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Abstract

The present thesis deals with the design of structure-preserving numerical methods in

the field of nonlinear elastodynamics with an extension to multi-field problems. First,

a new approach to the design of energy-momentum (EM) consistent time-stepping

schemes for nonlinear elastodynamics is proposed. The underlying mixed variational

formulation is motivated by the structure of polyconvex stored energy functions and

benefits from the notion of a tensor cross product for second-order tensors. The

structure-preserving discretization in time of the mixed variational formulation yields

an EM consistent semi-discrete formulation. The semi-discrete formulation offers sev-

eral options for the discretization in space. In the special case of a purely displacement-

based method, a new form of the algorithmic stress formula is obtained. Afterwards,

we introduce a new algorithmic stress formula in its eigenvalue representation to

model the transient behavior of hyperelastic bodies of Ogden-type materials. More-

over, we extend the formalism to multi-field problems. Therefore, we provide a new

approach to the design of energy momentum consistent integration schemes in the

field of non-linear thermo-elastodynamics and nonlinear electro-elastodynamics. Fi-

nally, several numerical investigations show the superior performance of the proposed

EM consistent time-stepping schemes in terms of numerical accuracy, stability, valid-

ity, and robustness.

Keywords: Finite element methods; Nonlinear elastodynamics; Nonlinear thermo-

elasto dynamics; Nonlinear electro-elastodynamics; Hu-Washizu functional; Mixed

finite elements; Implicit time-stepping schemes; Structure-preserving discretization;

Tensor cross product; Electroactive polymer.
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Kurzfassung

Die vorliegende Dissertation behandelt die Entwicklung strukturerhaltender nume-

rischer Methoden für die nichtlineare Elastodynamik und deren Erweiterung auf

Mehrfeld-Probleme. Im ersten Schritt wird eine neue Herangehensweise zur Entwick-

lung von energie- und drehimpulskonsistenten Zeitschrittverfahren für die nicht-

lineare Elastodynamik vorgestellt. Die zugrundeliegende gemischte Variationsfor-

mulierung ist hierbei motiviert durch die polykonvexe Form der Formänderungsen-

ergiefunktion und wird durch die Einführung eines Tensorkreuzproduktes für Ten-

soren zweiter Stufe begünstigt. Die strukturerhaltende Diskretisierung in der Zeit der

gemischten Variationsformulierung resultiert in einer energie- und drehimpulskon-

sistenten semidiskreten Formulierung. Diese vorgestellte semidiskrete Formulierung

erlaubt dann verschiedene Möglichkeiten für die räumliche Diskretisierung. Die Ver-

wendung einer rein verschiebungsbasierten Formulierung als Spezialfall resultiert

dann in einer neuen algorithmischen Spannungsformel für die nichtlineare Elastody-

namik. Im Anschluss wird eine weitere algorithmische Spannungsformel eingeführt.

Diese unterscheidet sich durch die Beschreibung in den Eigenwerten des Verzer-

rungstensors und erlaubt die Simulation transienten Verhaltens von hyperelastischen

Körpern bestehend aus Material vom Ogden-Typ. Darüber hinaus erfolgt die Er-

weiterung der bestehenden Formulierung auf Mehrfeld-Probleme. Hierfür wird ein

neuer Ansatz für die Entwicklung energie- und drehimpulskonsistenter Zeitschrittver-

fahren der nichtlinearen Thermo-Elastodynamik und Elektro-Elastodynamik vorge-

stellt. Zur Demonstration aller vorgestellten Formulierungen werden numerische

Beispiele herangezogen, um die hervorragenden Eigenschaften der energie- und dreh-

impulskonsistenten Zeitschrittverfahren im Hinblick auf die numerische Genauigkeit,

Stabilität, Validität und Robustheit aufzuzeigen.
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1 Introduction

In the last three decades, energy-momentum (EM) consistent integrators have been

developed mainly in the field of structural and solid mechanics for the simulation of

time-dependent non-linear problems. Because the consistent approximation of linear

momentum, angular momentum, and total energy are desirable for those transient

simulations, EM schemes seem to be the method of choice. Moreover, this class

of second-order accurate time-stepping schemes yield an enhanced performance in

terms of robustness and stability. The origin of this method can be found in [72, 55].

Especially during the nineties, EM consistent schemes made a breakthrough due to

the works of [156, 159, 153, 50]. From that point until now, ongoing research on EM

consistent time-integrators for non-linear structural dynamics and non-linear solid

dynamics can be observed; see e.g., [158, 154, 92, 37, 49, 146, 147, 30, 54, 100, 10, 88,

118, 145, 46, 23, 80, 81].

Due to their desirable properties and improved performance, EM consistent schemes

have also been successfully applied in different fields of computational mechanics,

such as in non-linear visco-elastodynamics [57], anisotropic material behavior [59],

finite deformation contact problems [94, 3, 63, 64], flexible multibody dynamics [11,

74, 29, 18, 19, 97, 16, 101, 22], optimal control problems [28, 21, 85, 14], non-linear

elasto-thermodynamics [143, 58, 144, 65, 36, 44, 17] and electro-elastodynamics [83,

82, 133, 45].

In contrast to EM schemes, many important members of second-order implicit time

integrators show numerical dissipation; see e.g., [70, 123, 136, 173, 67, 34]. However,

by reason of the consistent energy approximation, EM schemes seem to be the perfect

starting point when dealing with energy-decaying time-stepping schemes. Recent

developments for energy-decaying time-stepping schemes can be found in [11, 91, 93,

4, 5, 146, 96].
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Another elegant class of structure-preserving numerical methods are variational in-

tegrators, which follow an alternative path compared to EM schemes. The discrete

Euler-Lagrange equations are obtained by the direct discretization of the variational

functional. This yields a symplectic time-stepping scheme, and therefore the symme-

tries of the mechanical system are consistently approximated. A drawback of varia-

tional integrators is the lack of consistent energy approximation, although the error

of the energy is bounded. See [109, 172, 98, 99, 102, 103, 20, 124, 148, 86, 171, 9] for

detailed introductions and more recent developments on variational integrators.

We direct readers to the book of [13] for more background on structure-preserving nu-

merical methods in general and on EM schemes (with their energy-dacaying variants)

as well as variational integrators in particular.

For the space discretization of the semi-discrete equations of motion of the underly-

ing mechanical system, the Finite Element Method (FEM) is widely used. A draw-

back of the FEM is that standard finite elements behave poorly under certain circum-

stances. Historically, the development of the FEM was influenced by the search for

a finite element, suitable for all conceivable applications (see e.g., [71, 12, 174] for

an overview of different approaches to improve the behavior of finite elements). A

well-established approach for the formulation of high-performance finite elements is

based on a mixed variational formulation originating from Hu-Washizu-type varia-

tional principles [170]. A large variety of mixed and enhanced finite elements for

finite strain elasticity have been envisaged from these variational functionals (see e.g.,

[157, 152, 160, 48, 1, 84, 169, 149, 26, 23]). In non-linear applications, these elements

often perform very well compared to classical displacement-based elements. Depend-

ing on which mixed finite element is used, one can observe a locking-free response,

high coarse mesh accuracy, and very robust behavior in Newton-type solution pro-

cesses (see numerical examples in the cited references).

Interestingly, previous EM consistent schemes have been mainly developed in the

framework of displacement-based finite elements. As shown in [2], the use of mixed

finite elements do not inherit the consistent approximation of energy and momen-

tum balances in general. Only specific mixed finite elements have been successfully

applied to EM schemes such as in [92, 115, 30], to name but a few.
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1.1 Objectives

1.1 Objectives
1

In this work we aim to create a mixed variational framework for the design of EM

schemes inspired by the structure of polyconvex stored energy functions. The combi-

nation of both, mixed finite elements and EM consistent time stepping schemes, gives

rise to an improved performance in terms of accuracy, stability, and robustness within

transient simulations. Moreover, with this framework at hand, we also focus on more

involved problems of solid mechanics, such as modeling quasi-incompressible mate-

rial behavior or the simulation of multi-field problems. To be precise, we focus on the

intersections of these topics of computational mechanics, as illustrated in Fig. 1.1.

Stru
ctu
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reserving

schem
es

M
u

lt
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p
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bl
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s

Mixed finite elements

Figure 1.1: Sketch of the aim of the present work

Design of EM schemes

In the last few years, the important notion of polyconvexity [7] inspired the design

of new classes of mixed finite elements in the field of finite-strain solid mechanics.

These types of finite elements rely on the independent approximation of the defor-

mation map and an additional approximation of further kinematic fields entering

the polyconvexity-inspired strain energy function. Starting from a Hu-Washizu-type

variational functional [170], a large variety of alternative mixed finite element for-

mulations can be envisaged. The novel mixed element formulation introduced by

1 This section is based on the introductions given in [23, 81, 44, 133].
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[26, 27], which builds upon the ideas of [149], particularly shows great advantages in

terms of stability and robustness. Moreover, this formulation has been used in dif-

ferent fields of computational mechanics; for example in electro-mechanics [47, 131],

phase-field models [66], beam and shell formulations [132, 130], and smooth particle

hydrodynamic algorithms for large strain solid mechanics [95], to name but a few. In

addition to the polyconvexity-based framework, the present work relies on the cross

product between second-order tensors as introduced in [38]; see also [39, App. B

4.9.3]. This so-called tensor cross product has been used in the context of large-strain

hyperelasticity in [26, 27] and remarkably simplifies the algebraic manipulation of

the large-strain continuum formulation. In connection to EM schemes based on a

mixed variational functional [77, 15, 78, 79, 23], we present a new cascade of kine-

matic relationships that make possible the EM consistent space-time discretization of

hyperelastic continuum bodies. In particular, the newly proposed mixed variational

formulation facilitates the design of new EM consistent discretizations in time. In ad-

dition to this, the mixed variational framework makes a wide variety of finite element

discretizations in space possible. In the special case of a purely displacement-based

discretization, we obtain a new form of the algorithmic stress formula which is a

typical feature of EM consistent methods [145]. In particular, the new stress formula

assumes a remarkably simple form, when compared to previously proposed alterna-

tive formulations [52, 60, 6].

Quasi-incompressible elasticity in principal stretches

One aim of the present work is to extend the existing formulation [26, 27] to the class

of Ogden-type materials [125, 126] defined in the principal stretches. To this end, we

make use of a spectral decomposition of the strain tensor; see e.g., [162]. Ogden-type

materials are known to yield a good relation between numerical simulations and ex-

periments in finite strain elasticity problems of rubber-like solids [125]. Moreover,

the Mooney-Rivlin material [120] is contained as a special case in the more general

class of Ogden-type material; see e.g., [35]. In the present work we use a multiplica-

tive decomposition of the deformation gradient to decouple the deformation into an

isochoric part and a volumetric part, as proposed by [43]. This kinematic split is

known to be advantageous in computational mechanics when dealing with nearly

incompressible material behavior [157, 155]. Furthermore, we use a three-field Hu-

Washizu variational principle to define our mixed framework motivated by the work

of [157, 155], where next to the deformation map, the hydrostatic pressure and the
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volumetric dilatation enter the mixed variational functional. Concerning the exten-

sion to nonlinear dynamics, we introduce a new algorithmic stress formula based on

[23], now defined in terms of the principal stretches. This leads to a consistent energy

and momentum approximation in time.

Non-linear thermo-elastodynamics

Another objective of this work is the consistent discretization of nonlinear thermo-

elastodynamics. In recent decades thermo-mechanical constitutive models have been

addressed in numerous works (see e.g. [113, 69, 142] and textbooks [68, 53]). Clas-

sically, the hyperelastic Helmholtz free energy density function depends only on the

deformation gradient and the temperature. Furthermore, the weak form is deduced

from its strong form. Depending on the chosen material model, e.g., for a Mooney-

Rivlin model, the consistent linearisation may lead to cumbersome expressions. In

contrast to the classical approach, the present work is inspired by the concept of poly-

convexity [7, 35]. The Helmholtz free energy is a convex function of the deformation

gradient, its co-factor, its determinant, and is concave with respect to the absolute

temperature. It is the main goal of this part of the thesis to apply the concept of EM

consistent integrators to the regime of thermo-elastodynamical problems. The en-

ergy balance equation is commonly stated in entropy form [41, 65, 58, 69, 73] for this

class of problems where the absolute temperature is chosen as the state variable. The

construction of EM consistent integrators within such a framework relies on cum-

bersome discrete gradient operators [65] that feature artificial contributions for the

algorithmic stress formula to restore energy consistency in the discrete setting. An

alternative approach is based on the general equation for non-equilibrium reversible-

irreversible coupling (GENERIC) framework [56, 134, 135]. Previously developed

GENERIC-based formulations of nonlinear thermo-elastodynamics rely on the en-

tropy density as the thermodynamical state variable (see e.g. [143, 144, 89, 90, 36]).

In these works, EM consistent integrators have been successfully implemented. The

main drawback of the entropy form is that the absolute temperature is preferred as

the thermodynamical state variable in terms of material modeling [69, 142, 105, 122]

because it can be measured directly. A Legendre transformation would be necessary

to gain entropy-based thermodynamical potentials, which may involve a Newton pro-

cedure when the expression for the temperature can not be inverted analytically, but

rather would need to be performed at each Gauss point. Furthermore, temperature

Dirichlet boundary conditions cannot be applied directly, leading to the introduction
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of Lagrange multipliers [89, 90], extending the system of equations to be solved. We

therefore rephrase the energy balance into temperature form to be able to use the

absolute temperature as the state variable [36] using the polyconvexity-based frame-

work. In the semi-discrete setting, [36] makes use of the discrete derivative in the

sense of [52] to construct EM integrators resulting in a complex algebraic formulation

and implementation. In contrast, we present an algorithmic stress formula developed

within the polyconvexity-based framework that avoids the use of the discrete deriva-

tive for the presented material model and instead uses an energy-conserving formula

introduced in [55], which results in a remarkably simple form. In addition, we show

that the algorithm presented herein is numerically stable for different types of ini-

tial and boundary conditions and correctly reproduces the physical behavior of the

thermo-mechanical model.

Non-linear electro-elastodynamics

Another objective is to derive an EM consistent scheme tailor-made for non-linear

electro-elastodynamics to model the transient behavior of Electro Active Polymers

(EAPs). EAPs [137, 138, 139, 87] represent an important family of smart materials,

where dielectric elastomers and piezoelectric polymers are some of their most iconic

integrants. Dielectric elastomers are very well known for their outstanding actuation

capabilities and low stiffness properties, which makes them ideal for their use as soft

robots [127]. For instance, electrically induced area expansions of over 380% on di-

electric elastomer thin films placed on the verge of snap-through configurations have

been reported in [104]. Other applications for dielectric elastomers include Braille

displays, deformable lenses, haptic devices and energy generators, to name but a few

[33]. Piezoelectric polymers have similar dielectric properties to dielectric elastomers,

but, in contrast, have much larger stiffness. As a result, piezoelectric polymers can-

not, in principle, exhibit large, electrically induced deformations. Instead, they can be

used as moderately deformable actuators. Other important types of applications for

these materials include tactile sensors, energy harvesters, acoustic transducers, and

inertial sensors [127, 33]. The variational formulation of the governing equations of

these materials is well established. In the most standard formulation, displacements

and the scalar electric potential [165, 166, 167, 76, 163, 42, 148] are modelled as the un-

known fields. In this formulation, the constitutive information is encapsulated in the

Helmholtz energy functional via its invariant-based representation, depending upon

kinematic strain measures and the electric field [32, 31]. However, for more complex
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constitutive models than that of an ideal dielectric elastomer, the saddle point nature

of the Helmholtz functional (convex with respect to the deformation gradient tensor

and concave with respect to the electric field in the small strain/small electric field

regime), makes it impossible to define a priori constitutive models that satisfy the

ellipticity condition [108, 151, 150] in general. This is a necessary condition that en-

sures the well-posedness of the problem. Motivated by the possible loss of ellipticity

of the Helmholtz functional, Gil and Ortigosa [47, 129, 128] advocated for the use

of the internal energy functional for the definition of constitutive models in nonlin-

ear electro-mechanics. In essence, the authors postulated a definition of the internal

energy convex with respect to an extended set of arguments and proved that this

definition satisfies the ellipticity condition unconditionally.

1.2 Organization of the work

The outline of this thesis is as follows:

Chapter 2: This chapter provides a summary of classical continuum mechanics as

a basis for the present work. In Sec. 2.1 we introduce the tensor cross product of

second-order tensors along with further algebraic relationships needed. Kinematic

relations and the governing equations for finite strain elasticity, focusing on hypere-

lastic materials with polyconvex stored energy functions, are outlined in Sec. 2.2.

Chapter 3: A new approach to the design of EM consistent algorithms is proposed

in this chapter. In Sec. 3.1 the newly proposed mixed variational formulation is pre-

sented and subsequently extended to the dynamic regime. The structure-preserving

discretization in time and the semi-discrete balance laws of the mixed variational

formulation are then dealt with in Sec. 3.2. The resulting semi-discrete variational

formulation is further discretized in space in Sec. 3.3. The results of numerical inves-

tigations are then presented in Sec. 3.4.

Chapter 4: In this chapter we propose an EM consistent time stepping scheme where

the stress response is defined in its eigenvalue representation. In Sec. 4.1 the eigen-

value representation of symmetric second-order tensors is outlined. Moreover, the
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spectral decomposition and the multiplicative decomposition of the right Cauchy-

Green strain tensor are introduced. Sec. 4.2 deals with hyperelastic material mod-

els with polyconvex stored energy functions using principal stretches. In Sec. 4.3 a

displacement-based and a mixed variational formulation for elasto-statics are intro-

duced and subsequently extended to the dynamic regime. In Sec. 4.4 we deal with the

structure-preserving discretization in time of the underlying variational formulation

and investigate the semi-discrete balance laws. The semi-discrete variational formu-

lation is then discretized in space in Sec. 4.5 by using mixed finite elements. Finally,

representative numerical examples are presented in Sec. 4.6.

Chapter 5: In this chapter we provide an EM consistent time stepping scheme for

thermo elastodynamics. The equations of classical continuum thermo-elastodynamics

are briefly summarized in Sec. 5.1. The polyconvexity-based formulation of the

Helmholtz free-energy is introduced in Sec. 5.2. In Sec. 5.3 the weak form of the

thermo-mechanically coupled problem at hand is deduced, where the temperature-

based framework is employed. Furthermore, the strong form of the newly proposed

polyconvexity-based framework is compared with the classical formulation. In addi-

tion, balance laws are investigated for the new framework. In Sec. 5.4 an EM consis-

tent time-stepping scheme is newly proposed, where the balance laws for the semi-

discrete system are demonstrated. The semi-discrete system is discretized in space in

Sec. 5.5 by using finite elements. Eventually, representative numerical examples are

outlined in Sec. 5.6.

Chapter 6: A new EM consistent time-stepping scheme for reversible electro-elasto-

dynamics is proposed in this chapter. The governing equations in nonlinear electro-

elastodynamics are presented in Sec. 6.1. The concept of multi-variable convexity and

its importance from a material stability standpoint is presented in Sec. 6.2. Sec. 6.3

starts with a three-field mixed formulation in the context of static electromechanics.

Its extension to electro-elastodynamics is then carried out. After derivation of the

stationary conditions, Sec. 6.4 introduces a new EM time-stepping scheme for electro-

elastodynamics. Sec. 6.5 briefly describes the finite element implementation of the

new time integrator scheme and Section 6.6 presents some numerical examples in

order to validate the conservation properties and robustness of the new scheme.

Chapter 7: Finally, the discussed topics are briefly summarized, conclusions are

drawn, and an outlook on further research will be given in this chapter.
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2 Continuum mechanics
1

In this chapter we introduce the tensor cross product of second-order tensors along

with further algebraic relationships needed in the sequel. Moreover, a summary

of large strain solid mechanics focusing on hyperelastic materials with polyconvex

stored energy function is given.

2.1 Cofactor and tensor cross product

In this section we introduce the cross product of two second-order tensors and provide

a summary of important algebraic relations needed in the sequel. The present work

deals with continuum bodies occupying three-dimensional Euclidean space. Vectors

are typically denoted by lower case bold-face letters such as a ∈ R3, with components

ai relative to a Cartesian coordinate frame. Second-order tensors are typically denoted

by upper case bold-face letters such as A, with associated Cartesian components Aij =

(A)ij, (1 ≤ i, j ≤ 3). The cofactor cof(A) of a second-order tensor A is given by (see,

for example, [35, Ch. 1])

(cofA)ij =
1

2
εimn ε jpq Amp Anq . (2.1)

Here, εijk denotes the permutation symbol and the summation convention applies to

pairs of repeated indices. The determinant det(A) can now be written in the form

det(A) =
1

3
(cofA)ij Aij . (2.2)

1 This chapter is based on [23].
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The last equation directly gives rise to the well-known relationship

det(A)A−T = cof(A) , (2.3)

provided that A is invertible. Moreover, (2.1) directly leads to the familiar relation-

ship

cof(A) (a × b) = (Aa)× (Ab) , (2.4)

where the cross product of two vectors a,b ∈ R3 is given by

(a × b)i = εijk aj bk . (2.5)

Scalar multiplication of (2.4) by the vector Ac and taking into account (2.3) leads to

the expression

det(A) =

(
(Aa)× (Ab)

)
· (Ac)

(a × b) · c
. (2.6)

Similarly, it is straightforward to show that the following relations hold:

(cofA)T = cof(AT) ,

cof(AB) = cof(A) cof(B) .
(2.7)

Next, the cross product of two second-order tensors A and B is introduced as (see

also [27])

(A B)ij = εiαβ ε jab Aαa Bβb . (2.8)

An equivalent definition of the tensor cross product is given by (see [38] or [39, Ap-

pendix B 4.9.3])

(A B) (a × b) = (Aa)× (Bb)− (Ab)× (Ba), ∀ a, b ∈ R
3 . (2.9)

Now it is straightforward to rewrite cof(A) and det(A) introduced in (2.1) and (2.2),

respectively, by using the tensor cross product:

cof(A) =
1

2
(A A) ,

det(A) =
1

6
(A A) : A .

(2.10)

In the last equation the scalar product of two second-order tensors is given by

A : B = tr(ATB) = Aij Bij . (2.11)
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Next we summarize some important relations involving the tensor cross product that

will be needed in the sequel:

A B = B A ,

(A B)T = AT BT ,

(A B) : C = (A C) : B = (B C) : A ,

(A B)(C D) = (AC) (BD) + (BC) (AD) ,

A (B + C) = A B + A C ,

A I = tr(A)I − AT ,

I I = 2I ,

(2.12)

where I ∈ R3×3 is the unit tensor of second-order. For the sake of completeness, the

above relations are verified in Appendix A.1.

2.2 Kinematics

e1

e2

e3

B0B0

dV

NdA

dX

X

J

H

F

ϕ(X)

BB

dv

nda

dx

x

Figure 2.1: Sketch of the reference configuration B0 and the deformed configuration B of a continuum

body

Consider a deformable body with reference configuration B0 ⊂ R3 and sufficiently

smooth boundary ∂B0 as depicted in Fig. 2.1. The deformation map ϕ : B0 →
R3 maps material points X ∈ B0 to their placement x = ϕ(X) in the deformed

configuration B = ϕ(B0). Assuming that on a portion ∂Bϕ
0 of the boundary ∂B0

11



2 Continuum mechanics

the deformations are prescribed by ϕ̄ : ∂Bϕ
0 → R3, the configuration space of the

deformable body is defined by

Q = {ϕ : B0 → R
3 | det(F) > 0, ϕ = ϕ̄∀X ∈ ∂Bϕ

0 } . (2.13)

The deformation gradient is a second-order tensor field F : B0 → R3×3 defined by

F = ∂Xϕ . (2.14)

The deformation gradient maps infinitesimal vectors dX based at X ∈ B0 to the

corresponding infinitesimal vectors dx at x = ϕ(X) in the deformed configuration

dx = F dX . (2.15)

Let two linearly independent infinitesimal vectors dX (1) and dX (2) span an infinites-

imal oriented area element located at X ∈ B0 such that the relation

N dA = dX (1) × dX (2) , (2.16)

holds, where N is a unit normal vector at X ∈ B0. The corresponding infinitesimal

oriented area element at x = ϕ in the deformed configuration is given by

n da = dx(1) × dx(2) , (2.17)

where n is a unit normal vector at x = ϕ. Making use of (2.15), (2.17) can be recast in

the form
n da =

(
F dX (1)

)
×

(
F dX (2)

)

=
1

2
(F F)

(
dX (1) × dX(2)

)

= cof(F) N dA ,

(2.18)

for x = ϕ. In the above equation use has been made of (2.9). Relationship (2.18) is

often called Nanson’s formula [126]. Next consider three non-coplanar infinitesimal

vectors dX (1), dX (2), dX(3) at X ∈ B0, which form a positively oriented triad (i.e.

(dX (1) × dX (2)) · dX (3)
> 0). Then the infinitesimal volume element formed by these

vectors at X ∈ B0 is given by

dV =
(
dX (1) × dX (2)

)
· dX (3) . (2.19)

The corresponding infinitesimal volume element in the deformed configuration at

x = ϕ(X) is given by

dv =
(
dx(1) × dx(2)

)
· dx(3)

=
(
F dX (1) × F dX (2)

)
· F dX (3)

= det(F)
(
dX(1) × dX (2)

)
· dX(3)

= det(F)dV .

