t∑
m=1
〈ψf (tm)〉Ωf (A.6)

Similarly, by defining a counter of fluid phase samples along the vertical direction, n(z)
f , viz.

n
(z)
f (xi, yj , tm) =

Nz∑
k=1

Φf (xijk, tm), ∀m ∈ [1, Nf,t], i ∈ [1, Nx], j ∈ [1, Ny], (A.7)

the spatial average of a fluid related quantity ψf (xijk, tm) over the vertical direction is defined
as follows:

〈ψf 〉z(xi, yj , tm) = 1
n

(z)
f (xi, yj , tm)

Nz∑
k=1

Φf (xijk, tm)ψf (xijk, tm),

∀m ∈ [1, Nf,t], i ∈ [1, Nx], j ∈ [1, Ny]. (A.8)

The dispersed-phase averaging operator 〈·〉p for a given particle related quantities ψip(tm) can
be defined as:

〈ψp(tm)〉p = 1
Np

Np∑
i=1

ψip(tm), ∀ m ∈ [1, Np,t]. (A.9)

A time averaging operator for both the dispersed and the carrier phase can be defined as
follows:

〈·〉t = 1
Nα,t

Nα,t∑
m=1
·, (A.10)

where α = f or α = p. An averaging operator for a given particle related quantity ψip(tm) over
all available particle samples is then easily defined as:

〈ψp〉p,t = 1
Np,tNp

Np,t∑
m=1

Np∑
i=1

ψip(tm). (A.11)
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A.2 Particle-conditioned averaging

Let us first define a three dimensional averaging domain ΩA with grid nodes yijk with indices
i, j, k, with origin of the coordinate system at yijk = 0. The averaging domain ΩA is discretized
in the same manner as the simulations, i.e. with an isotropic mesh with constant grid spacing

The fluid-phase averaging for any fluid related quantity ψf (xijk, tm) can be defined as:

〈ψf (tm)〉Ωf = 1
nf

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

Φf (xijk, tm)ψf (xijk, tm), ∀ m ∈ [1, Nf,t]. (A.5)



A.2. Particle-conditioned averaging

We can now define a discrete counter field ñpijk(x̃ijk) which holds the number of samples
obtained through dispersed-phase averaging at given grid node in the averaging domain ΩA at
time tm, i.e. x̃ijk ∈ ΩA

⋂
Ωp(tm):

ñpijk(x̃ijk) =
Np,t∑
m=1

Np∑
l=1

Φp(x̃lijk(tm), tm). (A.13)

By proper normalization the quantity ñpijk(x̃ijk) defines the particle conditioned local solid
volume fraction φconds :

φconds = 1
Np,tNp

ñpijk(x̃ijk) (A.14)

The particle-conditioned space-time averaging of a any particle related quantity ψlp(tm) can be
defined as follows:

〈ψ̃(
px̃ijk)〉p,t = 1

ñpijk(x̃ijk)

Np,t∑
m=1

Np∑
l=1

Φp(x̃lijk(tm), tm)ψlp(tm). (A.15)

Analogously, for any fluid related quantity the ψf (xijk, tm) we can define the particle condi-
tioned space-time average as:

〈ψ̃f (x̃ijk)〉p,t = 1
ñfijk(x̃ijk)

Nf,t∑
m=1

Np∑
l=1

Φf (x̃ijk, tm)ψf (x̃ijk, tm). (A.16)

By the way of definition the coordinates x̃ijk(tm), the grid nodes of the averaging domain
ΩA do not coincide with the grid nodes used for the discretization in the present simulations.
This implies that in order to evaluate the quantity ψf (xijk, tm) in equation A.16 at x̃ijk(tm) a
spacial interpolation of ψf (xijk, tm) is required. The tri-linear spatial interpolation is employed
in the present work.
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in all spacial directions. The averaging domain can be easily shifted to the position of one
of the particles. Then the instantaneous coordinate of a grid node yijk ∈ ΩA relative to the
position of the l-th particle is defined as:

x̃lijk(tm) = yijk − xlp(tm), ∀ m ∈ [1, Np,t], l = 1 . . . Np. (A.12)