(2.20)
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In the last equation use has been made of (2.6). The fundamental kinematic relation-

ships outlined above are also illustrated in Fig. 2.1.

2.2.1 Polyconvex large strain elasticity

We focus on hyperelastic material behavior with polyconvex stored energy functions

of the form

ˆ̃Ψ(F) = Ψ̃(F , cof(F), det(F)) , (2.21)

where Ψ̃ : R3×3 × R3×3 × R+ → R is a convex function. Using the notion of a tensor

cross product introduced in Sec. 2.1, cof(F) and det(F) are recast in the form

H = cof(F) =
1

2
F F ,

J = det(F) =
1

6

(
F F

)
: F ,

(2.22)

where H : B0 → R3×3 and J : B0 → R+. In what follows we will use the expression

ˆ̃Ψ(F) = Ψ̃(F, H, J) , (2.23)

for the polyconvex stored energy function. Using (2.23), the total strain energy of the

elastic body under consideration can be written as

Π̂int(ϕ) =
∫

B0

Ψ̃(F, H, J)dV . (2.24)

For simplicity we assume that dead loads are acting on the body with associated

potential energy of the form

Πext
m (ϕ) = −

∫

B0

B̄ ·ϕdV −
∫

∂BP
0

T̄ ·ϕdA . (2.25)

Here B̄ : B0 → R3 are prescribed body forces and T̄ : ∂BP
0 → R3 are prescribed

stresses on ∂BP
0 ⊂ ∂B0. As usual, we have the standard relationships ∂B0 = ∂BP

0 ∪ ∂Bϕ
0

and ∂BP
0 ∩ ∂Bϕ

0 = ∅. Now the total potential energy of the mechanical system at hand

is given by

Π̂(ϕ) = Π̂int(ϕ) + Πext
m (ϕ) . (2.26)
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2 Continuum mechanics

The principle of stationary potential energy (see, for example, [170]) requires the

satisfaction of the stationary condition

DΠ̂[δϕ] =
d

dε

∣∣∣∣
ε=0

Π̂(ϕε) = 0 , (2.27)

where

ϕε = ϕ+ ε δϕ , (2.28)

and δϕ ∈ V denote admissible material variations of ϕ ∈ Q defined by the set

V = {δϕ : B0 → R
3 | δϕ = 0 for X ∈ ∂Bϕ

0 } . (2.29)

Now condition (2.27) along with (2.26) and (2.24) give rise to

DΠ̂int[δϕ] =
∫

B0

d

dε

∣∣∣∣
ε=0

Ψ̃(F ε, Hε, Jε)dV

=
∫

B0

(
∂FΨ̃(F, H, J) : DF[δϕ] + ∂HΨ̃(F , H, J) : DH[δϕ] (2.30)

+ ∂JΨ̃(F , H, J) DJ[δϕ]
)

dV ,

where

DF[δϕ] =
d

dε

∣∣∣∣
ε=0

Fε = ∂Xδϕ ,

DH[δϕ] =
d

dε

∣∣∣∣
ε=0

Hε = F DF[δϕ] ,

DJ[δϕ] =
d

dε

∣∣∣∣
ε=0

Jε =
1

2

(
F F

)
: DF[δϕ] .

(2.31)

Consequently,

DΠ̂int[δϕ] =
∫

B0

DF[δϕ] :
(

∂FΨ̃ + ∂HΨ̃ F + ∂JΨ̃ H
)

dV , (2.32)

and the stationary condition (2.27) yields the variational equation

DΠ̂[δϕ] =
∫

B0

DF[δϕ] : P dV + DΠext
m [δϕ] = 0 , (2.33)

which corresponds to the principle of virtual work for elastostatics. In the last equa-

tion

P = ∂FΨ̃ + ∂HΨ̃ F + ∂JΨ̃ H , (2.34)

is the first Piola-Kirchhoff stress-tensor.
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2.2 Kinematics

2.2.2 Frame-indifferent material formulation

The axiom of frame-indifference requires that the stored energy function be invariant

under superposed rigid motions of the form

ϕ# = Qϕ+ c , (2.35)

for arbitrary c ∈ R3 and Q ∈ SO(3), the special orthogonal group. The arguments

{F, H, J} of the stored energy function (2.23) transform under (2.35) as follows:

F# = Q F ,

H# =
1

2
F# F#

=
1

2
(Q F) (Q F)

=
1

2
(Q Q)

1

2
(F F) .

(2.36)

In the last equation use has been made of relation (2.12)4 (for A = B = Q and

C = D = F). Moreover, since det(Q) = 1 and QT = Q−1 for Q ∈ SO(3),

1

2
Q Q = cof(Q) = det(Q) Q−T = Q . (2.37)

Accordingly, we obtain

H# = Q H . (2.38)

Furthermore,

J# = det(F#) = det(Q F) = det(Q)det(F) = det(F) = J . (2.39)

A frame-indifferent stored energy function needs to satisfy the condition ˆ̃Ψ(F#) =
ˆ̃Ψ(F), or

Ψ̃(F#, H#, J#) = Ψ̃(F, H, J) . (2.40)

To fulfill that condition the right Cauchy-Green deformation tensor C : B0 → R3×3 is

introduced as

C = FT F . (2.41)

Additionally, we introduce

G = cof(C) = HT H =
1

2
C C , (2.42)
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2 Continuum mechanics

where G : B0 → R3×3 is the co-factor of C. Furthermore, the determinant of C is

introduced as

C = det(C) = J2 =
1

6
(C C) : C , (2.43)

where C : B0 → R+. Both C and G are symmetric second-order tensors. It can be

easily seen that

C# = (F#)T F# = (Q F)T Q F

= FT QT Q F = FT F

= C ,

(2.44)

and

G# =
1

2
(F#)T F# (F#)T F#

=
1

2
(Q F)TQ F (Q F)TQ F

=
1

2
FT QT Q F FT QT Q F

= G .

(2.45)

Moreover, for C we obtain

C# = det((F#)T F#) = det((Q F)T Q F)

= det(FT QT Q F) = C .
(2.46)

Consequently, a frame-indifferent stored energy function resulting from the function

Ψ̃(F, H, J) is given by

ˆ̃Ψ(F) = Ψ̂(C) = Ψ(C, G, C) . (2.47)

Example (Mooney-Rivlin material): The compressible Mooney-Rivlin material is

based on a polyconvex stored energy function with

Ψ̃(F , H, J) = Ψ̃mech,1(F , H) + Ψ̃mech,2(J) , (2.48)

where

Ψ̃mech,1(F , H) = a (F : F − 3) + b (H : H − 3) , (2.49)

and

Ψ̃mech,2(J) = Γ1(J) . (2.50)

Here a > 0, b > 0 and Γ1 : ] 0,+∞ [ → R is a suitable convex function. For example,

Γ1(δ) = cδ2 − d log δ, c > 0, d > 0. The stored energy function (2.48) can be recast in

the form

Ψ(C, G, C) = Ψmech,1(C, G) + Ψmech,2(C) , (2.51)
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2.2 Kinematics

where

Ψmech,1(C, G) = a (tr C − 3) + b (tr G − 3) , (2.52)

and

Ψmech,2(C) = Γ1(C1/2) . (2.53)

We may now rewrite the internal energy functional (2.24) by using the stored energy

function Ψ leading to

Π̂int(ϕ) =
∫

B0

Ψ(C, G, C)dV . (2.54)

Repeating the calculation of the stationary condition within the framework of the

principle of stationary potential energy, we obtain

DΠ̂int[δϕ] =
d

dε

∣∣∣∣
ε=0

Π̂int(ϕε)

=
∫

B0

d

dε

∣∣∣∣
ε=0

Ψ(Cε, Gε, Cε)dV

=
∫

B0

(
∂CΨ : DC[δϕ] + ∂GΨ : DG[δϕ] + ∂CΨ DC[δϕ]

)
dV ,

(2.55)

where

DC[δϕ] =
d

dε

∣∣∣∣
ε=0

Cε =
d

dε

∣∣∣∣
ε=0

(F ε)
T Fε

= (DF[δϕ])T F + FT DF[δϕ] .

(2.56)

Moreover,

DG[δϕ] =
d

dε

∣∣∣∣
ε=0

Gε =
d

dε

∣∣∣∣
ε=0

1

2
Cε Cε

=
1

2
(DC[δϕ] C + C DC[δϕ])

= C DC[δϕ] .

(2.57)

Note that in the last equation use has been made of relation (2.12)1. We further get

DC[δϕ] =
d

dε

∣∣∣∣
ε=0

Cε =
d

dε

∣∣∣∣
ε=0

det(Cε)

= cof(C) :
d

dε

∣∣∣∣
ε=0

Cε

= G : DC[δϕ] .

(2.58)
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2 Continuum mechanics

Consequently, we obtain

DΠ̂int[δϕ] =
∫

B0

(
∂CΨ : DC[δϕ] + ∂GΨ : (C DC[δϕ]) + ∂CΨ G : DC[δϕ]

)
dV

=
∫

B0

1

2
S : DC[δϕ]dV .

(2.59)

In the last equation the second Piola-Kirchhoff stress tensor

S = 2
(
∂CΨ + ∂GΨ C + ∂CΨ G

)
, (2.60)

has been introduced. In this connection, relation (2.12)3 has been used. Note that

expression (2.60) yields a symmetric tensor. In particular, the symmetry of (2.60)

follows from the symmetry of C and G along with property (2.12)2. Eventually, the

principle of stationary potential energy yields

DΠ̂[δϕ] =
∫

B0

DF[δϕ] : (F S)dV + DΠext
m [δϕ] = 0 . (2.61)

Note that in the last equation the symmetry of the second Piola-Kirchhoff stress tensor

has been taken into account.

18



3 A mixed variational framework for

the design of EM schemes
1

In this chapter, a new approach to the design of EM consistent algorithms for non-

linear elastodynamics is proposed. The method is inspired by the structure of poly-

convex energy density functions and benefits from a tensor cross product for second-

order tensors as introduced in Sec. 2.1. The structure-preserving discretization in

time of the mixed variational formulation yields an EM consistent semi-discrete for-

mulation. In addition, we introduce a new form of the algorithmic stress formula

in the special case of a purely displacement-based formulation. Finally, several nu-

merical examples are presented to evaluate the performance of the newly developed

schemes.

3.1 Variational formulation

In this section we present a new mixed variational formulation that lays the foun-

dation for the energy-momentum consistent discretization approach developed in the

sequel. In our approach we introduce the fields C(X), G(X) and C(X) as independent

quantities. See (2.41), (2.42) and (2.43) for their deformation depending counterparts.

1 This chapter is based on [23].
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3 A mixed variational framework for the design of EM schemes

In particular, consider the cascade of kinematic relationships

C = C ,

G =
1

2
C C ,

C =
1

3
C : G .

(3.1)

The above relations can be viewed as kinematic constraints that link the strain-type

quantities C ∈ VC , G ∈ VG and C ∈ VC to the deformation ϕ ∈ Q. In this connec-

tion,

VC = {C : B0 → S | for Cij ∈ L2(B0) } ,

VG = {G : B0 → S | for Gij ∈ L2(B0) } ,

VC = {C : B0 → R | for C ∈ L2(B0) } .

(3.2)

Here, L2 denotes the space of square integrable functions and S is the vector space

of symmetric second-order tensors. Note that the symmetry condition implies that

dim(S) = 6. Correspondingly, the constraints (3.1) comprise 13 independent algebraic

equations. The newly proposed variational formulation relies on the following 7-field

functional of the Hu-Washizu type:

Π(ϕ, Ξ, Λ) =
∫

B0

(
Ψ(C,G, C)+Λ

C : (C − C)

+Λ
G :

(1

2
C C − G

)

+ΛC
(1

3
C : G − C

))
dV + Πext

m (ϕ) .

(3.3)

For convenience of notation the following abbreviations have been used on the left-

hand side of the last equation:

Ξ = {C,G, C} ,

Λ = {Λ
C , Λ

G , ΛC} .
(3.4)

As can be observed from the variational functional (3.3), the three kinematic con-

straints (3.1) are enforced by means of Lagrange multipliers Λ
C ∈ VC , Λ

G ∈ VG , and

ΛC ∈ VC . Imposing the stationary conditions on the functional (3.3) we obtain the
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3.1 Variational formulation

Euler-Lagrange equations

DϕΠ(ϕ, Ξ, Λ)[δϕ] =
∫

B0

Λ
C : DC[δϕ]dV + DΠext

m [δϕ] = 0 ,

DCΠ(ϕ, Ξ, Λ)[δC] =
∫

B0

δC :
(

∂CΨ − Λ
C + Λ

G C +
1

3
ΛC G

)
dV = 0 ,

DGΠ(ϕ, Ξ, Λ)[δG ] =
∫

B0

δG :
(

∂GΨ − Λ
G +

1

3
ΛC C

)
dV = 0 ,

DCΠ(ϕ, Ξ, Λ) [δC] =
∫

B0

δC
(
∂CΨ − ΛC)dV = 0 ,

D
ΛCΠ(ϕ, Ξ, Λ)[δΛ

C ] =
∫

B0

δΛ
C :

(
C − C

)
dV = 0 ,

D
ΛGΠ(ϕ, Ξ, Λ)[δΛ

G ] =
∫

B0

δΛ
G :

(1

2
C C − G

)
dV = 0 ,

DΛCΠ(ϕ, Ξ, Λ)[δΛC ] =
∫

B0

δΛC
(1

3
G : C − C

)
dV = 0 .

(3.5)

The above equations have to hold for any δϕ ∈ V and arbitrary δC ∈ VC , δG ∈ VG ,

δC ∈ VC and δΛ
C ∈ VC , δΛ

G ∈ VG , δΛC ∈ VC . Note that (3.5)5−7 recover the

kinematic constraints (3.1) while (3.5)2−4 yield the Lagrange multipliers

ΛC = ∂CΨ ,

Λ
G = ∂GΨ +

1

3
ΛC C ,

Λ
C = ∂CΨ + Λ

G C +
1

3
ΛC G .

(3.6)

Inserting these relations into (3.5)1, we recover the principle of virtual work in the

form (2.61).

Remark 3.1. The reduction of the mixed formulation (3.5) to the original (‘displacement-

based’) form (2.61) can also be achieved by eliminating the Lagrange multipliers via the fol-

lowing consistency conditions emanating from the constraints (3.1):

δC = DC[δϕ] ,

δG = C δC ,

δC =
1

3

(
C : δG + G : δC

)
.

(3.7)
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3 A mixed variational framework for the design of EM schemes

Remark 3.2. The alternative mixed 7-field variational formulation in [26, Sec. 4.2] is based

on the kinematic constraints
F = F ,

H =
1

2
F F ,

J = det(F) ,

(3.8)

along with the stored energy in the form Ψ̂(F ,H,J ). Yet another mixed 5-field formulation

has been proposed in [149] based on the kinematic constraints

G = cof(FT F) ,

J = det(F) ,
(3.9)

and the stored energy in the form Ψ(C,G,J 2). It can be observed from (3.8) as well as (3.9)

that the new strain-type variables are directly linked to the deformation ϕ ∈ Q. This is in

sharp contrast to the cascade form of the constraints (3.1) used in the present work.

3.1.1 Extension to elastodynamics

Next, we deal with the extension of the mixed formulation introduced above to the

dynamic regime. Let I = [0, T] where I ⊂ R+ is the time interval of interest. The

motion of the continuum body is described by ϕ : B0 × I → R3, where x = ϕ :=

ϕ(X , t) characterizes the position of the material point X ∈ B0 at time t ∈ [0, T]. The

material velocity field at time t is denoted by V : B0 × I → R
3 and defined by

V = ϕ̇ , (3.10)

where the superposed dot denotes time differentiation. Upon introduction of the

reference mass density field ρ0 : B0 → R+, the mixed formulation governing the

motion of the continuum body is given by

∫

B0

δV · (ϕ̇− V) ρ0 dV = 0 ,

∫

B0

(
δϕ · ρ0 V̇ + Λ

C : DC[δϕ]
)

dV + DΠext
m [δϕ] = 0 ,

(3.11)
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3.1 Variational formulation

which has to be satisfied for arbitrary δϕ, δV ∈ V , together with

∫

B0

δC :
(

∂CΨ − Λ
C + Λ

G C +
1

3
ΛC G

)
dV = 0 ,

∫

B0

δG :
(

∂GΨ − Λ
G +

1

3
ΛC C

)
dV = 0 ,

∫

B0

δC
(
∂CΨ − ΛC)dV = 0 ,

(3.12)

for arbitrary δC ∈ VC , δG ∈ VG , δC ∈ VC , and

∫

B0

δΛ
C :

(
C − C

)
dV = 0 ,

∫

B0

δΛ
G :

(1

2
C C − G

)
dV = 0 ,

∫

B0

δΛC
(1

3
G : C − C

)
dV = 0 ,

(3.13)

for arbitrary δΛ
C ∈ VC , δΛ

G ∈ VG , and δΛC ∈ VC . The above variational equations

have to be supplemented by prescribed initial values ϕ0 ∈ Q and V0 ∈ V at time t = 0.

Consistent initial values for the mixed strain fields, {C0,G0, C0}, can be calculated by

employing the kinematic constraints (3.1).

Remark 3.3. The kinematic constraints (3.1) are enforced by the variational equations (3.13).

Differentiation of (3.13) with respect to time yields the consistency conditions

∫

B0

δΛ
C :

(
Ċ − Ċ

)
dV = 0 ,

∫

B0

δΛ
G :

(
C Ċ − Ġ

)
dV = 0 ,

∫

B0

δΛC
(1

3
C : Ġ +

1

3
G : Ċ − Ċ

)
dV = 0 .

(3.14)

The above equations have to hold for arbitrary δΛ
C ∈ VC , δΛ

G ∈ VG , δΛC ∈ VC , and can

be viewed as constraints on the velocity level corresponding to the original constraints (3.13)

on the position level.
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3 A mixed variational framework for the design of EM schemes

Remark 3.4. In the continuous setting the variational equation (3.11)1 implies ϕ̇ = V while

the consistency conditions in (3.14) imply

Ċ = DVT F + FT DV ,

Ġ = C Ċ ,

Ċ =
1

3

(
C : Ġ + G : Ċ

)
.

(3.15)

As mentioned in Remark 3.2, an alternative mixed formulation relies on the introduction of the

variables {F , H, J} through the kinematic constraints (3.8). Differentiating (3.8) with respect

to time yields the associated consistency conditions (or constraints on the velocity level)

Ḟ = DV ,

Ḣ = F DV ,

J̇ =
1

2

(
F F

)
: DV .

(3.16)

These equations can be recast in the so-called conservation form, see [40] and [26] for more

details.

Remark 3.5. The mixed variational formulation developed above can be linked to an extended

version of Hamilton’s principle. In particular, consider the extended 8-field action functional

given by

S(ϕ, V , Ξ, Λ) =

T∫

0

( ∫

B0

(
ϕ̇− 1

2
V
)
· V ρ0 dV − Π(ϕ, Ξ, Λ)dV

)
dt . (3.17)

The condition for stationarity of the above functional yields Euler-Lagrange equations that

correspond to the variational equations (3.11)–(3.13) (see also [15] for similar considerations

in the framework of a standard Hu-Washizu type functional).

3.1.2 Balance laws

The dynamics of the hyperelastic body under consideration falls into the class of

Hamiltonian systems with symmetry (see, for example, [108]). In the present work we

focus on the corresponding balance laws for linear momentum, angular momentum

and energy.
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3.1 Variational formulation

3.1.2.1 Balance of linear momentum

For verification of the balance of total linear momentum we assume that δϕ = ζ and

δV = 0 are admissible variations, where ζ ∈ R3 is arbitrary but constant. From (3.11)

we get

ζ ·
( d

dt
L − Fext

)
= 0 , (3.18)

where the total linear momentum is defined by

L =
∫

B0

ρ0 V dV , (3.19)

and the total external mechanical load is given by

Fext =
∫

B0

B̄ dV +
∫

∂BP
0

T̄ dA , (3.20)

containing bulk and boundary contributions. Therefore, for vanishing external me-

chanical loads the total linear momentum is a constant of motion of the continuous

system.

3.1.2.2 Balance of angular momentum

To verify the balance law for angular momentum we assume that δϕ = ζ ×ϕ and

δV = ζ × ϕ̇ are admissible variations, where ζ ∈ R3 is constant. The specific choice

of δϕ leads to the relationship DF[ζ ×ϕ] = ζ̂ F, where ζ̂ is a skew-symmetric tensor

such that ζ̂ a = ζ × a for any a ∈ R
3. From (3.11) we get

∫

B0

(ζ × ϕ̇) · V ρ0 dV = 0 ,

∫

B0

(
ζ ×ϕ · ρ0 V̇ + Λ

C : DC[ζ ×ϕ]
)

dV + DΠext[ζ ×ϕ] = 0,
(3.21)

where ζ̂ ϕ̇ · ϕ̇ρ0 = 0 has been taken into account. In addition, the admissible choice of

the variation in conjunction with (2.56) leads to

DC[ζ ×ϕ] =
1

2

(
sym(FT ζ̂T F

)
+ skw

(
FT ζ̂T F

))
, (3.22)
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3 A mixed variational framework for the design of EM schemes

where

sym
(

FT ζ̂T F
)
=

1

2

(
FT

(
ζ̂T + ζ̂

)
F
)
= 0 ,

skw
(

FT ζ̂T F
)
=

1

2

(
FT

(
ζ̂T − ζ̂

)
F
)

.

(3.23)

Accordingly, the inner bracket term in (3.21)2 vanishes due to the symmetry of ΛC

and the double contraction with the skew symmetric tensor. Next we introduce the

total angular momentum with respect to the origin of the inertial frame

J =
∫

B0

ϕ× V ρ0 dV , (3.24)

and the total torque about a corresponding axis ζ · Mext = −DΠext
m [ϕ× ζ] exerted by

the external (dead) loads on the elastic body, relative to the origin of the inertial frame

given as

ζ · Mext = ζ ·
(∫

B0

ϕ× B̄ dV +
∫

∂BP
0

ϕ× T̄ dV
)

. (3.25)

Eventually, summation of (3.21)1 and (3.21)2 leads to the balance of angular momen-

tum as

ζ ·
( d

dt
J − Mext

)
= 0 . (3.26)

Equation (3.26) shows that components of the angular momentum, Jζ = ζ · J are

conserved along solutions of equations of motions when the external torque about

the corresponding axes, ζ · Mext vanishes.

3.1.2.3 Balance of energy

We start from the mixed variational equations (3.11)-(3.13) and choose admissible vari-

ations of the form δϕ = ϕ̇ ∈ V , δV = V̇ ∈ V along with {δC, δG, δC} = {Ċ, Ġ, Ċ} ∈
VC ×VG ×VC and {δΛ

C , δΛ
G , δΛC} = {Λ

C , Λ
G , ΛC} ∈ VC ×VG ×VC . Accordingly,

(3.11)1 yields

∫

B0

ϕ̇ · V̇ ρ0 dV =
∫

B0

V · V̇ ρ0 dV =
d

dt

(1

2

∫

B0

V · V ρ0 dV
)
= Ṫ , (3.27)

where the kinetic energy of the continuum body is defined by

T =
1

2

∫

B0

V · V ρ0 dV . (3.28)
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3.2 Discretization in time

We further consider the time derivative of the total strain energy (2.24) leading to

d

dt
Πint =

d

dt

∫

B0

Ψ(C ,G, C)dV

=
∫

B0

(
∂CΨ : Ċ + ∂GΨ : Ġ + ∂CΨ Ċ

)
dV

=
∫

B0

(
Λ

C : Ċ − Λ
G : (C Ċ − Ġ)− ΛC

(1

3
C : Ġ +

1

3
G : Ċ − Ċ

))
dV

=
∫

B0

Λ
C : Ċ dV .

(3.29)

Here, use has been made of (3.12) and the consistency conditions (3.14). Substitut-

ing (3.27) and (3.29) into (3.11)2 leads to the balance of energy along solutions of

equations of motions in the form

d

dt

(
T + Πint

)
= Pext . (3.30)

On the right-hand side of the last equation,

Pext =
∫

B0

ϕ̇ · B̄ dV +
∫

∂BP
0

ϕ̇ · T̄ dA = −Πext
m (ϕ̇) , (3.31)

corresponds to the power of the external loads. In the case of dead loads the balance

law (3.30) corresponds to the conservation of the total energy defined by

E = T + Π , (3.32)

where Π = Πint + Πext
m is the total potential energy previously defined in (2.26).

3.2 Discretization in time

In this section we deal with the structure-preserving discretization in time of the

mixed variational formulation presented in the previous section.

We define a partition of the time integration interval I by introducing n-equidistant

subintervals of the form In = [tn, tn+1] with 0 = t0 < t1 < ... < tn = T which

correspond to a time-step size ∆t = |In|. The discrete approximations at times tn and

tn+1 of the continuous variable (•) will be denoted by (•)n and (•)n+1, respectively.
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3 A mixed variational framework for the design of EM schemes

3.2.1 Structure-preserving integration scheme

Assume that the state variables {ϕn, Vn} ∈ Q × V along with consistent strain vari-

ables {Cn,Gn, Cn} are given. Note that this implies that the strain variables {Cn,Gn,

Cn} satisfy the constraints (3.13) at time tn. Now the semi-discrete version of the

variational equations (3.11), (3.12) and (3.13) is introduced as

∫

B0

δV · 1

∆t
(ϕn+1 −ϕn) ρ0 dV =

∫

B0

δV · V n+ 1
2

ρ0 dV ,

∫

B0

δϕ · 1

∆t
ρ0 (V n+1 − V n)dV = −

∫

B0

Λ
C
n+1 : DC[δϕ]|n+ 1

2
dV − DΠext

m [δϕ]|n+ 1
2

,

(3.33)

for arbitrary δϕ, δV ∈ V , together with

∫

B0

δC :
(

DCΨ − Λ
C
n+1 + Λ

G
n+1 Cn+ 1

2
+

1

3
ΛC

n+1 Gn+ 1
2

)
dV = 0 ,

∫

B0

δG :
(

DGΨ − Λ
G
n+1 +

1

3
ΛC

n+1 Cn+ 1
2

)
dV = 0 ,

∫

B0

δC
(
DCΨ − ΛC

n+1

)
dV = 0 ,

(3.34)

for arbitrary δC ∈ VC , δG ∈ VG , and δC ∈ VC , along with

∫

B0

δΛ
C :

(
Cn+1 − Cn+1

)
dV = 0 ,

∫

B0

δΛ
G :

(1

2
Cn+1 Cn+1 − Gn+1

)
dV = 0 ,

∫

B0

δΛC
(1

3
Gn+1 : Cn+1 − Cn+1

)
dV = 0 ,

(3.35)

for arbitrary δΛ
C ∈ VC , δΛ

G ∈ VG , and δΛC ∈ VC . In (3.33) and (3.34),

(•)n+ 1
2
=

1

2

(
(•)n + (•)n+1

)
, (3.36)

denotes the average value of (•) in the time interval [tn, tn+1]. Moreover, the time-

discrete version of (2.56) is given by

DC[δϕ]|n+ 1
2
= (DF[δϕ])T Fn+ 1

2
+ FT

n+ 1
2

DF[δϕ] . (3.37)
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3.2 Discretization in time

Furthermore, in (3.34), {DCΨ, DGΨ, DCΨ} denote time-discrete versions of the partial

derivatives {∂CΨ, ∂GΨ, ∂CΨ}. In particular, we assume that {DCΨ, DGΨ, DCΨ} are

partitioned discrete derivatives in the sense of [51] for the stored energy function

Ψ{C,G, C}. Accordingly, the following relationship is assumed to be satisfied by

definition of the discrete derivatives for the stored energy function:

DCΨ : (Cn+1 − Cn) + DGΨ : (Gn+1 − Gn) + DCΨ (Cn+1 − Cn)

= Ψ(Cn+1,Gn+1, Cn+1)− Ψ(Cn,Gn, Cn) .
(3.38)

Note that the relationship in (3.38) is known as the so-called directionality property

which is a sufficient condition for algorithmic energy conservation (see [145]). See the

examples below for particular expressions of the discrete derivatives.

Example (Mooney-Rivlin material cont’d): To illustrate the calculation of the dis-

crete derivatives {DCΨ, DGΨ, DCΨ} for the stored energy function we again consider

the example of the compressible Mooney-Rivlin material (cf. example in Sec. 2.2.2).

With regard to (2.51) the stored energy function is given by

Ψ(C,G, C) = a (trC − 3) + b (trG − 3) + f (C) , (3.39)

where f (C) = Γ1(C1/2). The discrete derivatives assume the simple form

DCΨ = ∂CΨ = a I ,

DGΨ = ∂GΨ = b I ,
(3.40)

along with the Greenspan formula [55]

DCΨ =
f (Cn+1)− f (Cn)

Cn+1 − Cn
. (3.41)

In the limit Cn+1 → Cn, the above formula should be replaced with f ′(Cn+ 1
2
). It can

be easily verified that property (3.38) is satisfied by the above formula.

Example (Transversely isotropic material): The calculation of the discrete deriva-

tives {DCΨ, DGΨ, DCΨ} is further illustrated with a more involved stored energy

function characterizing transversely isotropic material. The specific stored energy

function has been taken from [149]. Accordingly, the stored energy function relies on

an additive decomposition into an isotropic and anisotropic part:

Ψ(C,G, C) = Ψiso(C,G, C) + Ψaniso(C,G, C) . (3.42)
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3 A mixed variational framework for the design of EM schemes

The isotropic part can be viewed as a modification of the Mooney-Rivlin model (3.39)

and is given by

Ψiso(C,G, C) = a

2
(trC)2 +

b

2
(trG)2 − d ln(

√
C) + e1 (Ce2 + C−e2 − 2) , (3.43)

where a > 0, b > 0, d > 0, e1 > 0 and e2 > 2. The anisotropic part of the stored

energy reads

Ψaniso(C,G, C) = g0

gC + 1
(tr(C M))gC+1 +

g0

gG + 1
(tr(G M))gG+1 +

g0

gC
C−gC , (3.44)

where g0 > 0, gC > 0, gG > 0 and gC ≥ 1. The local fiber direction in the undeformed

configuration is characterized by a unit vector a0 ∈ R3 that enters the structural tensor

defined by

M = a0 ⊗ a0 .

The discrete derivatives {DCΨ, DGΨ, DCΨ} are now introduced as

DCΨ = a tr(Cn+ 1
2
) I + GW1

(ζn, ζn+1) M ,

DGΨ = b tr(Gn+ 1
2
) I + GW2

(γn, γn+1) M ,

DCΨ = GW3
(Cn, Cn+1) ,

(3.45)

where the Greenspan formula (3.41) is now written in the form

GW(x, y) =
W(y)− W(x)

y − x
, (3.46)

with a prescribed function W : R → R. In the limit y → x, the above formula should

be replaced with W ′( x+y
2 ). The functions W1(ζ), W2(γ) and W3(C) used in (3.45) are

given by

W1(ζ) =
g0

gC + 1
ζgC+1 , ζ = tr(C M) ,

W2(γ) =
g0

gG + 1
γgG+1 , γ = tr(G M) ,

W3(C) = −d ln(
√
C) + e1 (Ce2 + C−e2 − 2) +

g0

gC
C−gC .

(3.47)

It can be verified by a straightforward calculation that property (3.38) is satisfied by

the discrete derivatives in (3.45).

Next, we show that there exists a time-discrete counterpart of the constraints on veloc-

ity level (3.14). In analogy to the continuous case, the discrete constraints on velocity

level play an important role in the discrete balance laws as will be shown below.
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3.2 Discretization in time

Proposition. Let {Cn,Gn, Cn} be consistent strain variables. Then the semi-discrete

formulation at hand satisfies
∫

B0

δΛ
C :

(
DC[ϕn+1 −ϕn]|n+ 1

2
− (Cn+1 − Cn)

)
dV = 0 ,

∫

B0

δΛ
G :

(
Cn+ 1

2
(Cn+1 − Cn)− (Gn+1 − Gn)

)
dV = 0 ,

∫

B0

δΛC
(1

3
Cn+ 1

2
: (Gn+1 − Gn) +

1

3
Gn+ 1

2
: (Cn+1 − Cn)− (Cn+1 − Cn)

)
dV = 0 .

(3.48)

Proof. Consistent strain variables {Cn,Gn, Cn} satisfy the constraints (3.13) at time

tn. Similarly, (3.35) enforce the constraints (3.13) at time tn+1. Accordingly, the fol-

lowing relations hold:

∫

B0

δΛ
C :

(
Cn+1 − Cn − (Cn+1 − Cn)

)
dV = 0 ,

∫

B0

δΛ
G :

(1

2
Cn+1 Cn+1 −

1

2
Cn Cn − (Gn+1 − Gn)

)
dV = 0 ,

∫

B0

δΛC
(1

3
Gn+1 : Cn+1 −

1

3
Gn : Cn − (Cn+1 − Cn)

)
dV = 0 .

(3.49)

A straightforward calculation shows that the above equations are equivalent to (3.48).

�

3.2.2 Semi-discrete balance laws

Next we show that the semi-discrete formulation at hand inherits the balance laws

from the underlying continuous formulation for any time-step size.

3.2.2.1 Balance of linear momentum

We follow the procedure in Sec. 3.1.2.1 for the verification of the balance of total linear

momentum. Assume that δϕ = ζ and δV = 0 are admissible variations, where ζ ∈ R
3
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3 A mixed variational framework for the design of EM schemes

is arbitrary but constant. Then (3.33) yields

ζ ·
( 1

∆t
(Ln+1 − Ln)− Fext

)
= 0 . (3.50)

The discrete total linear momentum at time-level n and n + 1 is defined by

Ln =
∫

B0

Vn ρ0 dV and Ln+1 =
∫

B0

V n+1 ρ0 dV . (3.51)

Therefore, for vanishing external mechanical loads the total discrete linear momentum

is a constant of motion of the semi-discrete system.

3.2.2.2 Balance of angular momentum

To verify discrete balance of angular momentum we assume that δϕ = ζ ×ϕn+ 1
2

and

δV = ζ × (ϕn+1 −ϕn) are admissible variations. As before, ζ ∈ R
3 is constant. Then

the time-discrete variational formulation (3.33) yields

0 =
∫

B0

ζ × (ϕn+1 −ϕn) · V n+ 1
2

ρ0 dV ,

∫

B0

ζ ×ϕn+ 1
2
· (V n+1 − Vn) ρ0 dV = −

∫

B0

Λ
C : DC[ζ ×ϕn+ 1

2
]|n+ 1

2
dV − DΠext

m [ζ ×ϕn+ 1
2
] .

(3.52)

Similarly to the continuous setting, the first term on the right-hand side of (3.52)2

yields
∫

B0

Λ
C : DC[ζ ×ϕn+ 1

2
]|n+ 1

2
dV =

∫

B0

Λ
C :

(
FT

n+ 1
2
(ζ̂T + ζ̂) Fn+ 1

2

)
dV = 0 , (3.53)

since ζ̂ is skew-symmetric. For the time-discrete angular momentum at time-nodes tn

and tn+1 we have

Jn =
∫

B0

ϕn × Vn ρ0 dV and Jn+1 =
∫

B0

ϕn+1 × V n+1 ρ0 dV . (3.54)

The total torque with respect to the ζ-axis exerted by external loads on the considered

body in the time discrete setting is defined by

ζ · Mext|n+ 1
2
= −DΠext[ζ ×ϕn+ 1

2
] = ζ ·

(∫

B0

ϕn+ 1
2
× B̄ dV +

∫

∂BP
0

ϕn+ 1
2
× T̄ dA

)
. (3.55)

Then subtracting (3.52)1 from (3.52)2 along with (3.53), (3.54) and (3.55) we obtain

ζ ·
( 1

∆t
(Jn+1 − Jn)− Mext|n+ 1

2

)
= 0 , (3.56)

which corresponds to the balance of angular momentum with respect to the ζ-axis.
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3.2 Discretization in time

3.2.2.3 Balance of energy

To this end we proceed along the lines of Sec. 3.1.2.3 and choose admissible variations

of the following form: δϕ = ϕn+1 −ϕn ∈ V , δV = V n+1 − Vn ∈ V , δC = Cn+1 − Cn ∈
VC, δG = Gn+1 − Gn ∈ VG , δC = Cn+1 − Cn ∈ VC , δΛ

C = Λ
C
n+1 ∈ VC , δΛ

G =

Λ
G
n+1 ∈ VG , δΛC = ΛC

n+1 ∈ VC . Accordingly, (3.33)1 yields
∫

B0

(V n+1 − V n) ·
1

∆t
(ϕn+1 −ϕn) ρ0 dV =

∫

B0

(V n+1 − Vn) · Vn+ 1
2

ρ0 dV

=
1

2

∫

B0

(V n+1 · V n+1 − V n · V n) ρ0 dV

= Tn+1 − Tn

= ∆T ,

(3.57)

where expression (3.28) for the kinetic energy has been used. Furthermore, by defini-

tion of the partitioned discrete derivative, property (3.38) leads to

Πint
n+1 − Πint

n

=
∫

B0

(
Ψ(Cn+1,Gn+1, Cn+1)− Ψ(Cn,Gn, Cn)

)
dV

=
∫

B0

(
DCΨ : (Cn+1 − Cn) + DGΨ : (Gn+1 − Gn) + DCΨ (Cn+1 − Cn)

)
dV

=
∫

B0

(
Λ

C
n+1 : (Cn+1 − Cn)− Λ

G
n+1 :

(
Cn+ 1

2
(Cn+1 − Cn)− (Gn+1 − Gn)

)

− ΛC
n+1

(1

3
Cn+ 1

2
: (Gn+1 − Gn) +

1

3
Gn+ 1

2
: (Cn+1 − Cn)− (Cn+1 − Cn)

))
dV

=
∫

B0

Λ
C
n+1 : DC[ϕn+1 −ϕn]|n+ 1

2
dV

= ∆Πint .
(3.58)

In the above equations use has been made of (3.34) and (3.48). Inserting from (3.57)

and (3.58) into (3.33)2 yields the discrete balance of energy in the form

∆T + ∆Πint = Wext
n,n+1 , (3.59)

where Wext
n,n+1 stands for the work done by the external loads in the time interval. In

the case of dead loads, Wext
n,n+1 = −(Πext(ϕn+1)− Πext(ϕn)). Thus, for conservative

systems the present scheme is capable of preserving the total energy in the sense that

En = En+1, independent of the time-step size.
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3 A mixed variational framework for the design of EM schemes

3.3 Discretization in space

The time-discrete variational formulation consisting of (3.33), (3.34) and (3.35) pro-

vides the framework for a variety of discretizations in space. We focus on finite

elements and present two alternative schemes: (i) the pure displacement formula-

tion based on the interpolation of the deformation field ϕ(X) ∈ Q and the velocity

field V(X) ∈ V , and (ii) the fully mixed approach relying on the independent inter-

polation of the deformation field ϕ(X) ∈ Q, the velocity field V(X) ∈ V , the strain

fields {C(X),G(X), C(X)} ∈ VC ×VG ×VC along with the Lagrange multiplier fields

{Λ
C(X), Λ

G(X), ΛC(X)} ∈ VC × VG × VC .

3.3.1 Displacement formulation

The displacement formulation makes use of standard isoparametric elements (see,

for example, [71]) based on finite-dimensional approximations ϕh ∈ Qh ⊂ Q and

Vh ∈ Vh ⊂ V of the form

ϕh(X) =
nnode

∑
a=1

Na(X)ϕa(t) and Vh(X) =
nnode

∑
a=1

Na(X)V a(t) . (3.60)

Here Na : B0 → R denote the nodal shape functions and ϕa(t), V a(t) ∈ R3 are

the respective nodal values at time t. Moreover, nnode denotes the total number of

nodes in the finite element mesh. The standard (Bubnov) Galerkin approach relies

on analogous approximations for δϕ ∈ V and δV ∈ V denoted by δϕh ∈ Vh and

δVh ∈ Vh. Note that the displacement formulation relies on a pointwise enforcement

of the constitutive relations (3.34) and the kinematic constraints (3.35). In particular,

(3.35) gives

Cn+1 = Cn+1 = FT
n+1 Fn+1 ,

Gn+1 = Gn+1 =
1

2
Cn+1 Cn+1 ,

Cn+1 = Cn+1 =
1

3
Gn+1 : Cn+1 .

(3.61)

Similarly, a straightforward calculation starting from (3.34) yields

Λ
C
n+1 = DCΨ + DGΨ Calg + DCΨGalg , (3.62)

where the algorithmic version of C is evaluated as

Calg = Cn+ 1
2
=

1

2
(Cn + Cn+1) , (3.63)
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3.3 Discretization in space

and for the algorithmic version of G we use

Galg =
1

3
(Cn+ 1

2
Cn+ 1

2
+ Gn+ 1

2
) where Gn+ 1

2
=

1

2
(Gn + Gn+1) . (3.64)

Now the semi-discrete variational formulation of the displacement formulation ema-

nating from (3.33) can be written in the form
∫

B0

δV · 1

∆t
(ϕn+1 −ϕn) ρ0 dV =

∫

B0

δV · V n+ 1
2

ρ0 dV ,

∫

B0

δϕ · 1

∆t
(V n+1 − Vn) ρ0 dV = −

∫

B0

Salg : DC[δϕ]|n+ 1
2

dV − DΠext
m [δϕ]|n+ 1

2
,

(3.65)

for any δϕ ∈ V and δV ∈ V . In the last equation Salg = 2 Λ
C
n+1 denotes the algorithmic

stress formula which is a characteristic feature of energy-momentum methods (see

[145]). With regard to (3.62), the algorithmic stress formula assumes the specific

form

Salg = 2 DCΨ + 2 DGΨ Calg + 2 DCΨGalg . (3.66)

Eventually, the fully discrete displacement formulation is obtained in a standard way

by inserting the finite element interpolations outlined above into (3.65), see Appendix

B.1 for further details.

The newly developed algorithmic stress formula (3.66) can be viewed as time-discrete

version of the 2nd Piola-Kirchhoff stress tensor (2.60). It represents a viable alternative

to previously developed projection-based formulas (cf. [145]) leading to second order

accurate energy-momentum schemes (cf. [51]).

Remark 3.6. Although the displacement-based discretization in space does not necessitate the

mixed variational framework developed herein, the algorithmic stress formula (3.66) is a direct

result of the discretization in time of the underlying mixed variational formulation. This is to

be contrasted with the mid-point type discretization in time of the standard displacement-based

variational formulation. The standard mid-point type discretization relies on (3.65) with Salg

being replaced by

Sn+ 1
2
= 2∂CΨ(Cn+ 1

2
, Gn+ 1

2
, Cn+ 1

2
) + 2∂GΨ(Cn+ 1

2
, Gn+ 1

2
, Cn+ 1

2
) Cn+ 1

2

+ 2∂CΨ(Cn+ 1
2
, Gn+ 1

2
, Cn+ 1

2
) Gn+ 1

2
,

(3.67)

which coincides with the mid-point evaluation of the 2nd Piola-Kirchhoff stress tensor (2.60).

In this connection it is important to realize that in general, Calg 6= Cn+ 1
2
, Galg 6= Gn+ 1

2
6=

Gn+ 1
2
, and Cn+ 1

2
6= Cn+ 1

2
. For example,

Cn+ 1
2
=

1

2
(Cn + Cn+1) =

1

2
(FT

n Fn + FT
n+1 Fn+1) =

1

2

(
Cn + Cn+1

)
, (3.68)
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3 A mixed variational framework for the design of EM schemes

whereas

Cn+ 1
2
= FT

n+ 1
2

Fn+ 1
2

. (3.69)

We further note that the symmetry of Salg can be easily verified by taking into account relation

(2.12)2. Moreover, it can be verified by a straightforward calculation that the algorithmic

stress formula (3.66) satisfies the directionality property

Ψ̂(Cn+1)− Ψ̂(Cn) = Salg :
1

2
(Cn+1 − Cn) . (3.70)

Example (Mooney-Rivlin material cont’d): To illustrate the application of the newly

devised algorithmic stress formula (3.66) we again consider the example of the com-

pressible Mooney-Rivlin material with stored energy function (3.39). Employing the

discrete derivatives (3.40) and (3.41), formula (3.66) yields

Salg = 2 a I + 2 b I Calg + 2
f (Cn+1)− f (Cn)

Cn+1 − Cn
Galg . (3.71)

This is to be contrasted with the alternative projection based formula (see [52, 145])

SSG = Sm +
2 Ψ(Cn+1)− 2 Ψ(Cn)− Sm : (Cn+1 − Cn)

(Cn+1 − Cn) : (Cn+1 − Cn)
(Cn+1 − Cn) , (3.72)

where the stored energy function (3.39) is recast in the form

Ψ̂(C) = Ψ(C , cof(C), det(C))

= a trC +
b

2

(
(trC)2 − tr(C2)

)
+ f (detC) ,

(3.73)

and

Sm = 2 DΨ̂(Cn+ 1
2
)

= a I + b
(
(trCn+ 1

2
) I − Cn+ 1

2

)
+ f ′(detCn+ 1

2
) det(Cn+ 1

2
) (Cn+ 1

2
)−1 .

(3.74)

It can be observed that the newly developed formula (3.71) enjoys a particularly sim-

ple structure when compared to the alternative formula (3.72). This observation ap-

plies particularly to the corresponding tangent moduli needed for the iterative solu-

tion process. We refer to Appendix B.1 for further details.

Example (St. Venant-Kirchhoff material): It is well known that the stored energy

function of a St. Venant-Kirchhoff material is not polyconvex [141]. However, the

method developed herein can still be applied. For that purpose we write the stored
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3.3 Discretization in space

energy function of a St. Venant-Kirchhoff material in the form (see, for example,

[35])

Ψ(C,G, C) = −3 λ + 2 µ

4
trC +

λ + 2 µ

8
trC2 +

λ

4
trG +

9 λ + 6 µ

8
, (3.75)

where λ and µ are the two Lamé parameters. Associated with (3.75) we introduce the

discrete derivatives

DCΨ = −3 λ + 2 µ

4
I +

λ + 2 µ

4
Cn+ 1

2
,

DGΨ =
λ

4
I .

(3.76)

Now the algorithmic stress formula (3.66) yields

Salg = −1

2
(3 λ + 2 µ) I +

1

2
(λ + 2 µ)Calg +

λ

2
I Calg . (3.77)

Taking into account the relationship I C = (tr C) I − CT we obtain

Salg = 2 µ
1

2
(Calg − I) + λ

1

2
(tr Calg − 3) I

= 2 µ En+ 1
2
+ λ trEn+ 1

2
I .

(3.78)

In the last equation the Green-Lagrangean strain tensor E = 1
2(C − I) has been intro-

duced. Using the fourth-order elasticity tensor, C, the algorithmic stress tensor can

be recast in the form Salg = C : Ealg. This formula has originally been proposed by

[153].

3.3.2 Mixed formulation

In analogy to the displacement formulation, the continuous finite element interpo-

lation (3.60) for the displacement field and the velocity field are also used in the

mixed formulation. In addition to that the semi-discrete variational framework at

hand makes possible the independent interpolation of the strain fields {C,G, C} ∈
VC × VG × VC and the Lagrange multiplier fields {Λ

C , Λ
G , ΛC} ∈ VC × VG × VC .

Of course, the choice of approximation formulas is restricted by appropriate stability

(or inf-sup) conditions (see, for example, [24]). This issue, however, is beyond the

scope of the present work.

From the variety of conceivable interpolations we focus on one specific example. In

particular, the mixed formulation is based on polynomial interpolations of second-

order tensors A and scalars A over a typical element B(e)
0 ⊂ B0. To this end we
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3 A mixed variational framework for the design of EM schemes

introduce finite-dimensional subspaces Vh
C
⊂ VC and Vh

G
⊂ VG defined by

V
h
A =

{
A ∈ VA | Ah

∣∣∣
B(e)

0

=
nen

∑
b=1

Mb Ab, Ab = AT
b

}
, (3.79)

where A stands for the second-order tensors C, G, Λ
C or Λ

G . Similarly we introduce

a finite-dimensional subspace Vh
C ⊂ VC defined by

V
h
A =

{
A ∈ VA | Ah

∣∣∣
B(e)

0

=
nen

∑
b=1

Mb Ab, Ab ∈ R

}
, (3.80)

where A stands for the scalars C or ΛC . Accordingly, the present sample application

relies on uniform elementwise approximations for the strains and the Lagrange mul-

tipliers making use of the shape functions Mb, with b = 1, ..., nen. Here, nen denotes

the number of element nodes arising from the use of Lagrangian shape functions (see

the next section for more details). The thus defined finite element interpolations can

be inserted into the semi-discrete variational equations (3.33), (3.34) and (3.35), lead-

ing to a system of nonlinear algebraic equations. Since no inter-element continuity is

required for the mixed approximations, the additional unknowns of the mixed formu-

lation can be eliminated on element level by applying the classical static condensation

procedure. Accordingly, after finite element assembly, the number of unknowns to be

solved for on the global level is the same for both the displacement formulation and

the mixed formulation at hand. More details about the implementation of the mixed

formulation can be found in Appendix B.2.

3.4 Numerical Investigations

In the numerical investigations we employ both the pure displacement formulation

(Sec. 3.3.1) and the mixed formulation (Sec. 3.3.2). Concerning the interpolation of

the displacements we make use of 20-node serendipity shape functions (cf. the nodal

shape functions Na in (3.60) and the illustration in Fig. 3.1). In addition to that,

the mixed formulation relies on tri-linear Lagrangian shape functions (cf. the shape

functions Mb in (3.79), (3.80), and Fig. 3.1).
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3.4 Numerical Investigations

ξ ξξ

η ηη

ζ ζζ

Figure 3.1: Illustration of the nodal points used for the interpolation of the displacements (left) and

the additional fields of the mixed formulation (right).