Appendix B

Flow field velocity decomposition

Here detailed derivation of the decomposition of the fluid velocity field into its spatial and
temporal fluctuations is presented (cf. section §4.3.1). First let us recall the decomposition of
the instantaneous velocity field with respect to the spatial, temporal and the space and time
averages (cf. equations 4.1 - 4.3). For simplicity the definitions of these decompositions are
repeated here:

uf (x, t) = 〈uf 〉Ωf (t) + u′f (x, t) (B.1)

uf (x, t) = 〈uf 〉t(x) + u′′f (x, t) (B.2)

uf (x, t) = 〈uf 〉Ωf ,t + u′′′f (x, t). (B.3)

A detailed definitions of the averaging operators 〈·〉Ωf , 〈·〉t and 〈·〉Ωf ,t can be found in ap-
pendix A. Now let us define the relation between the implicitly defined velocity fluctuations in
equations B.1 - B.3. First the time average of equation B.1 is taken, which yields:

〈uf 〉t(x) = 〈uf 〉Ωf ,t + 〈u′f 〉t(x) (B.4)

Substituting relation B.2 into the above equation leads to:

uf − u′′f = 〈uf 〉Ωf ,t + 〈u′f 〉t(x) (B.5)

⇒ 〈uf 〉Ωf ,t = uf − u′′f − 〈u′f 〉t(x). (B.6)

Substitution of equation B.6 into equation 4.3 yields the following relation:

u′′′f (x, t) = uf (x, t)− 〈uf 〉Ωf ,t = (B.7)

=︸︷︷︸
eq. B.6

uf (x, t)− 〈uf 〉t(x)︸ ︷︷ ︸
= u′′

f
(x,t), (eq. 4.2)

+〈u′f 〉t(x) (B.8)

= 〈u′f 〉t(x) + u′′f (x, t). (B.9)
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〈u′′′f u′′′f 〉Ωf ,t =︸︷︷︸
eq. 4.3

〈(uf − 〈uf 〉Ωf ,t)
2〉Ωf ,t = (B.10)

=︸︷︷︸
eq. B.9

〈(u′′f + 〈u′f 〉t)2〉Ωf ,t = (B.11)

= 〈u′′fu′′f + 2u′′f 〈u′f 〉t + 〈u′f 〉t〈u′f 〉t〉Ωf ,t = (B.12)

= 〈u′′fu′′f 〉Ωf ,t + 2〈u′′f 〈u′f 〉t〉Ωf ,t + 〈〈u′f 〉t〈u′f 〉t〉Ωf ,t = (B.13)

= 〈u′′fu′′f 〉Ωf ,t + 2〈 〈u′′f 〉t︸ ︷︷ ︸
= 0 eq. 4.2

〈u′f 〉t〉Ωf + 〈〈u′f 〉t〈u′f 〉t〉Ωf ,t = (B.14)

= 〈u′′fu′′f 〉Ωf ,t + 〈〈u′f 〉t〈u′f 〉t〉Ωf ,t (B.15)
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Using the above relation B.9, the variance of the velocity field with respect to the time and
space average can be expressed as:



Appendix C

Two-point correlation and one
dimensional spectrum of the fluid
velocity field

In this section detailed definitions of the two-point correlations and the one dimensional
spectrum of the fluid velocity field, discussed in the present work, are introduced. First let us
introduce the two-point spatial correlation of the fluid velocity as follows:

Rij(r, t) ≡ 〈u′i(x+ r, t)u′j(x, t)〉Ωf (C.1)

where r is a separation vector and u is the fluid velocity field. The two-point auto-correlation
is a good indicator for the adequacy of the box size, especially when dealing with periodic
boundary conditions. Zero values of Rij indicates that the domain under considerations is
large enough to accommodate the largest flow structures in a particular direction. The value of
Rij at zero separation (r = 0) represents the covariance of the fluid velocity 〈u′iu′j〉Ωf . Using
the two-point correlation function one can define various length scales, e.g. the integral length
scale:

L11 = 1
R11(0, t)

∫ ∞
0

R11(e1r, t)dr, (C.2)

where e1 is the unit vector in the x-direction. For statistically homogeneous field the two-point
correlation is a symmetric function with respect to the separation vector r, i.e.

Rij(r, t) = Rij(−r, t). (C.3)

The one-dimensional spectrum of the fluid velocity field can be defined as the twice the
one-dimensional Fourier transform of Rij:

Eij(κ1, t) = 1
π

∫ ∞
−∞

Rij(r1) exp−iκ1r1 dr1, (C.4)

where κ1 = e1κ is the component of the wave number vector κ in direction of the unity vector
e1.