We make use of the compressible Mooney-Rivlin material considered above. Cor-

respondingly, the stored energy function is given by (3.39), where the volumetric

contribution is given by

f (C) = −d ln
(√

C
)
+

c

2

(√
C − 1

)2
. (3.81)

The material parameters are given by a > 0, b > 0, c > 0 and d = 2 (a + 2 b). For

an example with the more sophisticated stored energy characterizing transversely

isotropic material (3.42), see [23].

3.4.1 Patch test

The objective of this example is:

O1.I Assess the correctness of the mixed formulation and show the capability of

reproducing homogeneous states of stress.

To assess the correctness of the two alternative element formulations at hand and

their computer implementation, we first consider the three-dimensional patch test

from [106]. Consider a cube Ω ∈ (0, 1)[m]× (0, 1)[m]× (0, 1)[m], depicted in Fig. 3.2,

subjected to the following Dirichlet boundary conditions: the face at x1 = 0 is fixed in

x1-direction, the face at x2 = 0 is fixed in x2-direction, and the face at x3 = 0 is fixed in

x3-direction. Furthermore, the face at x3 = 1 (see the upper green surface in Fig. 3.2)

is displacement-driven to compress the unit-length cube to a hexahedron with halved

height. The material parameters, given in Tab. 3.1, corresponds to a Young’s modulus

of E = 106 Pa and a Poisson’s ratio of ν = 0.3 in the case of linear elasticity. Both a

regular mesh with 425 Nodes/ 1275 unknowns and an initially distorted mesh with

48 Nodes/ 144 unknowns (Fig. 3.2) are considered. Both element formulations under
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3 A mixed variational framework for the design of EM schemes

consideration pass the patch test and are capable of reproducing the correct value of

homogeneous states of stress (see Figs. 3.3 and 3.4).

e1

e2
e3

Figure 3.2: Boundary conditions (left), initial regular mesh (center) and initial distorted mesh (right).

Table 3.1: Material and simulation parameters for patch tests.

mechanical parameters a 15/13 · 105 Pa geometry of the cube

b 10/13 · 105 Pa

[m]

1

1

1

c 25/3 · 105 Pa

Newton tolerance ε 1 · 10−6 -

size of load increment ∆u 0.02 m

7.475 · 105

7.475 · 105

7.475 · 105

7.475 · 105

Figure 3.3: Von Mises stress distribution of the regular mesh (left) and distorted mesh (right) of the

displacement based formulation.
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7.475 · 105

7.475 · 105

7.475 · 105

7.475 · 105

Figure 3.4: Von Mises stress distribution of the regular mesh (left) and distorted mesh (right) of the

mixed formulation.

3.4.2 Cooks membrane

The objectives of this example are:

O2.I Verification of the locking free response of the mixed formulation.

O2.II Verification of the improved robustness of the mixed formulation.

Next we consider a three-dimensional version of Cooks membrane (Fig. 3.5) as bench-

mark problem for large deformation solid mechanics. The membrane is clamped on

the left side and loaded by a shear force on the right side. The plane strain condition

is enforced by imposing zero displacement boundary conditions in e1-direction. The

resultant force vector T̄ is oriented in e3-direction and has magnitude P = 100 · 103 Pa.

The parameters of the Mooney-Rivlin material correspond to a Young’s modulus of

E ≈ 2850 · 103 Pa and a Poisson’s ratio of ν = 0.4954 in the linear theory. Further data

is summarized in Tab. 3.2. The initial mesh and the final von Mises stress distribution

of the deformed configuration are depicted in Fig. 3.5. The calculated displacement

uA
3 of the upper right node (point A in Fig. 3.5) is plotted versus the number of

elements per side in Fig. 3.6.

It can be observed that the newly developed mixed element performs extremely good

when compared to the pure displacement formulation. The improvement in perfor-

mance of the mixed formulation is also visible in the incremental-iterative solution

procedure. In particular, as can be seen from Tab. 3.3, the total number of Newton

iterations needed to reach the final result is up to four times greater for the displace-

ment element than for the mixed element. This is partially due to the fact that the

mixed element typically needs less Newton iterations to reach the prescribed toler-

ance than the displacement element. This is exemplarily illustrated with Fig. 3.7
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3 A mixed variational framework for the design of EM schemes

for one representative load step (these results have been obtained with the {4, 4, 4}
mesh). In addition to that, the mixed element often allows for larger load increments

than the displacement element. The corresponding results of the investigations on the

incremental-iterative solution procedure are summarized in Tab. 3.3. The superior ro-

bustness of the mixed element normally overcompensates the additional numerical

effort on element level due to the static condensation procedure.

e2

e1

e3

T̄
A

0

600 · 103

Figure 3.5: Boundary conditions of Cook’s membrane (left), initial mesh (center) and von Mises stress

distribution of the final configuration (right).

Table 3.2: Material and simulation parameters for Cook’s membrane.

mechanical parameters a 126 · 103 Pa geometry of membrane

b 252 · 103 Pa

[m]44

16

4810

44

c 81512 · 103 Pa

Newton tolerance ε 1 · 10−6 -
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Figure 3.6: Convergence with mesh refinement.
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Figure 3.7: Comparison of the Newton iterations

in a typical load step.

Table 3.3: Investigation on the robustness of the two element formulations under consideration.

nel in {e1, e2, e3}-direction {4, 2, 2} {4, 4, 4} {4, 8, 8} {4, 16, 16} {4, 24, 24}
Num. of nodes 141 425 1449 5321 11625

Num. of global unknowns 423 1275 4347 15963 34875

Necessary load increments

disp/mixed 1/1 1/1 3/1 4/1 4/1

Total Newton iterations

disp/mixed 8/6 12/6 11/6 22/6 26/6

3.4.3 L-shaped block

The objectives of this example are:

O3.I Verification of the algorithmic conservation properties.

O3.II Investigation of the numerical stability.

This transient example deals with the classical benchmark problem of a tumbling L-

shaped block introduced in [153]. Instead of St. Venant-Kirchhof material employed in

[153], we again make use of the Mooney-Rivlin material. The corresponding material

parameters are summarized in Tab. 3.5. These parameters correspond to E = 12825 Pa
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3 A mixed variational framework for the design of EM schemes

for Young’s modulus and ν = 0.2857 for Poisson’s ratio in the linear theory. Further

data used in the simulation can also be found in Tab. 3.5. The initial geometry and

the finite element mesh of the L-shaped block are illustrated in Fig. 3.8 and Tab. 3.5.

There are no Dirichlet boundary conditions and after an initial loading phase the

block is tumbling through space exhibiting large deformations (Fig. 3.9). The dis-

cretized L-shaped block has 768 nodes leading to a total of 2304 global unknowns.

Time-dependent pressure loads are acting on the L-shaped block, as illustrated in

Fig. 3.8. In this connection, the nodal dead loads are given by

P1(t) = −P2(t) = f (t)




256/9

512/9

768/9




N

m2
, with f (t) =





t for t ≤ 2.5s

5 − t for 2.5 ≤ t ≤ 5s

0 for t > 5s

.

(3.82)

Note that after the loading phase, the discrete system under consideration can be

classified as autonomous Hamiltonian system with symmetry. Correspondingly, for

t ≥ 5s, the total linear momentum, angular momentum and energy are conserved

quantities.

e1

e2
e3

P1

P2

Figure 3.8: Sketch of the L-shaped block in the initial configuration (left), the discretized

model (center) and von Mises stress distribution at t = 3.6 s (right).

0

3.1 · 103

As expected both the displacement formulation and the mixed formulation are ca-

pable of correctly reproducing the conservation laws of the underlying continuum

theory. This is true for arbitrary time steps, including time step changes. Figs. 3.10

and 3.12 corroborate conservation of energy for both formulations under considera-

tion. The incremental change of the total energy is below the Newton tolerance and
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3.4 Numerical Investigations

shown for both formulations in Figs. 3.11 and 3.13. It is well-known that standard

time-stepping schemes such that the mid-point rule show a tendency to numerical

instabilities in nonlinear applications. The numerical instability is typically accompa-

nied by a blow-up of the total energy. The unstable behavior of the mid-point rule

can also be observed in this example (see Figs. 3.10 and 3.12). In contrast to that,

the present EM schemes are numerically stable. Eventually, conservation of the to-

tal angular momentum for both formulations at hand is illustrated in Figs. 3.14 and

3.15.

Similar to the equilibrium problem considered in Section 3.4.2, we investigate the

robustness of the two alternative EM schemes at hand. Again the mixed formulation

leads to an enhancement of the robustness when compared to the pure displacement

formulation. Typically, the mixed formulation (i) needs less Newton iterations per

time step, and (ii) allows for greater time steps than the displacement formulation.

For example, the displacement formulation allows for a maximum time step size of

∆t = 1.2s to attain convergence of the iterative solution procedure. In contrast, the

time step size of the mixed formulation can be increased up to ∆t = 2.4s, while the

average number of Newton iterations per time step is below that of the displacement

formulation. Consequently, the total number of iterations required within the time

interval of interest is almost three times lower for the mixed formulation than for

the displacement formulation (see Tab. 3.4). Moreover, for smaller time steps the

mixed formulation saves about one iteration per time step when compared to the

displacement formulation (see Tab. 3.4).

Table 3.4: Investigation on the robustness of the two element formulations under consideration when

using the respective EM scheme.

Time-step size ∆t 0.8s 1.2s 2.4s

Number of time-steps 126 84 42

Total Newton iterations

disp/mixed 737/644 598/500 no convergence/266

Average iterations per time-step

disp/mixed 5.85 / 5.11 7.12 / 5.95 no convergence/ 6.33
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3 A mixed variational framework for the design of EM schemes

Table 3.5: Simulation parameters for the L-shaped block.

mechanical parameters a 831.25 Pa geometry of the L-shaped block

b 1662.5 Pa

c 0 Pa

3

3

3
3

7
[m]

reference density ρ0 100 kg m−3

Newton tolerance ε 1 · 10−5 −
time step size ∆t 0.8, 1.2 s

simulation duration T 100.8 s

0

3.1 · 103

Figure 3.9: Snapshots of configurations at t ∈ {0, 1.2, 2.4, 3.6, 4.8, 6.0, 7.2, 8.4, 9.6, 10.8, 12.0, 13.2}s. The

results have been obtained with the mixed elements, EM Scheme and ∆t = 1.2 s .
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Figure 3.12: Mixed formulation: Total energy

versus time.
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Figure 3.10: Displacement formulation: Total

energy versus time.
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Figure 3.11: Displacement formulation:

Incremental change of total energy.
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Figure 3.14: Disp. formulation: Incremental

change of angular momentum.
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Figure 3.15: Mixed formulation: Incremental

change of angular momentum.
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4 EM schemes for quasi-

incompressible elasticity in

principal stretches
1

In this chapter, we introduce a new algorithmic stress formula in its eigenvalue rep-

resentation to model the transient behavior of hyperelastic bodies of Ogden type

materials. Moreover, several numerical examples show the superior performance of

the proposed formulation in terms of numerical robustness and stability.

4.1 Multiplicative and spectral decomposition

In this section a brief outline of the eigenvalue representation of second order tensors

is given. Afterwards, a multiplicative decomposition as well as a spectral decomposi-

tion of second order tensors will be presented.

4.1.1 Eigenvalue representation

Assuming symmetry of A ∈ R3×3, i.e. A = AT, the eigenvalue problem is given by

A N A
i = λA

i N A
i , (4.1)

1 This chapter is based on [81].
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4 EM schemes for quasi-incompressible elasticity in principal stretches

where λA
i , i = 1, 2, 3 denotes the eigenvalues and N A

i corresponding orthonormal

eigenvectors of A. Note that in (4.1) no summation is applied. Accordingly, any

symmetric tensor may be presented with the use of spectral decomposition, such

that

A =
3

∑
i=1

λA
i N A

i ⊗ N A
i . (4.2)

The eigenvalues λA
i are solutions of the characteristic polynomial

det(A) = (λA
i )

3 − IA
1 (λA

i )
2 + IA

2 λA
i − IA

3 = 0 , (4.3)

where IA
1 , IA

2 and IA
3 are the principal invariants of A defined by

IA
1 = I1(A) = tr(A) = λA

1 + λA
2 + λA

3 ,

IA
2 = I2(A) = tr(cof(A)) = λA

1 λA
2 + λA

1 λA
3 + λA

2 λA
3 ,

IA
3 = I3(A) = det(A) = λA

1 λA
2 λA

3 .

(4.4)

Once the eigenvalues λA
i have been calculated, the eigenvectors N A

i can be computed

via (4.1). In the following distinct eigenvalues (λA
1 6= λA

2 6= λA
3 6= λA

1 ) are assumed.

In the case of two or three equal eigenvalues, a perturbation technique will be ap-

plied (see [155, 111, 112] and [119] in case of structure-preserving schemes) to avoid

singularities during the numerical analysis. See Appendix C.3 for more information

concerning the numerical implementation of the perturbation technique.

Remark 4.1. Alternatively, spectral decomposition (4.2) can be written by using the closed-

form expression of the eigenvector basis leading to the explicit expression

A =
3

∑
i=1

(λA
i )

2 A − (tr(A)− λA
i ) I + det(A) (λA

i )
−1 A−1

DA
i

, (4.5)

where

DA
i = 2 (λA

i )
2 − tr(A) λA

i + det(A) (λA
i )

−1 . (4.6)

In contrast to (4.2), the closed form representation (4.5) does not need to compute the eigenvec-

tors. For more background on the spectral decomposition we refer to [121, 164]. The numerical

treatment of the closed-form expression (4.5) is discussed in [155, 111, 112]. See [114] for a de-

tailed comparison of alternative approaches based either on (4.2) or the closed-form expression

(4.5).
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4.1.2 Spectral decomposition

As a consequence of the polar decomposition of the deformation gradient tensor (see

e.g. [68]) we obtain

F = R U , (4.7)

where the rotation tensor R ∈ SO(3) and the right stretch tensor U : B0 → R3×3 have

been introduced. Consequently, the right Cauchy-Green tensor is free of rigid-body

rotations, e.g.

C = (R U)
T
(R U) = U2 . (4.8)

Moreover, the eigenvalues of U are the principal stretches λU
i , whereas the eigenval-

ues of C corresponds to the squares of the principal stretches. That is, λC
i = (λU

i )
2.

The spectral decomposition of C is given by

C =
3

∑
i=1

(λU
i )2 NC

i ⊗ NC
i =

3

∑
i=1

λC
i NC

i ⊗ NC
i , (4.9)

where we again assume distinct eigenvalues for C (e.g. λC
1 6= λC

2 6= λC
3 ).

4.1.3 Multiplicative decomposition

Depending on the material law it might be useful to decouple the deformation into

an isochoric and a volumetric part, see [43, 157]. For finite deformation problems, the

multiplicative split of the deformation gradient into isochoric part F̄ and volumetric

part F̂ yields

F = F̄ F̂ . (4.10)

Employing (2.20), gives

dv = det(F)dV = det(F̄) det(F̂)dV , (4.11)

where

det(F̄) = 1 and det(F̂) = det(F) , (4.12)

respectively. Thus, (2.20), (4.10) and (4.12) leads to

F̂ = det(F)1/3 I , (4.13)

for the volumetric part and

F̄ = det(F)−1/3 F , (4.14)
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4 EM schemes for quasi-incompressible elasticity in principal stretches

for the isochoric part. Similarly, by construction of the right Cauchy-Green strain

tensor (2.41), the multiplicative split of F leads to

C = C̄ Ĉ , (4.15)

where

Ĉ = det(C)1/3 I and C̄ = det(C)−1/3 C , (4.16)

denote the volumetric and isochoric parts, respectively. In accordance to (4.12) we

obtain

dv2 = det(C)dV2 = det(C̄) det(Ĉ)dV2 , (4.17)

with

det(C̄) = 1 and det(Ĉ) = det(C) . (4.18)

Furthermore, the principal invariants given in (4.4) can be applied to C̄ leading to

IC̄
1 = tr(C̄) = det(F)−2/3 IC

1 ,

IC̄
2 = tr(cof(C̄)) = det(F)−4/3 IC

2 ,

IC̄
3 = det(C̄) = 1 .

(4.19)

In view of the multiplicative decomposition (4.10), we obtain for the isochoric stretches

λ̄U
i = det(F)−1/3 λU

i and λ̄C
i = det(F)−2/3 λC

i , (4.20)

along with the condition of isochoric deformation

λ̄U
1 λ̄U

2 λ̄U
3 = λ̄C

1 λ̄C
2 λ̄C

3 = 1 . (4.21)

The modified eigenvalues λ̄U
i and λ̄C

i in (4.20) refer to the corresponding isochoric

stretch tensor Ū = det(F)−1/3 U and the corresponding isochoric strain tensor C̄ as

introduced in (4.16). The spectral decomposition of the isochoric part C̄ yields

C̄ =
3

∑
i=1

λ̄C
i NC

i ⊗ NC
i , (4.22)

assuming distinct eigenvalues λ̄C
1 6= λ̄C

2 6= λ̄C
3 .

4.2 Constitutive equations for

large strain elasticity

In this chapter we focus on hyper-elastic material behavior with a decoupled stored

energy density function which fulfills the axiom of frame-indifference and is given
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by

Ψ̃(C) = Ψ(C, cof(C), det(F)) = Ψiso(C̄, cof(C̄)) + Ψvol(det(F)) , (4.23)

In particular, we introduce the stored energy function as

Ψ(C, cof(C), det(F)) = Ψiso(C̄, Ḡ) + Ψvol(J)

= ΨC
iso(C̄) + ΨG

iso(Ḡ) + Ψvol(J) ,
(4.24)

where Ḡ : B0 → R3×3 denotes the cofactor of the isochoric part of C. That is,

Ḡ = cof(C̄) =
1

2
C̄ C̄ . (4.25)

Note that the stored energy function given in (4.24) is inspired by the concept of poly-

convexity, see [7, 35]. To proof polyconvexity, the stored energy function must be

defined in terms of F, cof(F) and det(F). Due to the multiplicative split, polyconvex-

ity is only guaranteed under certain circumstances (see [62] for more information).

Accordingly, the stored energy function in (4.24) is not polyconvex in general. The

specific form (4.24) of the stored energy function turns out to be advantageous for

the design of numerical methods, see [27] or Chapter 3.1. Next, the stress response

tensor is derived from the decoupled stored energy function (4.24) by employing the

tensor cross product operator introduced in Sec. 2.1. The directional derivative of the

decoupled stored energy function Ψ(C̄, Ḡ, J) given in (4.24), yields

DΨ[δϕ] = ∂CΨC
iso : DC[δϕ] + ∂GΨG

iso : DG[δϕ] + ∂JΨvol DJ[δϕ] . (4.26)

With the use of the directional derivatives of the kinematic quantities (2.56), (2.57) and

the directional derivative of J given by

DJ[δϕ] =
1

2
J−1 G : DC[δϕ] , (4.27)

a new stress formula for the decoupled stress tensor is introduced as

S = Siso + Svol , (4.28)

where the purely isochoric contribution Siso is given by

Siso = 2 (∂CΨC
iso + ∂GΨG

iso C) , (4.29)

and for the purely volumetric part we obtain

Svol = ∂JΨvol J−1 G . (4.30)

In the equations above, use has been made of the relation in (2.59).
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4.2.1 Hyperelastic model using principal stretches

For the given frame-indifferent stored energy function, we may express Ψ as a func-

tion of the principal stretches of C̄ and Ḡ in the decoupled form as

Ψ̃(C) = Ψ(C̄, Ḡ, J) = Ψiso(λ̄
C
i , λ̄G

i ) + Ψvol(J) = ΨC
iso(λ̄

C
i ) + ΨG

iso(λ̄
G
i ) + Ψvol(J) , (4.31)

for i = 1, 2, 3 where the following relationships between the eigenvalues and eigen-

vectors of C and G, respectively are given by

λ̄G
1 = λ̄C

2 λ̄C
3 , λ̄G

2 = λ̄C
1 λ̄C

3 , λ̄G
3 = λ̄C

1 λ̄C
2 ,

NG
1 = NC

1 , NG
2 = NC

2 , NG
3 = NC

3 ,
(4.32)

see Appendix C.1 for details.

Next, we express the second Piola-Kirchhoff stress tensor given in (4.28) in terms of

the eigenvalues of the kinematic quantities. For the sake of clearness, we further split

the isochoric part Siso into the part connected to C and G, respectively, as

SC
iso = 2 ∂CΨC

iso(λ̄
C
i ) and SG

iso = 2 ∂GΨG
iso(λ̄

G
i ) C . (4.33)

In the following we need some important relationships to derive the stress tensor. The

derivative of the eigenvalues λC
i or λG

i with respect to C or G yields

∂λC
i

∂C
= NC

i ⊗ NC
i or

∂λG
i

∂G
= NG

i ⊗ NG
i , (4.34)

see [155] or Appendix C.2.

Using the principal stretches for the isochoric stress response of SC
iso we obtain

SC
iso = 2

3

∑
i=1

∂ΨC
iso(λ̄

C
i )

∂λ̄C
i

∂λ̄C
i

∂λC
j

∂λC
j

∂C
=

3

∑
i=1

(SC
iso)i NC

i ⊗ NC
i , (4.35)

with the following relation

∂λ̄C
i

∂λC
j

=
∂(det(C)−1/3 λC

i )

∂λC
j

= det(C)−1/3
(

δij −
1

3
λ̄C

i (λ̄C
j )

−1
)

. (4.36)

Thus, the principal stresses of SC
iso yield

(SC
iso)i = 2

∂ΨC
iso

∂λ̄C
j

∂λ̄C
j

∂λC
i

= 2 det(C)−1/3
(∂ΨC

iso

∂λ̄C
i

− 1

3

∂ΨC
iso

∂λ̄C
j

(λ̄C
i )

−1 λ̄C
j

)
. (4.37)
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4.2 Constitutive equations for large strain elasticity

In the last equation summation over j applies. For the evaluation of the second iso-

choric stress response SG
iso the relation corresponding to (4.36) is provided as

∂λ̄G
i

∂λG
j

=
∂(det(G)−1/3 λG

i )

∂λG
j

= det(G)−1/3
(

δij −
1

3
λ̄G

i (λ̄G
j )

−1
)

. (4.38)

Then we obtain

SG
iso = 2

3

∑
i=1

∂ΨG
iso(λ̄

G
i )

∂λ̄G
i

∂λ̄G
i

∂λG
j

∂λG
j

∂G
C =

3

∑
i=1

(SG
iso)i (NG

i ⊗ NG
i ) C , (4.39)

where the principal stresses are given by

(SG
iso)i = 2

∂ΨG
iso

∂λ̄G
j

∂λ̄G
j

∂λG
i

= 2 det(G)−1/3
(∂ΨG

iso

∂λ̄G
i

− 1

3

∂ΨG
iso

∂λ̄G
j

(λ̄G
i )

−1 λ̄G
j

)
. (4.40)

To summarize, the second Piola-Kirchhoff stress tensor can be written in the form

S =
3

∑
i=1

(SC
iso)i NC

i ⊗ NC
i + (SG

iso)i (NG
i ⊗ NG

i ) C + Svol . (4.41)

4.2.2 Ogden-type material model

We are now in the position to deal with Ogden-type material models (see, for exam-

ple, [107, 126, 35]) whose stored energy function assumes the specific form

Ψ(λ̄C
i , λ̄G

i , J) = ΨC
iso(λ̄

C
i ) + ΨG

iso(λ̄
G
i ) + Ψvol(J) , (4.42)

where

ΨC
iso(λ̄

C
i ) =

M

∑
m=1

am

(
(λ̄C

1 )
γm/2 + (λ̄C

2 )
γm/2 + (λ̄C

3 )
γm/2 − 3

)
, (4.43)

and

ΨG
iso(λ̄

G
i ) =

N

∑
n=1

bn

(
(λ̄G

1 )
δn/2 + (λ̄G

2 )
δn/2 + (λ̄G

3 )
δn/2 − 3

)
. (4.44)

A possible choice for the convex volumetric term Ψvol(J) is given by

Ψvol(J) = c d−2 (d ln(J) + J−d − 1) , (4.45)

see, for example [125]. In (4.45), c represents the bulk modulus and d an additional

material coefficient. Moreover, the stored energy functions yields a stress- and energy-

free response for λ̄C
i , λ̄G

i = 1 for i = 1, 2, 3 and J = 1. Various alternative volumetric

strain energy functions and their investigations in terms of convexity and physical

behavior are given in [62].

55



4 EM schemes for quasi-incompressible elasticity in principal stretches

Example (Mooney-Rivlin material): For the particular case of N = 1, M = 1 and

γ1 = 2, δ1 = 2 the stored energy function (4.42) leads to the Mooney-Rivlin material

whose stored energy can be written as

ΨMR(λ̄C
i , λ̄G

i , J) = ΨC
iso(λ̄

C
i ) + ΨG

iso(λ̄
G
i ) + Ψvol(J) , (4.46)

where

ΨC
iso(λ̄

C
i ) = a1

(
(λ̄C

1 ) + (λ̄C
2 ) + (λ̄C

3 )
)
= a1 IC̄

1 , (4.47)

and

ΨG
iso(λ̄

G
i ) = b1

(
(λ̄G

1 ) + (λ̄G
2 ) + (λ̄G

3 )
)
= b1

(
(λ̄C

2 λ̄C
3 ) + (λ̄C

1 λ̄C
3 ) + (λ̄C

1 λ̄C
2 )

)
= b1 IC̄

2 .