With this the discrete one-dimensional spectra is computed as the Fourier transform of the
two point correlation function Rij(κ).

Eij(κ, t) =
∑
κ

R̂ij(κ) =
∑
κ

〈û∗i (κ)ûj(κ)〉, (C.5)
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where R̂ij(κ) denotes the Fourier transform of Rij(r), û(κ) the Fourier transform of the flow
velocity u and û∗(κ) the complex conjugate of û(κ).

Since particles are present in the computational domain, at the position of the particles
there is no fluid and therefore the flow velocity field is absent. Thus difficulties arise by the
computation of the Fourier transform of R̂ij(κ), since the velocity signal exhibits discontinuities
at the particle positions. In order to avoid this the the velocity signal at the position of the
particles is approximated by means of interpolation.
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Appendix D

Derivation of the Energy equation for
two-phase particulate flows

In this section we derive the turbulent kinetic energy for two-phase particulate flows. The
flows under consideration are shear-free and homogeneous in all space directions, i.e. no
mean shear gradients are present. The particles are settling in an quiescent fluid, i.e. the fluid
was at rest, at the time the particles were released in the domain. As we will see later, this
flow configuration allows us to make some simplifications of the kinetic energy equation. The
only driving force of the flow is the gravity. This allow us to study the energy production by
the dispersed phase, since the fluctuations of the flow are only due to the settling particles.
The motion of the particles generates gradients of the flow velocity in vicinity of the particle
surface, i.e. a boundary layer develops. Pressure gradient across the particles is developed
as well. Depending on the particle Galileo/Reynolds number this results in a separation of
the flow from the particle surface and particle wakes are formed. These wakes are the only
perturbations of the flow field. Thus, this study is a good starting point for the study and the
modeling of particulate flows and especially the contribution of the dispersed phase to the
kinetic energy of the fluid.

This section is organized as follow. Before we start deriving and analyzing the energy
equation for multiphase flows we briefly define the notation used in this section in section D.1.
In section D.2 the kinetic energy equation single phase flow is derived. Than in section D.3 the
kinetic energy equation two-phase flows in the entire domain is derived. Here the terms in the
kinetic energy equation stemming from the momentum exchange between the two phases are
presented/discussed. Finally in section D.4 the turbulent kinetic energy budget for two-phase
flows is discussed.

D.1 Notation

In this section a brief description of the notation used in this section is presented. The
instantaneous fluid velocity vector is noted by U = (U1, U2, U3), the Pressure is denoted by
P and the density of the fluid and the particles are denoted by ρf and ρp respectively. The
kinematic viscosity of the fluid is denoted by ν. The domain occupied by the two phases
is given by Ω = Ωf ∪ Ωp, where Ωf and Ωp are the domains occupied by the fluid and the
particles respectively. Please note, that the fluid velocity U and pressure P are defined only in
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the domain Ωf . An indicator function Φf (x, t) which is defined as in equation A.1 obeys the
topological equation (Drew, 1983):

∂Φf

∂t
+ U Ij

∂Φf

xj
= 0, (D.1)

where U Ij is the velocity of the fluid-particle interface. Further, for the gradient of Φf the
following equality holds (Drew, 1983):

∂Φf

∂xj
= −n(f)

j δ(x− xI), (D.2)

where n(f)
j is the unit normal vector pointing outward from the fluid surface into the particle

and δ(x− xI) is a generalized delta function at the fluid-particle surface xI .
A sample averaging operator conditioned on the presence of the fluid or solid phase is defined
as:

〈φf 〉Ω(x, t) = 1∫
Ωf Φf (x, t)dx

∫
Ω

Φf (x, t)φf (x, t)dx - carrier phase. (D.3)

Analogous for the dispersed phase the operator can be written as:

〈φp〉Ω(x, t) = 1∫
Ωp(1− Φf )(x, t)dx

∫
Ω

(1− Φf )(x, t)φp(x, t)dx - dispersed phase. (D.4)

Thus, the fluctuations of the fluid velocity, or any flow field quantity can be written as:

ui = Φfuf,i = ΦfUi − 〈ΦfUi〉Ω. (D.5)

Additionally, the following equality can be written:

〈φ〉Ωf = 〈Φfφ〉Ω, (D.6)

The rate of strain tensor is defined as:

Sij = 1
2

(
∂ΦfUi
∂xj

+ ∂ΦfUj
∂xi

)
. (D.7)

The mean and fluctuating rates of strain are analogously defined as:

S̄ij = 〈Sij〉Ω = 1
2

(
∂〈ΦfUi〉Ω

∂xj
+ ∂〈ΦfUj〉Ω

∂xi

)
, (D.8)

sij = Sij − S̄ij = 1
2

(
∂Φfui
∂xj

+ ∂Φfuj
∂xi

)
. (D.9)

The rates of dissipation due to the mean fluctuating flow are defined as:

ε = 2ν〈sijsij〉Ω. (D.10)

The turbulent kinetic energy is defined as:

k = 1
2〈Φfuiui〉Ω. (D.11)
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D.2. Derivation of the kinetic energy equation

The term describing the production of kinetic energy is given by:

P = −〈Φfuiuj〉Ω
∂〈ΦfUi〉Ω

∂xj
. (D.12)

The energy fluxes in the equations for the kinetic energy, kinetic energy of the mean flow and
the turbulent kinetic energy (Pope, 2000) are defined as:

Ti = 1
ρf

ΦfUiP − 2νΦfUjSij (D.13)

T ′i = 1
2〈Φfuiujuj〉Ω + 1

ρf
〈Φfuip〉Ω − 2ν〈Φfujsij〉Ω (D.14)

D.2 Derivation of the kinetic energy equation

The Navier-Stokes (NSE) equations for single phase flow is given by:

∂Ui
∂t

+ ∂UiUj
∂xj︸ ︷︷ ︸

DUi
Dt

= − 1
ρf

∂P

∂xi
+ 2ν ∂Sij

∂xj
(D.15)

Multiplication of D.15 with the velocity Ui results in:

DE

Dt
= − 1

ρf

∂UiP

∂xi
+ 2νUi

∂Sij
∂xj

, (D.16)

DE

Dt
+ 1
ρf

∂UiP

∂xi
= 2ν

(
∂UiSij
∂xj

− Sij
∂Ui
∂xj

)
, (D.17)

where the first term on the left hand side is defind as:

U · DU
Dt

= DE

Dt
= ∂E

∂t
+∇ · (UE) (D.18)

The expression in the brackets (· · · ) in equation D.17 can be re-written as follow:

∂UiSij
∂xj

− Sij
∂Ui
∂xj

= (D.19)

∂UiSij
∂xj

− Sij
∂Ui
∂xj
− SijSij + SijSij = (D.20)

∂UiSij
∂xj

− Sij

(
∂Ui
∂xj
− Sij

)
︸ ︷︷ ︸

Ωij

−SijSij = (D.21)

∂UiSij
∂xj

− SijΩij︸ ︷︷ ︸
=0

−SijSij = (D.22)

∂UiSij
∂xj

− SijSij =︸︷︷︸
Sji=Sij

∂UjSij
∂xi

− SijSij (D.23)
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Substituting this expression in equation D.17 and rearranging follows:

DE

Dt
+ ∂

∂xi

(
UiP

ρf
− 2νUjSij

)
︸ ︷︷ ︸

Ti

= −2νSijSij (D.24)

which is the equation for the kinetic energy as defined in (Pope, 2000).

D.3 Energy equation for particulate flows

The momentum equation D.15 is valid for single phase flow. In order to obtain an equation,
which is valid for particulate flows, equation D.15 is multiplied by the indicator function
defined in A.1

Φf

(
∂Ui
∂t

+ ∂UiUj
∂xj

= gi −
1
ρf

∂P

∂xi
+ 2ν ∂Sij

∂xj

)
(D.25)

In the equation above the term gi represents the volume force. Using the chain rule (e.g.
g∂f/∂x = ∂(fg)/∂x− f∂g/∂x) for differentials one obtains:

∂ΦfUi
∂t
−Ui

∂Φf

∂t
+∂ΦfUiUj

∂xj
−UiUj

∂Φf

∂xj
= Φfgi−

1
ρf

∂ΦfP

∂xi
+ P

ρf

∂Φf

∂xi
+2ν

(
∂ΦfSij
∂xj

− Sij
∂Φf

∂xj

)
.