(4.48)

Note that in the above equation use has been made of (4.32).

4.3 Variational formulation

In this section we present two possible variational frameworks suitable for large strain

elasticity. While the first one is a displacement based formulation, we also introduce

a Hu-Washizu type mixed formulation. Afterwards we extend both formulations to

the dynamic regime. Eventually, we outline the balance laws for angular momentum

and energy pertaining to the hyperelastic body under consideration.

4.3.1 Displacement based variational formulation

We start our developments from the total potential energy of the elastic body under

consideration. In this chapter the decoupled representation of the internal potential

energy yields

Π̂int(ϕ) =
∫

B0

Ψ(λ̄C
i , λ̄G

i , J)dV =
∫

B0

Ψiso(λ̄
C
i , λ̄G

i ) + Ψvol(J)dV . (4.49)

Variation of the total potential energy with respect to the deformation along with the

principle of stationary potential energy (see, e.g. [170]) and the directional derivatives
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4.3 Variational formulation

of the kinematic relations provided in (2.56), (2.57) and (4.27), yields the variational

equation

DΠ̂[δϕ] =
∫

B0

DΨ[δϕ]dV + DΠext
m [δϕ]

=
∫

B0

∂CΨC
iso : DC[δϕ] + ∂GΨG

iso : DG[δϕ] + ∂JΨvol DJ[δϕ]dV + DΠext
m [δϕ]

=
∫

B0

(SC
iso + SG

iso + Svol) :
1

2
DC[δϕ]dV + DΠext

m [δϕ] = 0 ,

(4.50)

where the external potential is given in (2.25). The equations above have to hold for

admissible variations δϕ ∈ V .

4.3.2 Mixed formulation for quasi-incompressibility

Next, we introduce a Hu-Washizu type three field functional in the spirit of [157, 155].

Thus we define the functional

Π(ϕ, p, τ) =
∫

B0

Ψiso(λ̄
C
i , λ̄G

i ) + Ψvol(τ) + p (J − τ)dV + Πext
m (ϕ) , (4.51)

where the additional unknowns are the hydrostatic pressure p ∈ Vp and the volu-

metric dilatation τ ∈ Vτ. In this connection, we introduce the sets

Vτ = { τ : B0 → R| for τ ∈ L2(B0)} ,

Vp = { p : B0 → R| for p ∈ L2(B0)} .
(4.52)

Note that p plays the role of a Lagrange multiplier to enforce the additional constraint

τ = J. The external potential energy is the same as in the pure displacement formula-

tion and has already been introduced in (2.25). We now impose the stationary condi-

tions on the functional with respect to all field variables, to obtain the Euler-Lagrange

equations as

DϕΠ[δϕ] =
∫

B0

(
∂CΨC

iso + ∂GΨG
iso C +

1

2
p J−1 G

)
: DC[δϕ]dV + DΠext

m [δϕ] = 0 ,

DpΠ[δp] =
∫

B0

δp (J − τ)dV = 0 ,

DτΠ[δτ] =
∫

B0

δτ (∂τΨvol − p)dV = 0 .

(4.53)
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4 EM schemes for quasi-incompressible elasticity in principal stretches

The above equations have to hold for arbitrary δϕ ∈ V , δτ ∈ Vτ and δp ∈ Vp. Note

that (4.53)1 contains the two stress-type second-order tensors defined previously in

(4.33). Moreover, (4.53)2 recovers the constraint J − τ = 0 related to the volumetric

dilatation and (4.53)3 yields a constitutive compatibility condition.

4.3.3 Extension to elastodynamics

Next we extend the proposed formulation to the elasto-dynamic regime. The ex-

tension of variational formulation (4.53) to the dynamic regime follows the lines of

Sec. 3.1.1 and is given by
∫

B0

δV · (ϕ̇− V) ρ0 dV = 0 ,

∫

B0

(
δϕ · ρ0 V̇ +

(
∂CΨiso + ∂GΨiso C +

1

2
p J−1 G

)
: DC[δϕ]

)
dV + DΠext

m [δϕ] = 0 ,

∫

B0

δp (J − τ)dV = 0 ,

∫

B0

δτ (∂τΨvol − p)dV = 0 .

(4.54)

Note that the variational equations (4.54)3-(4.54)4 retain their form. The above equa-

tions have to hold for arbitrary {δV , δϕ, δp, δτ} ∈ V × V × Vp × Vτ and are supple-

mented by prescribed initial values ϕ0 ∈ V and V0 ∈ V at time t = 0. Consistent

initial values for the mixed fields, {p0, τ0} can be calculated with the use of (4.54)3

and (4.54)4.

Remark 4.2. Time differentiation of J yields

J̇ =
1

2
J−1 G : Ċ , (4.55)

where the properties of the tensor cross product have been taken into account. Time differenti-

ation of C, G have been introduced in (3.15)1 and (3.15)2.

4.3.4 Balance laws

In this section we consider the balance laws for linear momentum, angular momen-

tum and energy. We start from the variational equations of the mixed formulation.
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4.3 Variational formulation

4.3.4.1 Balance of linear momentum

For verification of the balance of total linear momentum the admissible variations in

(4.54) are δV = 0 and δϕ = ζ where ζ ∈ R3 is arbitrary but constant. This yields

ζ ·
( d

dt
L − Fext

)
= 0 , (4.56)

where the total linear momentum and the total external mechanical loads have been

introduced in (3.19) and (3.20), respectively. Therefore for vanishing external me-

chanical loads the total linear momentum is a constant of motion of the continuous

system.

4.3.4.2 Balance of angular momentum

Following the procedure of Sec. 3.1.2.2, we choose admissible variations δϕ = ζ ×ϕ

and δV = ζ × ϕ̇ with constant and arbitrary ζ ∈ R3 and DF[δϕ] = ζ̂ F. From (4.54)1

and (4.54)2 we get

∫

B0

(ζ × ϕ̇) · V ρ0 dV = 0 ,

∫

B0

(
ζ ×ϕ · ρ0 V̇ +

(
∂CΨC

iso + ∂GΨG
iso C +

1

2
p J−1 G

)
: DC[ζ ×ϕ]

)
dV

+ DΠext
m [ζ ×ϕ] = 0 .

(4.57)

Since the inner bracket term in (4.57)2 is symmetric, we obtain

ζ ·
( d

dt
J − Mext

)
= 0 , (4.58)

compare (3.21)-(3.26). Therefore, the components of the angular momentum, Jζ = ζ · J

are conserved along solutions of equations of motions when the external torque about

the corresponding axes, ζ · Mext, vanishes.

4.3.4.3 Balance of energy

Next we focus on the balance law for total energy. Again, we start from the variational

equations (4.54) and choose admissible variations δϕ = ϕ̇ ∈ V , δV = V̇ ∈ V along
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4 EM schemes for quasi-incompressible elasticity in principal stretches

with δp = ṗ ∈ Vp and δτ = τ̇ ∈ Vτ. With the definition of the kinetic energy of the

continuum body (3.28) we get from (4.54)1

∫

B0

ϕ̇ · V̇ ρ0 dV =
∫

B0

V · V̇ ρ0 dV =
d

dt

(1

2

∫

B0

V · V ρ0 dV
)
= Ṫ . (4.59)

With (4.54)2, (4.55) and the admissible variations, (4.54)3 and (4.54)4, we obtain

∫

B0

ϕ̇ · V̇ ρ0dV +
∫

B0

(
∂CΨC

iso + ∂GΨG
iso C +

1

2
p J−1 G

)
: Ċ dV + Π̇ext

m (ϕ)

=
∫

B0

ϕ̇ · V̇ ρ0dV +
∫

B0

∂CΨC
iso : Ċ + ∂GΨG

iso C : Ċ +
1

2
p J−1 G : Ċ dV + Π̇ext

m (ϕ)

=
∫

B0

ϕ̇ · V̇ ρ0dV +
∫

B0

∂CΨC
iso : Ċ + ∂GΨG

iso : Ġ + ∂JΨvol : J̇ dV + Π̇ext
m (ϕ) .

(4.60)

By definition of kinetic energy (3.28), internal energy (4.49), total potential energy

(2.26) and external power (3.31) we get the desired result as

d

dt
E =

d

dt

(
T + Πint

)
= Ṫ + Π̇int = Pext . (4.61)

Since dead loads have been assumed from the outset, balance law (4.61) corresponds

to the conservation of the total energy along solutions of equations of motions defined

by

E = T + Π . (4.62)

4.4 Discretization in time

In this section we focus on the design of a structure-preserving time-stepping scheme

for the underlying formulations. In particular, we introduce the algorithm for the

mixed formulation. The time discretization of the displacement formulation follows

from that of the mixed formulation in a straightforward way.

The aim of this section is to define an implicit one-step time integrator that deter-

mines {V n+1,ϕn+1, pn+1, τn+1} ∈ V ×Q× Vp × Vτ on time node tn+1 from the given

approximations {V n,ϕn, pn, τn} ∈ V × Q × Vp × Vτ on time node tn. This implies,

that the constraint in (4.54)3 is fulfilled at time-node tn. The time-discrete version of
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4.4 Discretization in time

the variational equations (4.54) is proposed as

∫

B0

δV · 1

∆t
(ϕn+1 −ϕn) ρ0 dV =

∫

B0

δV · V n+ 1
2

ρ0 dV ,

∫

B0

δϕ · 1

∆t
(V n+1 − Vn) ρ0 dV =

−
∫

B0

(
DCΨC

iso + DGΨG
iso Calg +

1

2
pn+1 J−1

alg Galg

)
: DC[δϕ]|n+ 1

2
dV − DΠext

m [δϕ]|n+ 1
2

,

∫

B0

δp (Jn+1 − τn+1)dV = 0 ,

∫

B0

δτ (DτΨvol − pn+1)dV = 0 ,

(4.63)

for arbitrary {δV , δϕ} ∈ {V ,V} and arbitrary δp ∈ Vp, δτ ∈ Vτ. The constraints

in (4.63)3 and (4.63)4 are evaluated in their endpoint configurations, see [15] or

Sec. 3.1. In the mid-point type (MP) integration scheme, the time discrete versions

of the kinematic quantities can be replaced by Calg = C(ϕn+ 1
2
), Galg = G(ϕn+ 1

2
) and

Jalg = J(ϕn+ 1
2
). Then the time discrete versions of the partial derivatives assume the

form
DCΨC

iso = ∂CΨC
iso(λ̄

C
i (C(ϕn+ 1

2
))) ,

DGΨG
iso = ∂GΨG

iso(λ̄
G
i (G(ϕn+ 1

2
))) ,

DτΨvol = ∂τΨvol(τn+ 1
2
) ,

(4.64)

where details about the numerical implementation of the time-discrete eigenvalues

are provided in Appendix C.3.

4.4.1 Structure-preserving integration scheme

Next, a structure-preserving integration scheme is introduced, which satisfies the bal-

ance laws outlined in Sec. 4.3.4. Herein we use the semi-discrete variational equations

(4.63) as a basis. The algorithmic expressions of C and G for a structure preserving

integration scheme have already been introduced in 3.3.1. The algorithmic version of

J is defined as

Jalg =
1

2
(Jn + Jn+1) . (4.65)

61



4 EM schemes for quasi-incompressible elasticity in principal stretches

Note that in general the MP type approximations C(ϕn+ 1
2
), G(ϕn+ 1

2
) and J(ϕn+ 1

2
) do

not coincide with the algorithmic expressions in (3.63), (3.64) and (4.65), see e.g. (3.68)

and (3.69). Next we focus on the approximation of the stress-type quantities in (4.63)2.

In particular, the partial derivatives {∂CΨC
iso, ∂GΨG

iso, ∂τΨvol} in (4.53) are replaced by

time-discrete derivatives in the sense of [52] denoted by {DCΨC
iso, DGΨG

iso, DτΨvol}. In

the present case the discrete derivatives in question are given by

DCΨC
iso = ∂CΨC

iso(λ̄
C
i (Cn+ 1

2
)) +

(
ΨC

iso((λ̄
C
i )n+1)− ΨC

iso((λ̄
C
i )n)

)
∆C

∆C : ∆C

−
∂CΨC

iso(λ̄
C
i (Cn+ 1

2
)) : ∆C

∆C : ∆C
∆C ,

DGΨG
iso = ∂GΨG

iso(λ̄
G
i (Gn+ 1

2
)) +

(
ΨG

iso((λ̄
G
i )n+1)− ΨG

iso((λ̄
G
i )n)

)
∆G

∆G : ∆G

−
∂GΨG

iso(λ̄
G
i (Gn+ 1

2
)) : ∆G

∆G : ∆G
∆G ,

DτΨvol =
Ψvol(τn+1)− Ψvol(τn)

τn+1 − τn
.

(4.66)

where ∆C = Cn+1 − Cn, ∆G = Gn+1 − Gn and ∆τ = τn+1 − τn, respectively. Sim-

ilarly to the kinematic quantities, we obtain (λ̄A
i )n = λ̄A

i (A(ϕn)) and (λ̄A
i )n+1 =

λ̄A
i (A(ϕn+1)) where A stands for C and G, respectively. Details concerning the nu-

merical implementation of the time-discrete eigenvalues are provided in Appendix

C.3. Note that due to the scalar field variable τ, (4.66)3 collapses to the Greenspan

formula introduced in (3.41), see [55]. In case of the limits ||Cn+1 − Cn|| → 0,

||Gn+1 − Gn|| → 0 and |τn+1 − τ|n → 0 the discrete gradients in (4.66) have to be

replaced by the MP type approximation as given in (4.64). Using the discrete deriva-

tives in (4.66), it can be easily verified that the directionality property

DCΨC
iso : (Cn+1 − Cn) + DGΨG

iso : (Gn+1 − Gn) + DτΨvol (τn+1 − τn)

= ΨC
iso((λ̄

C
i )n+1) + ΨG

iso((λ̄
G
i )n+1)−

(
ΨC

iso((λ̄
C
i )n) + ΨG

iso((λ̄
G
i )n)

)

+ Ψvol(τn+1)− Ψvol(τn)

= Ψ((λ̄C
i )n+1, (λ̄G

i )n+1, τn+1)− Ψ((λ̄C
i )n, (λ̄G

i )n, τn) ,

(4.67)

holds. The first term of the integrand on the right hand side of (4.63)2 coincides

with the second Piola-Kirchhoff stress in the time-discrete setting, c.f. (4.28). In this

chapter, the algorithmic stress tensor, denoted as Salg can be expressed by the use of

(3.63) and (3.64) as

Salg = 2
(

DCΨC
iso + DGΨG

iso Calg + pn+1 J−1
alg

1

2
Galg

)
, (4.68)
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4.4 Discretization in time

and shares the same time-discrete version of the kinematic quantities as the second

Piola-Kirchhoff stress resulting from the mixed formulation (3.66).

4.4.2 Semi-discrete balance laws

In this section, we show that the semi-discrete mixed formulation inherits the bal-

ance laws of the continuous formulation (see Sec. 4.3.4) independent of the time-step

size.

4.4.2.1 Discrete balance of linear momentum

Following the procedure in Sec. 4.3.4.1 for the verification of the balance of total linear

momentum we assume that δϕ = ζ and δV = 0 are admissible variations, where

ζ ∈ R3 is arbitrary but constant. Then (4.63)2 yields

ζ ·
( 1

∆t
(Ln+1 − Ln)− Fext

)
= 0 . (4.69)

Therefore for vanishing external mechanical loads the total discrete linear momentum

is a constant of motion of the semi-discrete system.

4.4.2.2 Discrete balance of angular momentum

With regard to the developments from Sec. 4.3.4.2, we choose as admissible variations

δϕ = ζ ×ϕn+ 1
2

and δV = ζ × (ϕn+1 −ϕn), where ζ again is a constant vector. Then

the time-discrete variational formulation (4.63) yields
∫

B0

ζ × (ϕn+1 −ϕn) · V n+ 1
2

ρ0 dV = 0 ,

∫

B0

ζ ×ϕn+ 1
2
· (V n+1 − V n) ρ0 dV = −

∫

B0

Salg :
1

2
DC[ζ ×ϕn+ 1

2
]|n+ 1

2
dV

− DΠext
m [ζ ×ϕn+ 1

2
] .

(4.70)

Similarly to Λ
C in (3.52), the algortihmic stress tensor Salg in (4.70)2 is symmetric and

therefore, we obtain

ζ ·
( 1

∆t
(Jn+1 − Jn)− Mext|n+ 1

2

)
= 0 , (4.71)

see (3.53)-(3.56). The equation above corresponds to the balance of angular momen-

tum with respect to the ζ-axis.
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4.4.2.3 Discrete balance of energy

To proof the balance of energy, we follow the procedure from Sec. 4.3.4.3 by choosing

admissible variations of the form: δV = V n+1 − Vn ∈ V and δϕ = ϕn+1 −ϕn ∈ V . As

shown in (3.57), we obtain for (4.63)1 the following result:

∫

B0

(V n+1 − Vn) ·
1

∆t
(ϕn+1 −ϕn) ρ0 dV = Tn+1 − Tn . (4.72)

Accordingly, taking into account the relationships

DC[ϕn+1 −ϕn]|n+ 1
2
= Cn+1 − Cn ,

Calg DC[ϕn+1 −ϕn]|n+ 1
2
= Gn+1 − Gn ,

Galg : DC[ϕn+1 −ϕn]|n+ 1
2
= J2

n+1 − J2
n ,

(4.73)

(4.63)2 yields

Tn+1 − Tn = −
∫

B0

(
DCΨC

iso : (Cn+1 − Cn) + DGΨG
iso : (Gn+1 − Gn)

+ pn+1 (Jn+1 − Jn)
)

dV − DΠext
m [ϕn+1 −ϕn] .

(4.74)

Furthermore, choosing δp = pn+1 ∈ Vp in (4.63)3 leads to

∫

B0

pn+1 (Jn+1 − τn+1)dV = 0 , (4.75)

and, analogously, ∫

B0

pn (Jn − τn)dV = 0 . (4.76)

The last two equations give rise to

∫

B0

pn+1 (Jn+1 − Jn) dV =
∫

B0

pn+1 (τn+1 − τn)dV =
∫

B0

DτΨvol (τn+1 − τn)dV . (4.77)

Note that the last equation results from the choice δτ = τn+1 − τn in (4.63)4. Now

(4.74) can be written as

Tn+1 − Tn = −
∫

B0

(
DCΨC

iso :(Cn+1 − Cn) + DGΨG
iso : (Gn+1 − Gn)

+DτΨvol (τn+1 − τn)
)

dV − (Πext
m (ϕn+1)− Πext

m (ϕn)) .

(4.78)
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Directionality property (4.67) implies

Tn+1 − Tn = −
(
Πint(ϕn+1, τn+1)− Πint(ϕn, τn)

)
−

(
Πext

m (ϕn+1)− Πext
m (ϕn)

)
. (4.79)

In analogy to (4.49) and (2.26) we define, respectively,

Πint(ϕ, τ) =
∫

B0

Ψ(λ̄C
i , λ̄G

i , τ)dV =
∫

B0

(
Ψiso(λ̄

C
i , λ̄G

i ) + Ψvol(τ)
)

dV , (4.80)

and

Π(ϕ, τ) = Πint(ϕ, τ) + Πext
m (ϕ) . (4.81)

Accordingly, (4.79) can be recast in the form

Tn+1 + Πn+1 = Tn + Πn , (4.82)

such that the present integrator is capable to preserve the total energy of a conserva-

tive system, independent of the time-step size.

4.5 Discretization in space

For the discretization in space we apply, similar to Sec. 3.3, the standard isoparamet-

ric finite element approach based on finite-dimensional approximations {ϕh, Vh} ∈
{Qh × Vh} ⊂ Q× V . Moreover, the additional field variables τh and ph are based on

approximations Vτ, Vp of the form

V
h
A =

{
A ∈ VA | Ah

∣∣∣
B(e)

0

=
nen

∑
b=1

MA
b Ab

}
, (4.83)

where A stands for τ or p. Here, nen denotes the number of element nodes aris-

ing from the interpolation of the additional fields. The present sample application

relies on uniform element-wise approximations for the volumetric dilatation τ and

the hydrostatic pressure field p making use of the shape functions MA
b : B0 → R,

with b = 1, ..., nen. The standard (Bubnov-) Galerkin approach relies on analogous

approximations for the corresponding variations. Since no inter-element continuity

is required for the mixed approximations (related to the shape functions MA
b ), the

additional unknowns can be eliminated on element level, see [27, 23]. Note that the

proposed discretization in space does not affect the structure-preserving scheme and

inherits the fundamental balance laws.
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4 EM schemes for quasi-incompressible elasticity in principal stretches

4.6 Numerical Investigations

In this section we verify the improved numerical performance due to both the mixed

finite element formulation and the structure-preserving integration scheme. In the

following, displacement based finite elements are denoted as Q1 with linear continu-

ous interpolation space for the displacement field and the mixed finite elements are

denoted as Q1P0 with linear continuous interpolation space for the displacement field

and a constant discontinuous interpolation space for the mixed fields, see Fig. 4.1.

ξ ξξ

η ηη

ζ ζζ

Figure 4.1: Illustration of the nodal points for the Q1 finite element (left) and the Q1P0 finite element

(right). The bullets represent the nodal points of the continuous displacement field and the

square represents the nodal points of the discontinuous mixed fields.

Moreover, the mid-point scheme outlined in Sec. 4.4 is denoted as MP, whereas the

energy-momentum consistent time-stepping scheme, outlined in Sec. 4.4.1, is de-

noted as EM. Finally, we would like to emphasize that the patch-test, investigated

in Sec. 3.4.1, is fulfilled for the elements presented in this chapter, see [81].

4.6.1 Static convergence analysis

The objectives of this example are:

O1.I Verification of the order of accuracy with respect to mesh refinement.

O1.II Verification of quadratic convergence of Newton-Rhapson solution process.

This example is constructed following [129, 140] where we assume a prescribed de-

formation field ϕpre given as

ϕpre = X + U1 sin(X) e1 + U2 sin(Y) e2 + U3(sin(Z) + cos(Z)) e3 . (4.84)
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4.6 Numerical Investigations

Therein Ui = {0.1 0.2 0.3} and ei are the basis vectors in the spatial configuration.

Accordingly, the prescribed deformation gradient Fpre can analytically be computed

by employing (2.14), such that

Fpre = (1 + U1 cos(X)) e1 ⊗ E1 + (1 − U2 sin(Y)) e2 ⊗ E2

+ (1 + U3 (cos(Z)− sin(Z))) e3 ⊗ E3 ,
(4.85)

where Ei are the basis vectors in the material configuration. Afterwards, the pre-

scribed right Cauchy-Green strain tensor, Cpre, its co-factor Gpre and the determinant

of the prescribed deformation gradient Jpre can be calculated as

Cpre = (Fpre)TFpre, Gpre =
1

2
Cpre Cpre, Jpre = det(Fpre) . (4.86)

The prescribed pressure ppre and volumetric dilatation τpre are given by

τpre = Jpre and ppre = ∂τΨvol(τ
pre) , (4.87)

which result in a prescribed second Piola-Kichhoff stress tensor given as

Spre = 2 ∂CΨC
iso(λ̄

C
i (C

pre)) + 2 ∂GΨG
iso(λ̄

G
i (G

pre)) Cpre + ppre (Jpre)−1 Gpre . (4.88)

Eventually, the first Piola-Kirchhoff stress tensor and the respective prescribed volume

load are given by

Ppre = Fpre Spre and B̄
pre = −Div(Ppre) . (4.89)

Now we investigate the approximated solution of the displacements and their ana-

lytical counterparts for the given volume load B̄
pre

and determine the rate of conver-

gence. As a domain of interest, we consider a cube with Ω ∈ (0, 1)[m]× (0, 1)[m]×
(0, 1)[m] as depicted in Fig. 4.2. Dirichlet boundaries which coincide with the pre-

scribed deformation given in (4.84) are applied on all surfaces (xi = 0 ∧ xi = 1, i =

1, 2, 3) of the cube. In this example we make use of an Ogden type material model

as introduced in Sec. 4.2.2. The geometry and the material as well as the simulation

parameters are given in Tab. 4.1. These material parameters correspond to the Lamé

parameters λ0 = 1.05 · 106 Pa and µ0 = 1.18 · 103 Pa in the linear theory. See Fig. 4.2

for the von Mises stress distribution of the given deformation field. In Fig. 4.3, the L2

norm of the error is displayed over different mesh sizes.

As expected, the convergence observed is (nearly) np + 1, where np is the order of the

finite element approximation space. Since we focus on low-order finite elements and

the rate of convergence seems to be optimal, we focus on this type of approximation in
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4 EM schemes for quasi-incompressible elasticity in principal stretches

the following. Finally, in Fig. 4.4, the quadratic convergence of the Newton-Rhapson

type of solution process can be observed (in here, we plot the iterations for the first

load-step of the finest mesh). Accordingly, the consistent linearization of the non-

linear problem is verified.

e1

e2

e3

0

400

Figure 4.2: Boundary conditions (left) and von Mises stress distribution of the final configuration

(right).