(D.26)
Substituting the property of the indicator function defined in equation D.1 and rearranging the
terms on the left hand side the equation results in:

∂ΦfUi
∂t

+∂ΦfUiUj
∂xj

−Ui
(
Uj − U Ij

) ∂Φf

∂xj
= Φfgi−

1
ρf

∂ΦfP

∂xi
+ P

ρf

∂Φf

∂xi
+2ν

(
∂ΦfSij
∂xj

− Sij
∂Φf

∂xj

)
.

(D.27)
The third term on the left hand side vanishes, since the gradient of Φf exist only at the particle
surface, where the fluid velocity Ui is equal to the fluid-particle surface velocity U Ii and thus
Ui
(
Uj − U Ij

)
∂Φf
∂xj

= 0 in the entire domain Ω. Thus:

∂ΦfUi
∂t

+ ∂ΦfUiUj
∂xj

= Φfgi −
1
ρf

∂ΦfP

∂xi
+ P

ρf

∂Φf

∂xi
+ 2ν

(
∂ΦfSij
∂xj

− Sij
∂Φf

∂xj

)
. (D.28)

Combining the expression with the gradient of Φf on the right hand side, the momentum
equation for particulate flows in the entire domain Ω reads as:

∂ΦfUi
∂t

+ ∂ΦfUiUj
∂xj

= Φfgi −
1
ρf

∂ΦfP

∂xi
+ 2ν ∂ΦfSij

∂xj
+ (P/ρf − 2νSij)

∂Φf

∂xj
(D.29)

The last expression on the right hand side represents the momentum transfer at the fluid-
particle interface due to pressure and viscous stresses at the particle surface.

Similar to the procedure in section D.2, we multiply equation D.29 with ΦfUi to obtain the
equation for the kinetic energy for particulate flows in the domain Ω.

ΦfUi

∂ΦfUi
∂t︸ ︷︷ ︸
A

+ ∂ΦfUiUj
∂xj︸ ︷︷ ︸
B

= Φfgi︸ ︷︷ ︸
C

− 1
ρf

∂ΦfP

∂xi︸ ︷︷ ︸
D

+ 2ν ∂ΦfSij
∂xj︸ ︷︷ ︸
E

+ (P/ρf − 2νSij)
∂Φf

∂xj︸ ︷︷ ︸
F

 (D.30)
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As next the expressions A - F in equation D.30 are considered individually. Please note, that
once more the chain rule is applied.

A: ΦfUi
∂ΦfUi
∂t

=
∂ 1

2ΦfUiΦfUi

∂t
=︸︷︷︸

Φf ·Φf=Φf

∂Φf
1
2UiUi

∂t
= ∂ΦfE

∂t
(D.31)

B: ΦfUi
∂ΦfUiΦfUj

∂xj
= ΦfUi

ΦfUj
∂ΦfUi
∂xj

+ ΦfUi
∂ΦfUj
∂xj︸ ︷︷ ︸
=0

 = ΦfUj

[
ΦfUi

∂ΦfUi
∂xj

]
=

(D.32)

= ΦfUj
∂ 1

2ΦfUiΦfUi

∂xj
= ΦfUj

∂E

∂xj
= ∂ΦfUjE

∂xj
− ΦfE

∂ΦfUj
∂xj︸ ︷︷ ︸
=0

(D.33)

= ∂ΦfUjE

∂xj
(D.34)

C: Φfgi (D.35)

D: − 1
ρf

ΦfUi
∂ΦfP

∂xi
=︸︷︷︸

∂Ui
∂xi

=0

− 1
ρf

∂ΦfUiP

∂xi
= ∇ ·

(
− 1
ρf

ΦfUP

)
(D.36)

E:
∂ΦfUiΦfSij

∂xj
= ΦfUi

∂ΦfSij
∂xj

+ ΦfSij
∂ΦfUi
∂xj

(D.37)

F: ΦfUi (P/ρf − 2νSij)
∂Φf

∂xj
(D.38)

Using the transformation steps from section D.2, equations D.19 - D.23, on expression D.37
and combining with expression D.36, equation D.30 simplifies to:

DΦfE

Dt
+∇ ·T = −2νΦfSijSij + ΦfUigi + ΦfUi (P/ρf − 4νSij)

∂Φf

∂xj
, (D.39)

where T is defined as:

T = 1
ρ

ΦfUiP − ΦfUjSij (D.40)

Using the property of the indicator function D.2, equation D.39 results in:

DΦfE

Dt
+∇ ·T = −2νΦfSijSij + ΦfUigi + ΦfUi (P/ρf − 4νSij) nIjδ

(
x− xI

)
. (D.41)

The last term on the right hand side represents the energy contribution trough the presence
of the fluid-particle interface. This term can be split in a contribution due to pressure and a
contribution due to viscous stresses.
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D.4 Turbulent kinetic energy budget

In this section the turbulent kinetic energy (TKE) budget for the carrier phase is discussed.
First the equation for the TKE is derived. To derive the equation for the TKE, first we derive
the conservation equation for the turbulent velocity fluctuations by subtracting the mean
momentum equation from the momentum equation D.29. Here the mean is performed by
sample averaging. Thus, the fluctuations are with respect to the box averaged quantities.

With this, the mean momentum equation for particulate flows in the entire domain Ω is
yield by applying the sample averaging operator D.3 on equation D.29:〈

∂ΦfUi
∂t

+ ∂ΦfUiUj
∂xj

= Φfgi︸ ︷︷ ︸
fi,b

− 1
ρf

∂ΦfP

∂xi
+ 2ν ∂ΦfSij

∂xj
+ (P/ρf − 2νSij)

∂Φf

∂xj︸ ︷︷ ︸
fi,p

〉
Ω
. (D.42)

By taking advantage of the commutative property of the gradient, equation D.42 can be written
as:

∂〈ΦfUi〉Ω
∂t

+∂〈ΦfUi〉Ω〈ΦfUj〉Ω
∂xj

+
∂〈ΦfUΦfuj〉Ω

∂xj
= − 1

ρf

∂〈ΦfP 〉Ω
∂xi

+2ν ∂〈ΦfSij〉Ω
∂xj

+〈fi,b〉Ω+〈fi,p〉Ω.

(D.43)
Subtracting equation D.43 from equation D.42 yields:

∂Φfui
∂t

+ ∂

∂xj
[ΦfUiUj − (〈ΦfUi〉Ω〈ΦfUj〉Ω + 〈ΦfuiΦfuj〉Ω)] = − 1

ρf

∂Φfp

∂xi
+2ν ∂Φfsij

∂xj
+f ′i,b+f ′i,p,

(D.44)
where

ΦfSij = 〈ΦfSij〉Ω + Φfsij , (D.45)

fi,b = 〈fi,b〉Ω + f ′i,b, (D.46)

fi,p = 〈fi,p〉Ω + f ′i,p. (D.47)

Using the decomposition of the velocity defined in equation D.5, the expressin in the brackets
on the left hand side can be expressed as follow:

ΦfUiUj︸ ︷︷ ︸
A

−〈ΦfUi〉Ω〈ΦfUj〉Ω − 〈ΦfuiΦfuj〉Ω

A =
[
〈ΦfUi〉Ω + Φfui

][
〈ΦfUj〉Ω + Φfuj

]
= 〈ΦfUi〉Ω〈ΦfUj〉Ω + 〈ΦfUi〉ΩΦfuj + Φfui〈ΦfUj〉Ω + ΦfuiΦfuj (D.48)

⇒A− 〈ΦfUi〉Ω〈ΦfUj〉Ω − 〈ΦfuiΦfuj〉Ω =
= 〈ΦfUi〉Ω〈ΦfUj〉Ω + 〈ΦfUi〉ΩΦfuj + Φfui〈ΦfUj〉Ω + ΦfuiΦfuj−
− 〈ΦfUi〉Ω〈ΦfUj〉Ω − 〈ΦfuiΦfuj〉Ω =
= 〈ΦfUi〉ΩΦfuj + Φfui〈ΦfUj〉Ω + ΦfuiΦfuj − 〈ΦfuiΦfuj〉Ω (D.49)

⇒ (ΦfUiUj − 〈ΦfUi〉Ω〈ΦfUj〉Ω − 〈ΦfuiΦfuj〉Ω) = (D.50)
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= 〈ΦfUi〉ΩΦfuj + Φfui〈ΦfUj〉Ω + ΦfuiΦfuj − 〈ΦfuiΦfuj〉Ω

Hence applying the chain rule one obtains:

∂

∂xj
(〈ΦfUi〉ΩΦfuj + Φfui〈ΦfUj〉Ω + ΦfuiΦfuj − 〈ΦfuiΦfuj〉Ω) = (D.51)