Table 4.1: Material and simulation parameters for static convergence test.

mechanical parameters am {6.3, 0.012, −0.1 } · 102 Pa geometry of the cube

bm {6.3, 0.012, −0.1 } · 102 Pa

γm {1.3, 5, −2 } -

[m]

1

1

1

δm {1.3, 5, −2 } -

c 2 · 105 Pa

d −2 -

Newton tolerance ε 1 · 10−7 -

size of increment ∆U 0.1 m

4.6.2 Compressed block

The objectives of this example are:

O2.I Verification of the algorithmic energy approximation.

O2.II Verification of numerical stability and validity.
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Figure 4.3: Convergence with mesh refinement.
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Figure 4.4: Newton iterations in a load-step.

The first transient example deals with a nearly incompressible block as shown in

Fig. 4.5. The block is fully clamped on its bottom face (at x3 = 0) and symmetry

conditions are taken into account on the surface at x1 = 1 (zero displacements in e1-

direction) and x2 = 0 (zero displacements in e2-direction). A time-dependent surface

load with magnitude P is acting on a quarter of the top of the block in negative e3-

direction as illustrated in Fig. 4.5. In this connection, the nodal dead load is given

by

P(t) = f (t) p̂, with f (t) =





sin
(

π
2 tml

t
)

t ≤ tml

cos
(

π
2 (tel−tml)

(t − tml)
)

tml ≥ t < tel ,

0 t > tel

(4.90)

where at tml = 1s the load reaches its maximum and at tel = 2s the load interval ends.

In the compressible case we set p̂ = (−1 · 103) Pa, whereas for the incompressible case

we set p̂ = (−3 · 103) Pa. The Ogden’s type material model is given in Sec. 4.2.2 and

the corresponding material and simulation parameters are provided in Tab. 4.2. In

the linear theory, these material parameters correspond to the Lamé parameters µ0 =

1.18 · 103 Pa and λ0 = 1.05 · 106 Pa for the incompressible case and λ0 = 1.13 · 103 Pa

in the compressible case, respectively.
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e1

e2

e3

P

A

0

4000

Figure 4.5: Boundary conditions of the compressed block (left), initial mesh (center) and von Mises

stress distribution of the incompressible block at 0.5s (right).

First, we verify the validity of the proposed formulation. In Figs. 4.6 and 4.7 the posi-

tion in e3 direction of node A is plotted over time. Herein we use the EM scheme along

with a time-step size of ∆t = 0.05s and a coarse discretization (crs) with 4 × 4 × 4 fi-

nite elements, a medium discretization (mdm) with 6 × 6 × 6 finite elements and a

fine discretization (fn) with 8× 8× 8 finite elements. As it can be observed in Fig. 4.6,

for the compressible case both formulations are in a good agreement. In contrast, the

incompressible case is investigated in Fig. 4.7, where the locking phenomena of the

Q1 formulation can be observed in this transient example. While the Q1P0 formu-

lation shows a good spatial convergence behavior, the Q1 formulation shows strong

locking effects, which lead to invalid simulation results. Interestingly, due to locking,

the period length of the Q1 formulation is much smaller which can cause serious

problems e.g. in fatigue studies. Next we verify the algorithmic conservation of the

total energy for the presented EM scheme. In here, we use the Q1P0 formulation

along with the nearly incompressible material behavior. In Fig. 4.8 we observe that

the standard MP time-stepping scheme overestimates the total energy and after that,

numerical instabilities lead to a termination of the simulation. In contrast, the pre-

sented EM scheme is numerically stable for the whole simulation time, see Fig. 4.8.

Moreover, the EM scheme is capable to reproduce the balance of energy in the time-

discrete setting independent of the time-step size, where the difference of the total

energy of a time-step is under the user defined Newton tolerance, see Fig. 4.9. Note

that we obtain the same improved stability and robustness of the EM scheme for the

compressible case, too. Fig. 4.10 shows the deformation for some time points of the

compressed block with its von Mises stress distribution.
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4.6 Numerical Investigations

Table 4.2: Material and simulation parameters for the compressed block.

mech. parameters am {9.45, 0.012, −0.1 } · 102 Pa geometry

bm {9.45, 0.012, −0.1 } · 102 Pa of the block

γm {1.3, 5, −2 } -

δm {1.3, 5, −2 } -

[m]

1

1

1

c 2 · 102/2 · 105 Pa

d −2 -

reference density ρ 1000 kg m−3

Newton tolerance ε 1 · 10−5 -

time-step size ∆t 0.2/0.1/0.025 s

simulation time T 20 s
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Figure 4.6: Convergence with mesh refinement

for the compressible case. Calculated

with EM scheme and time-step size

∆t = 0.025s.
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Figure 4.7: Convergence with mesh refinement

for the nearly incompressible case.

Calculated with EM scheme and

time-step size ∆t = 0.025s.
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Figure 4.8: Total energy evolution of the Q1P0

formulation for the nearly

incompressible case.
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Figure 4.9: Incremental change of total energy of

the Q1P0 formulation for the nearly

incompressible case.

0

4000

Figure 4.10: Snapshots of configurations with von Mises stress distribution at

t = { 0, 0.125, 0.25 0.375, 0.5, 0.625, 0.75, 0.875 }s. The results for nearly

incompressibility are obtained with the EM scheme and ∆t = 0.025s.
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4.6.3 Twisting column

The objectives of this example are:

O3.I Verification of the algorithmic conservation properties.

O3.II Verification of numerical stability and validity.

O3.III Verification of order of accuracy.

The last example deals with a twisting column depicted in Fig. 4.11, which is a mod-

ification of the example presented in [25, 61].

e1 e2

e3

ω0(X3)

0

106

0

33

Figure 4.11: Boundary conditions of the column (left), initial mesh (center-left), initial nodal velocity

distribution (center-right) and von Mises stress distribution at 0.12s (right).

In here, we would like to show that the EM scheme correctly approximates the energy

as well as the angular momentum of the mechanical system at hand even for very

complex deformations and extremely large strains. Again, we make use of quasi

incompressible Ogden material as presented in Sec. 4.2.2, where the material and

simulation parameters are summarized in Tab. 4.3. In the linear theory, these material

parameters correspond to the Lamé parameters λ0 = 2.63 · 108 Pa and µ0 = 1.18 ·
106 Pa. As indicated in Fig. 4.11, the initial velocity field is prescribed by

V0 = ω0 × X , with ω0 = [0, 0, Ω1 sin(π (X3−0.5 l)
2 l ) + Ω2] , (4.91)

with Ω1 = 50s−1 and Ω2 = 10s−1. Note that the initial angular velocity ω0 depends

on the X3 coordinate, see Fig. 4.11 for an illustration of the nodal velocity vectors

and their magnitudes in m
s . In addition, neither Dirichlet nor Neumann boundary
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4 EM schemes for quasi-incompressible elasticity in principal stretches

conditions are employed in this example and therefore, the system can be classified

as autonomous Hamiltonian system with symmetry implying conservation of total

linear momentum, angular momentum and energy. The objective of this example is

to show that these quantities are indeed conserved by the present EM scheme.

Fig. 4.12 shows that the EM scheme is numerically stable for the whole simulation

time and capable to reproduce the conservation of energy correctly, independent of

the time-step size, see Fig. 4.13 . Moreover, we can observe that standard schemes

like the mid-point rule typically exhibit numerical instabilities in non-linear applica-

tions, which leads to a termination of the simulation after about {0.07, 0.09, 1.525}s

for ∆t = {0.01 0.0075, 0.005}s. Eventually, the total angular momentum is correctly

conserved independent of the time-step size for the presented EM scheme, which can

be observed from Figs. 4.14 and 4.15. Furthermore, we investigate the numerical ac-

curacy of the present EM time integrator, which should be of second order likewise

the mid-point integrator. To investigate this, we define the L2 norm of the error in the

positions as

||e||L2
=

||ϕ−ϕr||L2

||ϕr||L2

, (4.92)

where

||ϕ||L2
=



∫

B0

(ϕ ·ϕ)dV




1/2

. (4.93)

Table 4.3: Material and simulation parameters for the column.

mech. parameters am {6.3, 0.012, −0.1 } · 105 Pa geometry

bm {6.3, 0.012, −0.1 } · 105 Pa of the column

γm {1.3, 5, −2 } -

[m]

1 1

6

δm {1.3, 5, −2 } -

c 5 · 107 Pa

d −2 -

reference density ρ 1000 kg m−3

Newton tolerance ε 1 · 10−5 -

time-step size ∆t 0.01/0.0075/0.005 s

simulation time T 10 s

In (4.92), ϕr defines the reference solution of the positions, calculated with the smallest

time-step size (∆t = 0.00001s). We investigate the time interval 0 s ≤ t ≤ 0.01 s along
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4.6 Numerical Investigations

with a spatial discretization of {1× 1× 4} finite elements. As expected, all integrators

show second order of accuracy in the positions, see Fig. 4.16. Fig. 4.17 contains a series

of snapshots illustrating the twist of the column during the simulation.
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Figure 4.12: Total energy evolution of the Q1P0

formulation for the nearly

incompressible case.
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Figure 4.13: Incremental change of total energy

of the Q1P0 formulation for the

nearly incompressible case.
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Figure 4.14: Total J evolution of the Q1P0

formulation for the nearly

incompressible case.
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Figure 4.15: Incremental change of J of the

Q1P0 formulation for the nearly

incompressible case.
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Figure 4.16: Column: Error in the displacements.

0
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Figure 4.17: Snapshots of configurations with von Mises stress distribution at t = { 0, 0.03, 0.06,

0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3, 0.33 }s. The results have been obtained for a

nearly incompressible material model with EM scheme and ∆t = 0.0075s.
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5 EM scheme for nonlinear

thermo-elastodynamics
1

In this chapter we provide a new approach to the design of EM consistent integration

schemes in the field of non-linear thermo-elastodynamics. A temperature based weak

form is employed which facilitates the design of a structure-preserving time-stepping

scheme for coupled thermo-elastic problems. This approach is motivated by the gen-

eral equation for non-equilibrium reversible-irreversible coupling (GENERIC) frame-

work for open systems. In contrast to complex projection based discrete derivatives,

a new form of an algorithmic stress formula is proposed. The spatial discretization

relies on finite element interpolations for the displacements and the temperature. The

superior performance of the proposed formulation is shown by means of representa-

tive numerical examples.

5.1 Finite strain thermo-elastodynamics

The body B0, introduced in Sec. 2.2, is now considered as a thermoelastic body with

the absolute temperature θ : B0 × I → R+ which is assumed to be a smooth func-

tion

θ = θ(X , t) . (5.1)

The material gradient of the temperature field γ : B0 × I → R3 is given by

γ = ∂Xθ . (5.2)

1 This chapter is based on [44].
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Next to the pure mechanical boundaries, the thermal Neumann boundaries and

Dirichlet boundaries are ∂BQ
0 ⊂ ∂B0 and ∂Bθ

0 ⊂ ∂B0, respectively. Moreover, the re-

spective boundaries may not overlap each other, i.e. ∂BQ
0 ∪ ∂Bθ

0 = ∂B0, ∂BQ
0 ∩ ∂Bθ

0 =

∅. Furthermore p : B0 × I → R
3 denotes the material density of linear momentum

given by

p := ρ0 V . (5.3)

Introducing the state vector z = {ϕ, p, θ} of the thermodynamical system, the solution

space is now defined by the infinite dimensional set

S = {z : B0 ×I → R
3 ×R

3 ×R
+ | det(F) > 0, ϕ = ϕ̄∀X ∈ ∂Bϕ

0 and θ = θ̄ ∀X ∈ ∂Bθ
0} .

(5.4)

In order to describe finite strain thermo-elastodynamics a Helmholtz free energy den-

sity function ˆ̃Ψ : R3×3 × R+ → R is introduced

ˆ̃Ψ(F , θ) = Ψ̂(C, θ) , (5.5)

which is assumed to be twice continuously differentiable with respect to its argu-

ments. Furthermore in (5.5) a frame-indifferent material formulation Ψ̂ : R3×3 ×
R+ → R is introduced which is invariant under superposed rigid motions, see

Sec. 2.2.2.

Based on the Helmholtz free energy, the second Piola-Kirchhoff stress tensor

S = 2 ∂CΨ̂(C, θ) , (5.6)

and the entropy density

η = −∂θΨ̂(C, θ) , (5.7)

are introduced. The heat transfer is governed by Duhamel’s law of heat conduction

Q = −K(C, θ) γ , (5.8)

where K : R3×3 × R+ → R3×3 denotes the material thermal conductivity tensor

which is assumed to be semi-positive definite and Q : B0 × I → R
3 is the Piola heat

flux vector. Note that the constitutive equations (5.6)-(5.8) are thermodynamically

consistent in the sense that they satisfy the Clausisus-Duhem inequality. The global

balance of linear momentum is given by

∫

B0

ṗ dV =
∫

B0

B̄ dV +
∫

∂BP
0

P N dA , (5.9)
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where the volume force density B̄, the first Piola-Kirchhoff stress tensor P and the

unit outward normal N have been introduced in Sec. 2.2. The global energy balance

is given by ∫

B0

θ η̇ dV =
∫

B0

R dV −
∫

∂BQ
0

Q · N dA . (5.10)

Therein R : B0 × I → R denotes the heat source density. For a detailed derivation

of (5.9) and (5.10) the reader is referred to e.g. [53, 68]. Using standard arguments

from continuum mechanics, the strong form governing the evolution of the coupled

system at hand can be stated as

ϕ̇ = ρ−1
0 p ,

ṗ = Div(F S) + B̄ ,

θ η̇ = −Div(Q) + R̄ ,

(5.11)

in B0 ∀ t ∈ I , where the energy balance (5.11)3 is formulated in entropy form. The for-

mulation (5.11) is referred to as the standard formulation in the sequel. In the above,

(5.11)2 corresponds to the local balance of linear momentum and (5.11)3 denotes the

local energy balance. For the coupled thermo-elastodynamic problem comprised of

the partial-differential equations (PDE) in (5.11) suitable initial and boundary condi-

tions are necessary. In particular prescribed deformations ϕ̄ : ∂Bϕ
0 × I → R

3, tem-

peratures θ̄ : ∂Bθ
0 × I → R+, Piola tractions T̄ : ∂BP

0 × I → R3 and Piola heat fluxes

Q̄ : ∂BQ
0 × I → R need to be provided, such that

ϕ = ϕ̄ on ∂Bϕ
0 ,

P N = T̄ on ∂BP
0 ,

θ = θ̄ on ∂Bθ
0 ,

Q · N = −Q̄ on ∂BQ
0 ,

(5.12)

for all t ∈ I . Furthermore prescribed volume force B̄ and heat source densities R̄

need to be provided. Likewise, suitable initial conditions for configuration, velocity

and temperature fields need to be provided with

ϕ(X , 0) = ϕ0 ,

V(X , 0) = V0 ,

θ(X , 0) = θ0 ,

(5.13)

in B0. Eventually, the initial boundary value problem (IBVP) is comprised of PDEs

(5.11), boundary conditions (5.12) and initial conditions (5.13). For the ensuing appli-

cation of the finite element method a time independent tangent space is introduced
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as

W = {wz = (wϕ, wp, we) : B0 → R
3 × R

3 × R} . (5.14)

The spaces of virtual or admissible test functions for the deformation and linear mo-

mentum W• ⊂ W , where • ∈ {ϕ, p}, as well as the temperature We ⊂ W are given

by

W• = {w• : w•(X) ∈ H1(B0) | w•(X) = 0 on ∂Bϕ
0 } ,

We = {we : we(X) ∈ H1(B0) | we(X) = 0 on ∂Bθ
0} ,

(5.15)

where H1 denotes the Sobolev functional space of square integrable functions and

derivatives. Next, the strong forms in (5.11) are multiplied by test functions wz ∈ W
and integrated afterwards over the domain B0. Finally, the weak forms of the balance

of linear momentum and of the energy are obtained by using standard techniques

like partial integration, the divergence theorem of Gauss, etc. leading to

∫

B0

wϕ · ϕ̇dV =
∫

B0

wϕ · ρ−1
0 p dV ,

∫

B0

wp · ṗ dV = −
∫

B0

(F S) : ∂Xwp dV +
∫

B0

wp · B̄ dV +
∫

∂BP
0

wp · T̄ dA ,

∫

B0

we θ η̇ dV =
∫

B0

Q · ∂Xwe dV +
∫

B0

we R̄ dV +
∫

∂BQ
0

we Q̄ dA ,

(5.16)

which have to hold for arbitrary wz ∈ W . Further details about this formulation can

be found in [69].

5.2 Constitutive equations for large strain

thermo-elasticity

A thermal hyperelastic material model with a polyconvexity-based Helmholtz free

energy density function can be formulated as

ˆ̃Ψ(F , θ) = Ψ̃(F , H, J, θ) , (5.17)

where Ψ̃ : R3×3 × R3×3 × R+ × R+ → R is polyconvex in F, H and J and concave

in θ. In contrast to the Helmholtz free energy density function given in (5.5), the

kinematic fields H and J are explicit arguments of the function. Again, we focus on a
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5.2 Constitutive equations for large strain thermo-elasticity

frame-indifferent Helmholtz free energy density function resulting from (5.17) given

as
ˆ̃Ψ(F , θ) = Ψ̂(C, θ) = Ψ(C, G, C, θ) . (5.18)

The second Piola-Kirchhoff stress tensor described in the tensor cross product notion

has already been introduced in (2.60) and is given by

S = 2
(
∂CΨ + ∂GΨ C + ∂CΨ G

)
. (5.19)

For the entropy density resulting from (5.18) we obtain

η(C, θ) = −∂θΨ(C, G, C, θ) . (5.20)

We make the common assumption that the entropy is a function of both, the temper-

ature θ and the volumetric part of the deformation C. To describe the behavior of the

thermo-elastic material we specify the Piola-Kirchhoff heat flux tensor, given in (5.8).

The thermal conductivity tensor K is defined as

K(G, C, θ) = k0 C−1 G , (5.21)

for a thermally isotropic behavior where k0 = C1/2 k ≥ 0 is the coefficient of thermal

conductivity in the reference configuration. In contrast to the classical formulation

(5.8), the Piola-Kirchhoff heat flux tensor is now given by

Q(G, C, θ) = −k0 C−1 G γ . (5.22)

Note that in (5.21) and (5.22) use has been made of (2.3), the second equality in (2.12),

of (2.42) and of (2.43).

Example (Mooney-Rivlin material): The polyconvexity-based Helmholtz free en-

ergy density of a compressible Mooney-Rivlin thermo-elastic material model defined

in a frame-indifferent formulation is given by

Ψ(C, G, C, θ) = Ψmech,1(C, G) + Ψmech,2(C) + Ψtemp(θ) + Ψcouple(C, θ) . (5.23)

Here, the purely mechanical parts Ψmech,1(C, G) and Ψmech,2(C) have been introduced

in (2.52) and (2.53), respectively. The convex function Γ1 now reads

Γ1(δ) = c1
2 (δ − 1)2 − d1 log(δ), with the material constants c1, d1 ≥ 0. The thermal

response of the material due the thermal part of Ψ is given by

Ψtemp(θ) = κ
(

θ − θ0 − θ log
( θ

θ0

))
, (5.24)
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5 EM schemes for nonlinear thermo-elastodynamics

where the parameter κ ≥ 0 is the specific heat capacity and θ0 : B0 → R+ the reference

temperature. The coupled term of the Helmholtz free energy density is described by

the scalar-valued function

Ψcouple(C, θ) = −3 β (θ − θ0) Γ2(C) , (5.25)

with a suitable convex function Γ2 : R+ → R. For example, Γ2(δ) = c2 (δ − 1)− d2
δ ,

where c2, d2 ≥ 0. Note that the parameter β ≥ 0 characterizes the strength of the

thermo-mechanical coupling. See Sec. 5.6 for a specific choice of the Helmholtz free

energy density function.

5.3 Temperature-based governing equations

In this section we derive an alternative formulation of the thermo-elastodynamical

problem by rephrasing the strong form of the energy balance in entropy form (5.11)3

into temperature form. In addition we make use of the polyconvexity-based form of

the constitutive equations (5.19), (5.20) and (5.21). We then show that the temperature-

based formulation satisfies the fundamental balance laws and therefore provides a

new basis for the construction of EM integrators.

5.3.1 Temperature-based strong form

To gain the strong form of the thermo-elastodynamical problem in temperature form

we express the rate of the entropy density (5.20) using the chain rule

η̇ = ∂Cη Ċ + ∂θη θ̇ = ∂Cη G : Ċ + ∂θη θ̇ , (5.26)

being only a function of the temperature and the volumetric part of the deformation.

This corresponds to the assumption that only volumetric deformation drives changes

in the absolute temperature. Substituting (5.26) into (5.11)3 and further using the

classical definition of the absolute temperature (see [117])

θ = ∂θu (∂θη)−1 , (5.27)

where u denotes the specific inner energy, the above leads to the energy balance

expressed in temperature-form

θ̇ = −(∂θη)−1∂Cη G : Ċ − (∂θu)−1 Div(Q) + (∂θu)−1R̄ . (5.28)
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5.3 Temperature-based governing equations

Note that in (5.26) and (5.28) use have been made of the relationships provided by

Remark 3.3.

Further expressing the second Piola-Kirchhoff stress tensor (5.19) in terms of the inner

energy and the entropy density using Ψ(C, G, C, θ) = ũ(C, G, C, η(C, θ)) − θ η(C, θ)

and u(C, G, C, θ) = ũ(C, G, C, η(C, θ)) yields

S = 2
(
∂CΨ + ∂GΨ C + ∂CΨ G

)
= 2

(
∂Cu + ∂Gu C + (∂Cu − θ∂Cη) G

)
. (5.29)

Using (5.27) and (5.28) makes possible to recast the governing equations (5.11) in the

temperature form

ϕ̇ = ρ−1
0 p ,

ṗ = −Div(F S) + B̄ ,

θ̇ = −(∂θη)−1∂Cη G : Ċ − (∂θu)−1Div(Q) + (∂θu)−1R̄ ,

(5.30)

in B0 for all t ∈ I with suitable initial conditions (5.13).

Remark 5.1. Comparing (5.30) to (5.11) the formulation distinguishes three different key

elements

1) the definition of the absolute temperature is used (see (5.27)),

2) the second Piola-Kirchhoff stress tensor is based on the internal energy and entropy

density rather than the Helmholtz free energy (see (5.29)),

3) the balance of energy is rewritten in temperature-form (compare (5.30)3 with the stan-

dard form (5.11)3),

which enable the design of structure preserving numerical methods as will be introduced,

subsequently.

5.3.2 Temperature-based weak form

Introducing a time independent tangent space

W = {wz = (wϕ, wp, wθ) : B0 → R
3 × R

3 × R} , (5.31)

and the spaces of virtual or admissible test functions for the deformation and linear

momentum W• ⊂ W , where • ∈ {ϕ, p}, as well as for the temperature Wθ ⊂ W are

given by

W• = {w• : w•(X) ∈ H1(B0) | w•(X) = 0 on ∂Bϕ
0 } ,

Wθ = {wθ : wθ(X) ∈ H1(B0) | wθ(X) = 0 on ∂Bθ
0} ,

(5.32)
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5 EM schemes for nonlinear thermo-elastodynamics

we obtain the temperature-based weak form by considering standard techniques like

partial integration, the divergence theorem of Gauss etc.

∫

B0

wϕ · ϕ̇dV =
∫

B0

wϕ · ρ−1
0 p dV ,

∫

B0

wp · ṗ dV =−
∫

B0

S :
(
∂XwT

p F
)

dV +
∫

B0

wp · B̄ dV +
∫

∂BP
0

wp · T̄ dA ,

∫

B0

wθ θ̇ dV =−
∫

B0

wθ (∂θη)−1 ∂Cη G : Ċ + ∂X(wθ (∂θu)−1) · Q dV

+
∫

B0

wθ (∂θu)−1 R̄ dV +
∫

∂BQ
0

wθ (∂θu)−1 Q̄ dA ,

(5.33)

which have to hold for arbitrary wz ∈ W . Further the weak form in (5.33) is supple-

mented with suitable initial conditions
∫

B0

wϕ ·ϕdV =
∫

B0

wϕ ·ϕ0 dV ,

∫

B0

wp · p dV =
∫

B0

wp · p0 dV ,

∫

B0

wθ θ dV =
∫

B0

wθ θ0 dV .

(5.34)

5.3.3 Balance laws

Next we will show that the temperature-based formulation derived in the last section

is just a reformulation of the classical formulation. The temperature-based formula-

tion expresses the same physics in a slightly different way which provides a more ele-

gant structure for the construction of EM consistent integrators. For a detailed inves-

tigation of the conservation properties a homogeneous Neumann problem is consid-

ered. In particular no Dirichlet boundaries are employed such that ∂Bϕ
0 = ∂Bθ

0 = ∅.

We verify the classical balance laws pertaining to the coupled problem at hand. The

main goal of the present work is the design of numerical methods which preserve

these balance laws under discretization.
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5.3 Temperature-based governing equations

5.3.3.1 Balance of linear momentum

For verification of the balance of total linear momentum the test functions in (5.33)

are replaced by wϕ = 0 ∈ Wϕ, wp = ζ ∈ Wp where ζ ∈ R3 is arbitrary but constant

and wθ = 0 ∈ Wθ . This yields

ζ ·
( d

dt
L − Fext

)
= 0 , (5.35)

where the total linear momentum and the total external mechanical loads have been

introduced in (3.19) and (3.20), respectively. Therefore, for vanishing external me-

chanical loads the total linear momentum is a constant of motion of the continuous

system.

5.3.3.2 Balance of angular momentum

To verify the balance of angular momentum we choose the following admissible test

functions wϕ = ζ × ϕ̇ρ0 ∈ Wϕ, wp = ζ ×ϕ ∈ Wp and wθ = 0 ∈ We in (5.33), where

ζ ∈ R3 is arbitrary, but constant. This choice of wp leads to the relation ∂Xwp = ζ̂ F

where ζ̂ is a skew-symmetric tensor such that ζ̂ a = ζ × a for any a ∈ R3. Following

the lines of Sec. 3.1.2.2 we end up at the desired result

ζ ·
( d

dt
J − Mext

)
= 0 , (5.36)

where the total angular momentum and the total torque about a corresponding axis

have been introduced in (3.24) and (3.25), respectively. Accordingly, for vanishing

external mechanical loads the total angular momentum is a constant of motion of the

continuous system.

5.3.3.3 Balance of energy

Total energy E = T + U is comprised of kinetic energy T =
∫
B0

1
2ρ−1

0 p · p dV and

inner energy U =
∫
B0

u dV. Furthermore Qext denotes the external thermal power

containing bulk and boundary contributions given by

Qext =
∫

B0

R̄ dV +
∫

∂BQ
0

Q̄ dA . (5.37)
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We choose the following admissible test functions wϕ = ṗ ∈ Wϕ, wp = ϕ̇ ∈ Wp and

wθ = ∂θu ∈ We in (5.33) for the verification of the balance of total energy to obtain

∫

B0

ṗ · ϕ̇dV =
∫

B0

ṗ · ρ−1
0 p dV ,

∫

B0

ϕ̇ · ṗ dV = −
∫

B0

2
(
∂Cu + ∂Gu C + (∂Cu − θ∂Cη) G

)
:
(

ḞT F
)

dV

+
∫

B0

ϕ̇ · B̄ dV +
∫

∂BP
0

ϕ̇ · T̄ dA ,

∫

B0

∂θu θ̇ dV = −
∫

B0

∂θu (∂θη)−1 ∂Cη G : Ċ dV + ∂X(∂θu (∂θu)−1) · Q dV

+
∫

B0

∂θu (∂θu)−1 R̄ dV +
∫

∂BQ
0

∂θu (∂θu)−1 Q̄ dA .

(5.38)

Inserting (5.38)1 into (5.38)2, using the time derivative of the total kinetic energy

Ṫ =
d

dt

∫

B0

1

2
ρ−1

0 p · p dV =
∫

B0

ρ−1
0 p · ṗ dV , (5.39)

adding (5.38)3 and further using symmetry conditions we obtain the balance of total

energy

Ė = Ṫ + U̇ = Pext + Qext , (5.40)

where we can identify the time derivative of the total internal energy

U̇ =
∫

B0

∂Cu : Ċ + ∂Gu : Ġ + ∂Cu Ċ + ∂θu θ̇ dV , (5.41)

using the identities ∂Gu C : Ċ = ∂Gu : Ġ, G : Ċ = Ċ. For vanishing external me-

chanical and thermal loads the total energy is a constant of motion of the continuous

system.

5.4 Discretization in time

Next we seek a sequence of states {ϕn, pn, θn}N
n=0 in S approximating {ϕn, pn, θn} ≈

{ϕ(tn), p(tn), θ(tn)}. To this end we aim at an one-step scheme which determines

{ϕn+1, pn+1, θn+1} at time-level n + 1 from given approximations {ϕn, pn, θn} at time-

level n.
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5.4 Discretization in time

5.4.1 Structure-preserving integration scheme

We propose the following semi-discrete version of the variational formulation (5.33).

In this connection we make use of the notion of a discrete gradient derivative in the

sense of [50]. Accordingly, consider the time-discrete version of (5.33) given by

∫

B0

wϕ ·
1

∆t
(ϕn+1 −ϕn)dV =

∫

B0

wϕ · ρ−1
0 pn+ 1

2
dV ,

∫

B0

wp ·
1

∆t
(pn+1 − pn)dV =−

∫

B0

Salg :
(
∂XwT

p Fn+ 1
2

)
dV

+
∫

B0

wp · B̄n+ 1
2

dV +
∫

∂BP
0

wp · T̄n+ 1
2

dA ,

(5.42)

∫

B0

wθ
1

∆t
(θn+1 − θn)dV =−

∫

B0

wθ (Dθη)−1 ∂Cη(zn+ 1
2
) G(zn+ 1

2
) :

1

∆t
(Cn+1 − Cn)dV

+
∫

B0

∂X(wθ (Dθu)−1) · Q(zn+ 1
2
)dV

+
∫

B0

wθ (Dθu)−1 R̄n+ 1
2

dV +
∫

∂BQ
0

wθ (Dθu)−1 Q̄n+ 1
2

dA ,

(5.43)

where

θalg = Dθu (Dθη)−1 , (5.44)

is the algorithmic temperature, Galg is the algorithmic cofactor of C as introduced in

(3.64), and

Salg = 2
(
DCu + DGu Calg + DCu Galg − θalg ∂Cη(zn+ 1

2
) G(zn+ 1

2
)
)

, (5.45)

is the algorithmic second Piola-Kirchhoff stress tensor. In (5.43) the time-discrete

version G(zn+ 1
2
) yields

G(zn+ 1
2
) =

1

2
C(ϕn+ 1

2
) C(ϕn+ 1

2
) . (5.46)

We collect the arguments of the density functions in the following quadtuple

π = {C, G, C, θ} = {π1, π2, π3, π4} . (5.47)
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Using the notation u(π) = u(C, G, C, θ) we introduce partitioned discrete gradients

D̄π1u = DCu, D̄π2u = DGu, D̄π3u = DCu and D̄π4u = Dθu in the sense of [50] by

D̄πiu =
1

2
(D̄πiun+1,n + D̄πiun,n+1), i ∈ Y = {1, 2, 3, 4} ,

D̄πi
n+1,n

u = D̄πiu(πi
n+1, πi

n)|π j
n+1,πk

n
, ∀j ∈ Y : j < i, k ∈ Y : k > i ,

D̄πi
n,n+1

u = D̄πiu(πi
n, πi

n+1)|π j
n,πk

n+1

, ∀j ∈ Y : j < i, k ∈ Y : k > i ,

(5.48)

where the discrete operators D̄πiu(πi
n+1, πi

n)|π j
n+1,πk

n
and D̄πiu(πi

n, πi
n+1)|π j

n,πk
n+1

are

defined as

D̄πiu|
π

j
n+1,πk

n
= ∂πiu(πi

n+ 1
2
)|

π
j
n+1,πk

n

+
u(πi

n+1)|π j
n+1,πk

n
− u(πi

n)|π j
n+1,πk

n
− 〈∂πiu(πi

n+ 1
2

)|
π

j
n+1,πk

n
, ∆πi〉

||∆πi ||2 ∆πi,

D̄πiu|
π

j
n ,πk

n+1

= ∂πiu(πi
n+ 1

2
)|

π
j
n,πk

n+1

+
u(πi

n+1)|π j
n ,πk

n+1

− u(πi
n)|π j

n,πk
n+1

− 〈∂πiu(πi
n+ 1

2

)|
π

j
n,πk

n+1

, ∆πi〉
||∆πi ||2 ∆πi.

(5.49)

Hereby 〈., .〉 denotes the inner product and D̄πiu the discrete gradient of u with re-

spect to πi. From the directionality property of a discrete gradient [50] follows the

relationship

D̄π1u : (π1
n+1 − π1

n) + D̄π2u : (π2
n+1 − π2

n) + D̄π3u(π3
n+1 − π3

n) + D̄π4u(π4
n+1 − π4

n)

= DCu : (Cn+1 − Cn) + DGu : (Gn+1 − Gn) + DCu(Cn+1 − Cn) + Dθu(θn+1 − θn)

= u(Cn+1, Gn+1, Cn+1, θn+1)− u(Cn, Gn, Cn, θn) = un+1 − un .
(5.50)

Further the quantity ρ−1
0 pn+ 1

2
is a discrete gradient of the kinetic energy density

since

D̄pk · (pn+1 − pn) =
1

2
ρ−1

0 pn+1 · pn+1 −
1

2
ρ−1

0 pn · pn = kn+1 − kn . (5.51)

Example (Mooney-Rivlin material cont’d): Applying the Mooney-Rivlin material

model introduced in Sec. 5.2 leads to the constant expressions of the discrete gradi-

ents
DCu = a I ,

DGu = b I ,

Dθu = κ .

(5.52)
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Furthermore the discrete gradient DCu reduces to a partitioned form of the well-

known Greenspan formula [55], such that

DCu =
1

2

u(Cn+1, θn)− u(Cn, θn)

Cn+1 − Cn
+

1

2

u(Cn+1, θn+1)− u(Cn, θn+1)

Cn+1 − Cn
. (5.53)

It is important to remark that the classical description of the density functions via

only C and θ would need tensor- and scalar-structured discrete gradient operators

which greatly complicates the description.

5.4.2 Semi-discrete balance laws

Next we show that the semi-discrete formulation proposed in Sec. 5.4.1 satisfies spe-

cific balance laws in analogy to the continuous setting. As before in Sec. 5.3.3, we

focus on the homogeneous Neumann problem.

5.4.2.1 Balance of linear momentum

Following the procedure in Sec. 5.3.3.1 for the verification of the balance of total

linear momentum, the variations in (5.42) and (5.43) are replaced by wϕ = 0 ∈ Wϕ

and wp = ζ ∈ Wp where ζ ∈ R3 is arbitrary but constant and wθ = 0 ∈ We which

yields

ζ ·
( 1

∆t
(Ln+1 − Ln)− Fext

)
= 0 . (5.54)

Therefore, for vanishing external mechanical loads the total discrete linear momentum

is a constant of motion of the semi-discrete system.

5.4.2.2 Balance of angular momentum

Following the procedure in Sec. 5.3.3.2 we choose the following admissible test func-

tions wϕ = ζ × 1
∆t(ϕn+1 −ϕn)ρ0 ∈ Wϕ, wp = ζ ×ϕn+ 1

2
∈ Wp and wθ = 0 ∈ Wθ ,

where ζ ∈ R3 is constant, in (5.42) and (5.43) to verify the balance of angular momen-

tum. In the same way as in Sec. 3.1.2.2 we obtain the desired result

ζ ·
( 1

∆t
(Jn+1 − Jn)− Mext

n,n+1

)
= 0 , (5.55)
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where
∫

B0

ζ × 1

∆t
(ϕn+1 −ϕn) · pn+ 1

2
dV +

∫

B0

(ζ ×ϕn+ 1
2
) · 1

∆t
(pn+1 − pn)dV

= ζ ·
∫

B0

· 1

∆t
(ϕn+1 −ϕn)× pn+ 1

2
+ϕn+ 1

2
× 1

∆t
(pn+1 − pn)dV

= ζ ·
∫

B0

1

∆t
(ϕn+1 × pn+1 −ϕn × pn)dV = ζ ·

∫

B0

1

∆t
(Jn+1 − Jn)dV ,

(5.56)

has been used. For vanishing external mechanical loads the total discrete angular

momentum is a constant of motion of the semi-discrete system.

5.4.2.3 Balance of energy

Following the procedure in Sec. 5.3.3.3 we choose the following admissible test func-

tions wϕ = 1
∆t(pn+1 − pn) ∈ Wϕ, wp = 1

∆t (ϕn+1 −ϕn) ∈ Wp and wθ = Dθu ∈ Wθ in

(5.42) and (5.43). We obtain

0 =
∫

B0

1

∆t
(pn+1 − pn) ·

1

∆t
(ϕn+1 −ϕn)dV −

∫

B0

1

∆t
(pn+1 − pn) · ρ−1

0 pn+ 1
2

dV ,

0 =
∫

B0

1

∆t
(ϕn+1 −ϕn) ·

1

∆t
(pn+1 − pn)dV +

∫

B0

Salg :
1

∆t

(
∂X(ϕn+1 −ϕn)

T Fn+ 1
2

)
dV

−
∫

B0

1

∆t
(ϕn+1 −ϕn) · B̄n+ 1

2
dV −

∫

∂BP
0

1

∆t
(ϕn+1 −ϕn) · T̄n+ 1

2
dA ,

0 =
∫

B0

Dθu
1

∆t
(θn+1 − θn)dV +

∫

B0

θalg ∂Cη(zn+ 1
2
) G(zn+ 1

2
) :

1

∆t
(Cn+1 − Cn)dV

−
∫

B0

R̄n+ 1
2

dV −
∫

∂BQ
0

Q̄n+ 1
2

dA .

(5.57)

Subtracting (5.57)1 from (5.57)2, adding the last equation yields the discrete balance

of total energy
1

∆t
(En+1 − En)− Pext

n,n+1 − Qn,n+1 = 0 . (5.58)
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In this connection use has been made of the identity sym
(
2 ∂X(ϕn+1 −ϕn)

T Fn+ 1
2

)
=

Cn+1 − Cn to obtain

∫

B0

DCu : (Cn+1 − Cn) + DGu : (Gn+1 + Gn) + DCu (Cn+1 − Cn) + Dθu (θn+1 − θn)dV

=
∫

B0

un+1 − undV = Un+1 − Un .

(5.59)

Furthermore, we find

∫

B0

(pn+1 − pn) · ρ−1
0 pn+ 1

2
dV =

∫

B0

1

2
ρ−1

0 pn+1 · pn+1 −
1

2
ρ−1

0 pn · pn dV = Tn+1 − Tn .

(5.60)

In balance equation (5.58), the discrete versions of the total mechanical power (3.31)

and the total thermal power Qn,n+1 are given by

Pext
n,n+1 =

∫

B0

1

∆t
(ϕn+1 −ϕn) · B̄ dV +

∫

∂BP
0

1

∆t
(ϕn+1 −ϕn) · T̄ dA ,

Qn,n+1 =
∫

B0

R̄n+ 1
2

dV +
∫

∂BQ
0

Q̄n+ 1
2

dA ,
(5.61)

with bulk and boundary contributions have been used. Therefore for vanishing ex-

ternal mechanical and thermal power the total energy is conserved in the discrete

setting.

5.5 Discretization in space

For the discretization in space we apply standard isoparametric finite elements (see,

for example, Hughes [71]) based on finite-dimensional approximations

zh = {ϕh, ph, θh} ∈ Sh ⊂ S of the form

ϕh(X) =
nnode

∑
a=1

Na(X)ϕa(t), ph(X) =
nnode

∑
a=1

Na(X) pa(t) and

θh(X) =
nnode

∑
a=1

Na(X) θa(t) .

(5.62)

Here Na : B0 → R denote the nodal shape functions with associated nodal quantities

ϕa(t), pa(t) ∈ R
3 and θa(t) ∈ R

+ the respective nodal values at time t. Moreover, nnode

91



5 EM schemes for nonlinear thermo-elastodynamics

denotes the total number of nodes in the finite element mesh. The standard (Bubnov)

Galerkin approach relies on analogous approximations for wϕ ∈ Wp, wp ∈ Wϕ and

wθ ∈ Wθ denoted by wh
ϕ ∈ Wh

ϕ, wh
p ∈ Wh

p and wθ ∈ Wh
θ . It can easily be proven

that the spatial discretization process does not affect the balance laws in Sec. 5.4.2.1,

5.4.2.2 and 5.4.2.3. Accordingly, the proposed discretization in space and time leads to

a scheme that inherits the fundamental balance laws from the continuous formulation.

It is important to mention that the energy balance consistency for the fully discretized

system is restricted to constant (temperature-independent) values of the specific heat

capacity κ as considered in the material model in Sec. 5.2. If a non-constant function

for the specific heat capacity is considered a L2-projection similar to the procedure

proposed in [90, 144] is neccessary for energy consistency.

5.6 Numerical Investigations

In this section, we show the improved behavior of the energy-momentum consistent

algorithm by some classical thermo-elastodynamic benchmark problems. For sub-

sequent examples a compressible Mooney-Rivlin material model is employed given

by

Ψ(C, G, C, θ) = Ψmech,1(C, G) + Ψmech,2(C) + Ψtemp(θ) + Ψcouple(C, θ) , (5.63)

where the mechanical, the thermal and the coupling contribution of Ψ are chosen as

Ψmech,1(C, G) = a
(
tr(C)− 3

)
+ b

(
tr(G)− 3

)
,

Ψmech,2(C) =
c1

2
(C1/2 − 1)2 − d1 log(C1/2) ,

Ψtemp(θ) = κ
(

θ − θ0 − θ log
( θ

θ0

))
,

Ψcouple(C, θ) = 3 β (θ − θ0) (c2 (C
1/2 − 1)− d2 C−1/2) .

(5.64)

The parameters a, b, c1, d1, κ, c2, d2, β ≥ 0 are specified in the sequel and can be linked

to linear theory (for more information see Appendix D.3). It is important to remark

that d1 = 2 (a + 2 b) is a dependend parameter.

For a comparison of the proposed EM consistent formulation, we use a classical

thermo-mechanical finite element along with the mid-point (MP) rule as a standard

time-stepping scheme, see Appendix D.2 for details. Concerning the iterative solu-

tion by Newton’s method, we apply an energy-based termination criterion described

in Appendix D.1.
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5.6 Numerical Investigations

Remark 5.2. As shown in [44, Sec. 7.1.1], the formulation presented in this chapter is capable

to reproduce homogeneous states of stress and temperature. Moreover we show in [44, Sec.

7.1.2] that the newly proposed EM consistent scheme and the standard mid-point-type scheme

yield practically identical numerical results for quasi-static problems at hand.

5.6.1 L-shaped block

The objectives of this example are:

O1.I Verification of the algorithmic conservation properties.

O1.II Verification of numerical stability.

O1.III Verification of order of accuracy.

As a first example we consider a L-shaped block depicted in Fig. 5.1 as a thermo-

elastodynamical extension of the example presented in Sec. 3.4.3. The block can freely

move in space. Time-dependent pressure loads are acting on the L-shaped block as

illustrated in Fig. 5.1. In this connection, the nodal dead loads are given by

P1(t) = −P2(t) = f (t)




256/9

512/9

768/9




N

m2
, with f (t) =





t for t ≤ 2.5s

5 − t for 2.5 ≤ t ≤ 5s

0 for t > 5s

.

(5.65)

e1

e2
e3

P1

P2

θ0

θ1

θ2 250

275

300

Figure 5.1: L-shaped block: Mechanical boundary conditions (left), initial temperature conditions

(center), discretized model (right).

Moreover, two faces of the block are subjected to initial temperature conditions (see

Fig. 5.1). The temperature of these faces deviates from the initially homogeneous
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5 EM schemes for nonlinear thermo-elastodynamics

temperature distribution of the solid. For the discretization of the L-shaped block 117

tri-linear finite elements with 224 nodes have been used (see Fig. 5.1). The thermo-

hyperelastic behavior of the L-shaped block is governed by the material model given

in (5.63). The data for this example is summarized in Tab. 5.1. Due the chosen ma-

terial parameters and boundary conditions, the L-shaped block undergoes large de-

formations coupled with large rotations and translations. Note that after the loading

phase, there are no external loads acting on the system and the discrete system under

consideration can be classified as an isolated system with symmetry. Correspond-

ingly, after t > 5s, the total linear momentum, the total angular momentum as well

as the total energy are conserved quantities. All simulations have been performed

with the newly introduced EM consistent integrator and the standard midpoint (MP)

scheme (see Appendix D.2).

Table 5.1: Thermoelastic compressible Mooney-Rivlin material data, simulation parameters and

geometry.

mechanical parameters a 831.2500 Pa geometry of

b 166.2500 Pa the L-Shape

c1 = c2 0 Pa

d2 = d1 2 (a+2 b) Pa

3

3

3
3

7
[m]

specific heat capacity κ 100 JK−1m−3

coupling coefficient β 2.233 · 10−4 K−1

thermal conductivity k0 10 WK−1m−1

reference temperature θ0 293.15 K

density ρ0 100 kgm−3

initial temperature θ1 300 K

θ2 250 K

Newton tolerance ε 10−6 -

simulation time T 100 s

timestep size ∆t 0.8 s

It can be observed in Fig. 5.2, that the EM consistent integrator correctly reproduces

conservation of energy and is numerically stable during the simulation. In contrast,

the midpoint integrator leads to numerical instabilities accompanied by an energy

blow-up. Fig. 5.3 shows that after loading phase the change of energy from time step

to time step is bounded by the Newton tolerance. Eventually, conservation of the total
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5.6 Numerical Investigations

angular momentum and the incremental change thereof is illustrated in Fig. 5.4 and

Fig. 5.5.
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Figure 5.2: Total energy evolution.

0 20 40 60 80 100
−2

−1

0

1

2
·10−8

t [s]

E
n

+
1
−

E
n

[J
]

EM, ∆t = 0.8

Figure 5.3: Discrete energy difference.
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Figure 5.4: Total angular momentum evolution.
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Figure 5.5: Discrete angular momentum

difference.

Moreover, we investigate the order of accuracy of the present method. Similar to the

midpoint rule we expect second-order accuracy. To verify this, we define the L2 norm

of the error in the positions as given by (4.92). We investigate the free-flying motion of

the L-shaped block and consider the time-interval 5s ≤ t ≤ 6s. As it can be observed
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5 EM schemes for nonlinear thermo-elastodynamics

in Fig. 5.6, the proposed formula has a second order of accuracy in the positions.

The motion of the L-shaped block with its corresponding temperature distribution is

depicted in Fig. 5.7.
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Figure 5.6: Study of convergence of the error in displacements.
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Figure 5.7: Snapshots with temperature distribution of the flying L-shape at

t = {0, 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, 10.5}s.
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5.6.2 Rotating disc

The objectives of this example are:

O2.I Verification of the algorithmic energy approximation.

O2.II Verification of numerical stability.

The next numerical example deals with the simulation of a free flying disc as intro-

duced in [57]. The thermo-hyperelastic solid, shown in Fig. 5.8, is not subject to any

mechanical loads. The motion of the disc is initialized by the given vector field

V0(X) = V tr
0 + ω0 × X , (5.66)

where V tr
0 = 0 m

s and ω0 = (e1 + e2 + e3)
1
s . Moreover, the disc has a homogeneous

distribution of the initial temperature θ0. A thermal Neumann boundary condition

on a quarter of the lateral surface A0 (see Fig. 5.8) is considered, where the sinusoidal

heat flow Q into the system is given by

Q =
2000W

A0
f (t), with f (t) =





sin
(

2 π
4 t
)

for t ≤ 4s

0 for t > 4s
, (5.67)

Note that the prescribed heat flow vanishes at t = 4s. The initial configuration of the

discretized system is depicted in Fig. 5.8 where 200 tri-linear finite elements with 360

nodes have been used.

e1

ω0

V tr
0

e2

e3

q

θ0

250

300

350

400

Figure 5.8: Initial configuration of the moving disc. Initialized motion (left), thermal boundary

conditions (center), discretized model (right).

Again the constitutive model is given in (5.63). The material data, the simulation

parameters and the geometry of the disc are summarized in Tab. 5.2.

Depending on the heat flow across the boundary, we expect an increase followed

by a decrease of the total energy within the initial phase. Note that for t ≥ 4s,
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the total energy is a conserved quantity. These properties are reproduced by the

proposed EM consistent time integrator as it can be observed in Fig. 5.9. Moreover,

after loading phase the incremental change of the total energy (see Appendix D.1),

which is bounded by the Newton tolerance, is shown in Fig. 5.10. In contrast to that,

the MP integrator fails to preserve the energy and exhibits an energy blow-up at about

t = 9s.

Table 5.2: Thermoelastic compressible Mooney-Rivlin material data, simulation parameters and

geometry.

mechanical parameters a 831.2500 Pa geometry of the disc

b 166.2500 Pa

specific heat capacity κ 100 JK−1m−3 4
1.6

0.4
[m]

coupling coefficient β 2.223 · 10−4 K−1

thermal conductivity k0 10 WK−1m−1

reference temperature θ0 308.15 K

density ρ0 10 kgm−3

Newton tolerance ε 1 · 10−6 -

timestep size ∆t 0.2 s

simulation time T 20 s
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Figure 5.9: Total energy evolution.
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Figure 5.10: Discrete energy difference.
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Eventually, the motion of the rotating disc is illustrated in Fig. 5.11 with a sequence

of subsequent snapshots.

250

300

350

400

Figure 5.11: Snapshots and temperature plots of the rotating disc at t = {0, 0.4, 0.8, 1.2, 1.6,

2.0, 2.4, 2.8}s.

5.6.3 Moving disc

The objectives of this example are:

O3.I Verification of the algorithmic energy approximation.

O3.II Verification of numerical stability and validity.

The last example of this chapter deals with a moving disc subjected to both, me-

chanical and thermal Dirichlet boundary conditions. The thermo-hyperelastic free

flying disc can be viewed as a three dimensional version of the problem introduced in

[57], where the disc thickness is equal 1m. As illustrated in Fig. 5.12, the mechanical

Dirichlet boundary conditions constrained the height of the disc, so that plane strain

condition is enforced.