= Φfuj
∂〈ΦfUi〉Ω

∂xj
+ 〈ΦfUj〉Ω

∂Φfui
∂xj

+ Φfuj
∂Φfui
∂xj

− ∂〈ΦfuiΦfuj〉Ω
∂xj

(D.52)

Substituting equation D.52 in equation D.44 and reorganizing one obtains:

DΦfui
Dt

= −Φfuj
∂〈ΦfUi〉Ω

∂xj
+ ∂〈ΦfuiΦfuj〉Ω

∂xj
− 1
ρf

∂Φfp

∂xi
+ 2ν ∂Φfsij

∂xj
+ f ′i,b + f ′i,p, (D.53)

where
DΦfui
Dt

= ∂Φfui
∂t

+ (〈ΦfUj〉Ω + Φfuj)
∂Φfui
∂xj

(D.54)

Multiplication of equation D.54 with Φfui and applying the average operator D.3 one yields
(for detailed derivation, please see appendix D.5):

D̄k

D̄t
+∇ ·T′ = −P − ε+ 〈Φfuif

′
i,b〉Ω︸ ︷︷ ︸

Ψb

+ 〈Φfuif
′
i,p〉Ω︸ ︷︷ ︸

Ψp

, (D.55)

In equation D.55 k = 〈Φfuiui〉Ω/2 is the turbulent kinetic energy (TKE) averaged over the
entire domain, ε = 2ν〈sijsij〉Ω is the average dissipation rate, P is the production of turbulent
kinetic energy, Ψb is the buoyancy force, which represents the work done by the gravitational
potential and Ψp is the correlation between the fluid velocity and the forcing term due to the
presence of the particles. The definitions of sij , P and T′ are given in section D.1. Since the
flow under consideration here is homogeneous in all three directions, the production term and
the energy flux term disappear P = 0, ∇ ·T′ = 0. Thus the final form of the turbulent kinetic
energy equation is:

D̄k

D̄t
= −ε+ Ψb + Ψp (D.56)

The buoyancy term Ψb is defined as follow:

Ψb = wrelΦs

(
ρp
ρf
− 1

)
gz, (D.57)

where wrel is the averaged relative velocity between the two phases wrel = 〈w(p)〉Ω − 〈w〉Ω
and Φs is the solid volume fraction. The contribution to the TKE stemming from the dispersed
phase is defined as follow:

Ψp = 〈Φfuif
′
i,p〉Ω (D.58)

where fpi is the force which imposes the rigid body motion of the particles on the fluid. For
statistically steady state the term on the left hand side vanishes and the equation becomes the
following form:

ε = Ψb + Ψp (D.59)
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As can be seen the contributions to the TKE from the dispersed phase is compensated by the
dissipation rate of TKE, which is expected. For heavy particles (ρp/ρf > 1) and gravity acting
in the opposite third space direction the first term on the right hand side of equation D.59 is
always positive and acts as a source of TKE. Considering the term Ψp no a priory allegation of
the its sign can be made. Further analysis is required to determine whether Ψp acts as sink or
source of TKE.

D.5 Extended derivation

Derivation of equation D.55. Equation D.54 can be simplified as follow:

∂Φfui
∂t

+ (〈ΦfUj〉Ω + Φfuj)
∂Φfui
∂xj

= −Φfuj
∂〈ΦfUi〉Ω

∂xj
+ ∂〈Φfuiuj〉Ω

∂xj
− 1
ρf

∂Φfp

∂xi
+

= +2ν ∂sij
∂xj

+ f ′i,b + f ′i,p, (D.60)

∂Φf
1
2uiui

∂t
+ 〈ΦfUj〉Ω

∂Φf
1
2uiui

∂xj
+
∂Φf

1
2ujuiui

∂xj
= −Φfuiuj

∂〈ΦfUi〉Ω
∂xj

+ Φfui
∂〈Φfuiuj〉Ω

∂xj
(D.61)

− 1
ρf

∂Φfuip

∂xi
+ +2νΦfui

∂sij
∂xj

+ Φfuif
′
i,b + Φfuif

′
i,p (D.62)

Taking the mean of the above equation and using 〈ui〉Ω = 0 one obtains:

∂k

∂t
+ 〈ΦfUj〉Ω

∂k

∂xj
+
∂Φf

1
2ujuiui

∂xj
= −〈Φfuiuj〉Ω

∂〈ΦfUi〉Ω
∂xj

− 1
ρf

∂〈Φfuip〉Ω
∂xi

+

+ 2ν
〈

Φfui
∂sij
∂xj

〉
Ω

+ 〈Φfuif
′
i,b〉Ω + 〈Φfuif

′
i,p〉Ω. (D.63)

The third term on the right hand side can be written as:

2ν
〈

Φfui
∂Φfsij
∂xj

〉
Ω

= 2ν
[〈

∂Φfuisij
∂xj

〉
Ω
−
〈
sij
∂Φfui
∂xj

〉]
= (D.64)

= 2ν
[
∂〈Φfuisij〉Ω

∂xj
−
〈
sij
∂Φfui
∂xj

− sijsij + sijsij

〉
Ω

]
= (D.65)

= 2ν
[
∂〈Φfuisij〉Ω

∂xj
−
〈
sij

(
∂Φfui
∂xj

− 1
2
∂Φfui
∂xj

− 1
2
∂Φfui
∂xi

)
+ sijsij

〉
Ω

]
=

(D.66)

= 2ν


∂〈Φfuisij〉Ω

∂xj
−
〈
sij

(
1
2
∂Φfui
∂xj

− 1
2
∂Φfui
∂xi

)
︸ ︷︷ ︸

Ωij

+sijsij
〉

Ω

 = (D.67)
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= 2ν

∂〈Φfuisij〉Ω
∂xj

−
〈
sijΩij︸ ︷︷ ︸

=0

+sijsij
〉

Ω

 = (D.68)

= 2ν
[
∂〈Φfuisij〉Ω

∂xj
−
〈
sijsij

〉
Ω

]
= (D.69)

= 2ν ∂〈Φfuisij〉Ω
∂xj

− 2ν
〈
sijsij

〉
Ω = (D.70)

= 2ν ∂〈Φfuisij〉Ω
∂xj

− ε (D.71)

Substituting this in equation D.63 yields:

∂k

∂t
+ 〈ΦfUj〉Ω

∂k

∂xj︸ ︷︷ ︸
D̄k
D̄t

+ ∂

∂xj

(
〈12Φfujuiui〉Ω + 1

ρf
〈Φfuip〉Ω − 2ν〈Φfuisij〉Ω

)
︸ ︷︷ ︸

T ′
i

=

− 〈Φfuiuj〉Ω
∂〈ΦfUi〉Ω

∂xj︸ ︷︷ ︸
P

−ε+ 〈Φfuif
′
i,b〉Ω︸ ︷︷ ︸

Ψb

+ 〈Φfuif
′
i,p〉Ω︸ ︷︷ ︸

Ψp

(D.72)

⇒ D̄k

D̄t
+∇ ·T′ = P − ε+ Ψb + Ψp. (D.73)

Please note that according to definition D.5 the fluid velocity and pressure fluctuations are
defined in the domain Ω and that for simplicity the indicator function is omitted.
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8.11 Streamwise velocity deficit ũd0 defined as in equation 3.11 along the vertical
axis z̃. Case M121, case M178 and case ML178. . . . . . . . . . . . . . . . . . 183

8.12 Cross-stream half-width of the average particle wake as function of the down-
stream distance z̃ for case M121, case M178 and case ML178. . . . . . . . . . . 184

8.13 Profiles of the velocity deficit in the average particle wake as function of the
cross-stream coordinate x̃ for (a) case M121. (b) case M178 and (c) case ML178.185

238





ISSN	 1439-4111
ISBN	 978-3-7315-0307-1 9 783731 503071

ISBN 978-3-7315-0307-1

This book contributes to the fundamental understanding of the physical mechanisms that take place 
in pseudo turbulent particulate flows. In the present work we have considered the sedimentation 
of large number of spherical rigid particles in an initially quiescent flow field. We have performed 
direct numerical simulations employing an immersed boundary method for the representation of the 
fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo 
number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial 
distribution. It is found that the particles are preferentially located in regions with downward fluid 
motion. The particles inside clusters experience larger settling velocities than the average. The flow in 
all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced 
flow field is further found to be highly anisotropic with dominant vertical components. The results 
indicate that, in the present flow configurations, the collective and mobility effects play significant 
role for the particle and fluid motion.
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