In addition, the translation and rotation of the disc is initialized by

V0(X) = V tr
0 + ω0 × X , (5.68)

where the initial translation velocity is given by V tr
0 = 20 e1

m
s and the initial angular

velocity about the e3-axis is given by ω0 = −7 e3
1
s .
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e1
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e3

θ0

θd

ω0

V tr
0

298.15

303.15

308.15

Figure 5.12: Initial configuration of the moving disc. Initialized motion (left), thermal boundary

conditions (center), discretized model (right).

The thermal Dirichlet boundary condition constrains one quarter of the lateral surface

of the disc to θd = θ0 − 10K where θ0 is the reference temperature homogeneously

distributed over the rest of the body. Furthermore, Fig. 5.12 shows the discretized

disc where 416 tri-linear finite elements with 896 nodes have been used. The thermo-

hyperelastic material data, the simulation parameters as well as the geometry of the

disc are summarized in Tab. 5.3.

Table 5.3: Thermoelastic compressible Mooney-Rivlin material data, simulation parameters and

geometry.

mechanical parameters a 831.2500 Pa geometry of the disc

b 166.2500 Pa

specific heat capacity κ 300 JK−1m−3 3

1

1

[m]

coupling coefficient β 2.223 · 10−4 K−1

thermal conductivity k0 300 WK−1m−1

reference temperature θ0 308.15 K

density ρ0 10 kgm−3

Newton tolerance ε 1 · 10−6 -

timestep size ∆t 0.035 s

simulation time T 20.3 s

Due to the thermal Neumann boundary condition and the associated temperature

gradient, heat is withdrawn from the body till temperature is distributed almost

equally across the body. The loss of energy during the simulated cooling is correctly

reproduced by the EM consistent integrator as observed from Fig. 5.13. In contrast,

the midpoint integrator leads to numerical instabilities for the chosen time-step size.
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5.6 Numerical Investigations

Before the energy-blow up at about t = 7s, the MP scheme yields a non-physical tem-

perature distribution, whereas the EM consistent integrator shows a smooth behavior

of the temperature gradient which can be observed in Fig. 5.14. Finally, to illustrate

the motion and temperature distribution of the body at hand several snapshots are

plotted in Fig. 5.15 where the EM consistent integrator has been used.
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Figure 5.13: Total energy evolution.

297.83

299.73

301.63

Figure 5.14: Temperature distribution at t = 5.39s using the midpoint integrator (left) and the EM

consistent integrator (right).
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298.15

303.15

308.15

Figure 5.15: Snapshots and temperature plots of the moving disc at t = {0, 1.015, 2.03, 3.045, 4.06,

5.075, 6.09, 7.105}s.
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6 EM scheme for nonlinear

electro-elastodynamics
1

In this chapter we provide a new approach of a one-step second order accurate EM

time integrator scheme in the context of nonlinear electro-elastodynamics. Moreover,

we consider well-posed ab initio convex multi-variable constitutive models. The new

time integrator relies on the definition of four discrete derivatives of the internal

energies representing the algorithmic counterparts of the work conjugates of the right

Cauchy-Green deformation tensor, its co-factor, its determinant and the Lagrangian

electric displacement field. Finally, a series of numerical examples are included in

order to demonstrate the robustness and conservation properties of the proposed

scheme, specifically in the case of long-term simulations.

6.1 Finite strain electrostatic-elastodynamics

Let us now consider the body B0, introduced in Sec. 2.2, as an EAP. The local form of

conservation of linear momentum [53] can be written as

ρ0 V̇ − Div (F S)− B̄ = 0, in B0 ,

(F S) N = T̄ , on ∂BP
0 ,

ϕ = ϕ̄, on ∂Bϕ
0 ,

(6.1)

where (6.1) can be recast from (5.11) along with (5.12) if we consider thermal isolated

systems.

1 This chapter is based on [133].
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6 EM scheme for nonlinear electroelastodynamics

The governing equations in non-linear electromechanics are the Gauss’s and Faraday’s

laws which can be recast from the well-known Maxwell equations in the absence of

magnetic and time dependent effects. The local form of the Gauss’s law [161, 116, 110]

can be written in a Lagrangian setting as

DivD − ρe
0 = 0, in B0 ,

D · N = −ωe
0, on ∂Bω

0 ,
(6.2)

where D : B0 → R3 is the Lagrangian electric displacement vector, ρe
0 : B0 → R

represents an electric volume charge per unit of undeformed volume B0 and ωe
0 :

∂Bω
0 → R , an electric surface charge per unit of undeformed area ∂Bω

0 ⊂ ∂B0.

Furthermore, in the absence of magnetic fields, the local form of the static Faraday’s

law can be written in a Lagrangian setting as

E = −∂Xφ, in B0 ,

φ = φ̄, on ∂Bφ
0 ,

(6.3)

where E : B0 → R3 is the Lagrangian electric field vector and φ : B0 → R , the scalar

electric potential. In (6.3), ∂Bφ
0 represents the part of the boundary ∂B0 where essential

electric potential boundary conditions are applied such that ∂Bω
0 ∪ ∂Bφ

0 = ∂B0 and

∂Bω
0 ∩ ∂Bφ

0 = ∅.

6.2 Constitutive equations for large strain

electro-elasticity

The governing equations presented in Section 6.1 are coupled by means of a suitable

constitutive law. The objective of the following section is to introduce some notions

on constitutive laws in nonlinear electro-elasticity.

In the case of reversible electro-elasticity, the internal energy density u per unit of

undeformed volume can be defined in terms of the deformation and the electric dis-

placement field, namely ˆ̃u = ˆ̃u(F , D), see [116]. Motivated solely by considerations of

material stability, Gil and Ortigosa [47, 129, 128, 131] extended the concept of polycon-

vexity [7, 8] to the context of electromechanics and defined new convexity restrictions

on the internal energy, postulating a convex multi-variable definition as

ˆ̃u (F, D) = ũ (F, H, J, D, d) , d = F D , (6.4)
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6.2 Constitutive equations for large strain electro-elasticity

where ũ must be a convex function with respect to the extended set {F, H, J, D, d}.

It is crucial that the above convex multi-variable representation in (6.4) satisfies the

concept of ellipticity for the entire range of deformations and electric displacement

fields. In addition, for the requirement of objectivity, the convex multi-variable energy

ũ (6.4) can be re-expressed in terms of a set of objective arguments (see Sec. 2.2.2) as

ˆ̃u (F, D) = û (C, D) = uobj (C, G, C, D, C D) = u (C, G, C, D) , (6.5)

where û represents the internal energy in terms of the right Cauchy-Green strain

tensor C and D and u denotes the internal energy expressed in terms of the extended

symmetric mechanical kinematic set {C, G, C} as introduced in (2.41)-(2.43) and D.

Notice in equation (6.5) the argument C D has been removed as it is redundant (it can

be expressed in terms of C and D). It is worth noting that u is not convex with respect

to the individual components of the set {C, G, C, D}, but rather an objective (frame

invariant) re-expression of the convex multi-variable functional ũ. In this case2,

Dû (C, D) [δϕ] = S :
1

2
DC[δϕ], Dû (C, D) [δD] = E · δD , (6.6)

where the second Piola-Kirchhoff stress tensor S and the material electric field E are

defined in terms of the derivatives of the internal energy û (C, D), namely

S = 2 ∂Cû (C, D), E = ∂Dû (C, D) . (6.7)

An alternative but equivalent definition of the directional derivatives of the inter-

nal energy û (C, D) to those in (6.6) can be obtained by considering its equivalent

extended representation u,

Du[δϕ] = ∂Cu : DC[δϕ] + ∂Gu : DG[δϕ] + ∂Cu DC[δϕ] , (6.8)

and

Du[δD] = ∂Du · δD . (6.9)

Finally, inserting (2.56), (2.57) and (2.58) into (6.8) and comparison with (6.6)1 enables

to obtain an equivalent expression for S and E to those in equations (6.7)1 and (6.7)2,

respectively, as

S = 2 ∂Cu + 2 ∂Gu C + 2 ∂Cu G, E = ∂Du . (6.10)

2 Use of the first law of thermodynamics and consideration of reversibility has been made of.
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Example (Mooney-Rivlin material): It is customary to propose an additive decom-

position of the internal energy û (C, D) into a purely mechanical contribution and a

coupled electromechanical contribution [31, 168, 75] as

û (C, D) = ûm (C) + ûem (C, D) . (6.11)

The purely mechanical contribution of a Mooney-Rivlin model is defined via the

following polyconvex energy functional

ûMR
m (C) = uMR

m (C, G, C) = umech,1(C, G) + umech,2(C) , (6.12)

where the purely mechanical parts umech,1(C, G) and umech,2(C) have been introduced

in (2.52) and (2.53), respectively. The convex function Γ1 now reads Γ1(δ) = c1
2 (δ −

1)2 − d1 log(δ), where a, b and c1 are material parameters with units of stress related

to the shear modulus µ and the bulk modulus λ in the origin as µ = 2 a + 2 b and

λ = c1 + 4 b.

The simplest expression for the electromechanical contribution corresponds to that of

an ideal dielectric elastomer, defined as

ûem (C, D) = uem (C, C, D) =
1

2 εr ε C1/2
D · C D , (6.13)

where ε represents the permittivity of vacuum, with ε = 8.8541× 10−12NC−2m−2 and

εr represents the relative permittivity of the material.

6.3 Variational formulation

The objective of this section is to present the variational formulation that will be used

in order to develop an EM time integration scheme in Sec. 6.4.

6.3.1 Three-field mixed formulation for

electro-mechanics

A three-field mixed variational principle in the context of static electro-mechanics

(where inertial effects are not considered) can be defined as

Π (ϕ, φ, D) =
∫

B0

u (C, G, C, D) dV −
∫

B0

D · E dV + Πext
m (ϕ)− Πext

e (φ) . (6.14)
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6.3 Variational formulation

The reader is referred to Reference [47] for the derivation of above variational prin-

ciple. In (6.14), the mechanical contribution of the external potential energy Πext
m (ϕ)

has been introduced in (2.25) and the electro contribution Πext
e (φ) is defined as

Πext
e (φ) = −

∫

B0

ρe
0 φ dV −

∫

∂Bω
0

ωe
0 φ dA . (6.15)

In equation (6.14), ϕ ∈ Q , φ ∈ Qφ and D ∈ VD where

Qφ = {φ : B0 → R | φ = φ̄ ∀ X ∈ ∂Bφ
0 } ,

VD = {D : B0 → R
3 | for Di ∈ L2(B0) } .

(6.16)

Similarly, let us consider admissible variations δϕ ∈ V , δφ ∈ Vφ and δD ∈ VD with

Vφ = {δφ : B0 → R | δφ = 0 for X ∈ ∂Bφ
0 } . (6.17)

The stationary conditions of the mixed variational principle Π in (6.14) yield

DϕΠ[δϕ] =
∫

B0

S :
1

2
DC[δϕ]dV −

∫

B0

B̄ · δϕdV −
∫

∂BP
0

T̄ · δϕdA = 0 ,

DφΠ[δφ] =
∫

B0

−D · DE[δφ]dV +
∫

B0

ρe
0 δφ dV +

∫

∂Bω
0

ωe
0 δφ dA = 0 ,

DDΠ[δD] =
∫

B0

δD · (∂Du − E) dV = 0 ,

(6.18)

with S defined in (6.10)1. Above equation (6.18)1 represents the weak form of the

local balance of linear momentum in (6.1) for the case where no inertia effects are

considered. In addition, equation (6.18)2 corresponds to the weak form of the Gauss

law in (6.2). Finally, equation (6.18)3 represents the weak form of the Faraday law in

(6.3).

Remark 6.1. The convex multi-variable nature of the internal energy ˆ̃u (F, D) ensures con-

vexity of û (C, D) and u (C, G, C, D) with respect to D. Consequently, a one-to-one and

invertible relationship between variables D and E can always be established. Therefore, it is

possible to make use of a partial Legendre transform of the internal energy which leads to the

definition of the Helmholtz free energy functional Ψ(C, G, C, E) as

Ψ(C, G, C, E) = −E · D + u (C, G, C, D) , (6.19)

where use of (6.10)2 has been made of.
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Furthermore, starting from the total potential Π in (6.14), use of the Legendre transformation

in (6.19) leads to a two-field formulation with unknowns {ϕ, φ} in terms of the Helmholtz

functional as

ΠΨ (ϕ, φ) =
∫

B0

Ψ (C, G, C, E) dV + Πext
m (ϕ)− Πext

e (φ) . (6.20)

The stationary conditions of the functional yields

DϕΠΨ[δϕ] =
∫

B0

S :
1

2
DC[δϕ] dV −

∫

B0

B̄ · δϕdV −
∫

∂BP
0

T̄ · δϕdA = 0 ,

DφΠΨ[δφ] =
∫

B0

∂EΨ · DE[δφ] dV +
∫

B0

ρe
0 δφ dV +

∫

∂Bω
0

ωe
0 δφ dA = 0 ,

(6.21)

with

S = 2 ∂CΨ + 2 ∂GΨ C + 2 ∂CΨ G . (6.22)

The variational principle in (6.20) is typically preferred in finite element implementations.

However, the a priori definition of a materially stable Helmholtz functional is not in general

possible due to its saddle point nature. Therefore, we advocate in this work for the definition of

materially stable convex multi-variable internal energy functionals u (C, G, C, D) (featuring

in the three-field principle) which through (6.19), yield materially stable Helmholtz energy

functionals [47]. More information concerning the Helmholtz free energy function can be

found in [133].

6.3.2 Extension to electro-elastodynamics

The objective of this section is to extend the proposed formulation of electro-elasto-

statics to the electro-elastodynamic regime. The extension of the variational formula-

tion (6.18) to elasto-dynamics follows the lines of Sec. 3.1.1 and is given by
∫

B0

(V − ϕ̇) · ρ0 δV dV = 0 ,

∫

B0

ρ0 V̇ · δϕdV +
∫

B0

S :
1

2
DC[δϕ]dV −

∫

B0

B̄ · δϕdV −
∫

∂BP
0

T̄ · δϕdA = 0 ,

∫

B0

−D · DE[δφ]dV +
∫

B0

ρe
0 δφ dV +

∫

∂Bω
0

ωe
0 δφ dA = 0 ,

∫

B0

δD · (∂Du − E) dV = 0 .

(6.23)
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6.3 Variational formulation

The above equations have to hold for arbitrary {δV , δϕ} ∈ V , δφ ∈ Vφ and δD ∈ VD.

Note that an integration by parts with respect to time has been used on the first term

on the right hand-side of (6.23)2. Equation (6.23)1 represents the weak form for the

relationship between the velocity field V and the time derivative of the mapping ϕ and

equation (6.23)2, the extension of the weak form of the balance of linear momentum in

(6.18)1 to electro-elastodynamics (hence the equation is supplemented with the inertia

term). Finally, notice that both weak forms for the Gauss and Faraday law in (6.23)3

and (6.23)4 are identical to those in the static case in (6.18)2 and (6.18)3, respectively.

Remark 6.2. Similarly to Remark 3.5, the Euler-Lagrange equations that correspond to the

variational equations (6.23) can be derived by the conditions of stationarity on the following

action functional:

S (V ,ϕ, φ, D) =

t∫

t0

( ∫

B0

(
ϕ̇− 1

2
V
)
· V ρ0 dV −

∫

B0

u (C, G, C, D) dV

+
∫

B0

D · E dV − Πext
m (ϕ) + Πext

e (φ)
)

dt ,

(6.24)

where t0 and t represent any two instances of time with t > t0.

6.3.3 Balance laws

Starting with the stationary conditions (6.23) the following sections derive the global

balance laws for linear momentum, angular momentum, the Gauss’s law and energy

of the EAP.

6.3.3.1 Balance of linear momentum

For an admissible variation of the displacement field we choose δϕ = ζ, with ζ ∈ R3,

where ζ is constant. Then the stationary condition in (6.23)2 leads to the global form

of the conservation of linear momentum, namely

ζ ·
( d

dt
L − Fext

)
= 0 , (6.25)

where the total linear momentum L and the total external force Fext have been intro-

duced in (3.19) and (3.20), respectively. From (6.25) it is possible to conclude that L is

a constant of motion for the case of vanishing external forces Fext.
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6.3.3.2 Balance of angular momentum

For an admissible variation of δϕ we choose a rotational field δϕ = ζ ×ϕ and δV =

ζ × ϕ̇, with ζ ∈ R3. Following the lines of 3.1.2.2, the stationary condition in (6.23)2

leads to the global form of the conservation of angular momentum, namely

ζ ·
( d

dt
J − Mext

)
= 0 , (6.26)

where J represents the total angular momentum and Mext, the total external torque,

see (3.24) and (3.25), respectively. From (6.26), it is clear that J is a constant of motion

for vanishing external torques Mext.

6.3.3.3 Balance of Gauss’s law

Taking δφ = ζ, where ζ ∈ R is arbitrary but constant, the stationary condition (6.23)3

leads to the global form of the Gauss’ law
∫

B0

ρe
0 dV +

∫

∂Bω
0

ωe
0 dA = 0 . (6.27)

Then, for time independent volumetric and surface electrical charges ρe
0 and ωe

0, equa-

tion (6.27) dictates that the total electric charge of the system is conserved and equal

to zero.

6.3.3.4 Balance of energy

We now focus on the balance law for total energy. Choose admissible variations of

the form δV = V̇ ∈ V , δϕ = ϕ̇ ∈ V , δφ = φ̇ ∈ Vφ and δD = Ḋ ∈ VD in (6.23). This

yields ∫

B0

(V − ϕ̇) · ρ0V̇ dV = 0 ,

∫

B0

ρ0 V̇ · ϕ̇dV +
∫

B0

S :
1

2
Ċ dV −

∫

B0

B̄ · ϕ̇dV −
∫

∂BP
0

T̄ · ϕ̇dA = 0 ,

∫

B0

−D · Ė dV +
∫

B0

ρe
0 φ̇ dV +

∫

∂ωB0

ωe
0 φ̇ dA = 0 ,

∫

B0

Ḋ · (∂Du − E) dV = 0 .

(6.28)
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6.4 Discretization in time

Addition of the four equations in (6.28) leads, in the case of time independent forces

B̄ and T̄ and charges ρe
0 and ωe

0 to

Ṫ +
∫

B0

(
S :

1

2
Ċ + ∂Du · Ḋ

)
dV −

∫

B0

(
D · Ė + Ḋ · E

)
dV

+ Π̇ext
m (ϕ)− Π̇ext

e (φ) = 0 ,

(6.29)

where the kinetic power Ṫ has been introduced in (3.27). Finally, equation (6.29) can

be re-written as

Ṫ +
∫

B0

u̇ (C, G, C, D) dV −
∫

B0

d

dt
(D · E) dV + Π̇ext

m (ϕ)− Π̇ext
e (φ) = 0 . (6.30)

It is therefore clear that in the case of time independent forces and electric charges,

the following condition holds

Ḣ = 0, H = T +
∫

B0

u (C, G, C, D) dV −
∫

B0

D · E dV + Πext
m (ϕ)− Πext

e (φ) , (6.31)

and therefore the scalar field H is preserved throughout the motion of the EAP.

6.4 Discretization in time

Now we deal with the structure-preserving discretization in time of the underlying

variational formulation of the electro-elastodynamic system. The discretization of the

time interval of interest follows the lines of Sec. 3.2. The aim of this section is to define

an implicit one-step time integrator that determines {V n+1,ϕn+1, φn+1, Dn+1} ∈ V ×
Q×Qφ × VD on time node tn+1 from the given approximations {V n,ϕn, φn, Dn} ∈
V ×Q×Qφ × VD on time node tn.

6.4.1 Structure-preserving integration scheme

Following the ideas of Sec. 3.2, Sec. 4.4 and Sec. 5.4, the objective of this section is to

propose a structure-preserving time discretization scheme for the set of weak forms
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in (6.23). From the stationary conditions in (6.23), the following implicit one-step time

integrator is proposed

∫

B0

δV · 1

∆t
(ϕn+1 −ϕn) ρ0 dV =

∫

B0

δV · Vn+ 1
2

ρ0 dV ,

∫

B0

δϕ · 1

∆t
(V n+1 − V n) ρ0 dV = −

∫

B0

Salg :
1

2
DC[δϕ]|n+ 1

2
dV − DΠext

m [δϕ]|n+ 1
2

∫

B0

−Dn+ 1
2
· DE[δφ]dV − DΠext

e [δφ]|n+ 1
2
= 0 ,

∫

B0

δD ·
(

DDu − En+ 1
2

)
dV = 0 ,

(6.32)

for arbitrary {δV , δϕ} ∈ V , δφ ∈ Vφ and δD ∈ VD. In the first term on the right-hand

side of (6.32)2 the algorithmic stress tensor Salg is given by

Salg = 2
(

DCu + DGu Calg + DCu Galg

)
, (6.33)

where the algorithmic expressions Calg and Galg have been introduced in (3.63) and

(3.64), respectively. In (6.32) and (6.33), {DCu, DGu, DCu, DDu} represent the discrete

derivatives [52] of the internal energy u, which are the algorithmic or time discrete

counterparts of {∂Cu, ∂Gu, ∂Cu, ∂Du}, respectively.

In this work, we use a definition of the (multiple) discrete derivative expressions

{DCu, DGu, DCu, DDu} of the internal energy based on the derivation presented in

Sec. 5.4.1 for energies depending upon several arguments.

Similarly to (5.47), we now introduce the quadtuple where we collect the arguments

of the internal energy density function as

π = {C, G, C, D} = {π1, π2, π3, π4} . (6.34)

Next, the partitioned discrete gradients D̄π1u = DCu, D̄π2u = DGu, D̄π3u = DCu and

D̄π4u = DDu can be constructed by (5.48) and (5.49).

It can be verified, by using the discrete derivatives the important directionality prop-

erty

D̄π1u : (π1
n+1 − π1

n) + D̄π2u : (π2
n+1 − π2

n) + D̄π3u(π3
n+1 − π3

n) + D̄π4u(π4
n+1 − π4

n)

= DCu : (Cn+1 − Cn) + DGu : (Gn+1 − Gn) + DCu(Cn+1 − Cn) + DDu · (Dn+1 − Dn)

= u(Cn+1, Gn+1, Cn+1, Dn+1)− u(Cn, Gn, Cn, Dn) = un+1 − un ,
(6.35)
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holds (see Appendix E.1) and the algorithm preserves energy under zero or time

invariant external forces and electric charges. Moreover, the discrete gradients are

well defined in the limit as ||Cn+1 − Cn|| → 0, ||Gn+1 − Gn|| → 0, |Cn+1 − Cn| → 0

and ||Dn+1 − Dn|| → 0 which ensures that for sufficiently regular solutions

Salg = S
(
πn+ 1

2

)
+ O

(
∆t2

)
and DDu = ∂Du

(
πn+ 1

2

)
+ O

(
∆t2

)
, (6.36)

and therefore, the proposed EM time integrator is second order accurate, see Ap-

pendix E.2 for details.

Example (Mooney-Rivlin material cont’d): Again, we focus on a Mooney-Rivlin

material model as introduced in (6.12). Next, we derive the generic expression for the

discrete derivatives.

The discrete gradients DCu is given as

DCu =
1

2

(
∂Cu

(
Cn+ 1

2
, Gn+1, Cn+1, Dn+1

)
+ ∂Cu

(
Cn+ 1

2
, Gn, Cn, Dn

))

+
1

2

u (Cn+1, Gn+1, Cn+1, Dn+1)− u (Cn, Gn+1, Cn+1, Dn+1)

||Cn+1 − Cn||2
(Cn+1 − Cn)

+
1

2

u (Cn+1, Gn, Cn, Dn)− u (Cn, Gn, Cn, Dn)

||Cn+1 − Cn||2
(Cn+1 − Cn)

− 1

2

∂Cu
(
Cn+ 1

2
, Gn+1, Cn+1, Dn+1

)
: (Cn+1 − Cn)

||Cn+1 − Cn||2
(Cn+1 − Cn)

− 1

2

∂Cu
(
Cn+ 1

2
, Gn, Cn, Dn

)
: (Cn+1 − Cn)

||Cn+1 − Cn||2
(Cn+1 − Cn) ,

(6.37)

with

∂Cu = a I +
1

2 ε0 εr
C−1/2 D ⊗ D , (6.38)

where C, C and D are evaluated at the corresponding time nodes. Similarly to (3.40)2,

the discrete gradients DGu can be computed as

DGu = b I . (6.39)

Furthermore, the discrete gradients DCu reduces to the well-known Greenspan for-

mula [55] such that

DCu =
1

2

u (Cn, Gn, Cn+1, Dn+1)− u (Cn, Gn, Cn, Dn+1)

||Cn+1 − Cn||

+
1

2

u (Cn+1, Gn+1, Cn+1, Dn)− u (Cn+1, Gn+1, Cn, Dn)

||Cn+1 − Cn||
.

(6.40)
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Finally, the discrete gradients DDu can be computed as

DDu =
1

2

(
∂Du

(
Cn, Gn, Cn, Dn+ 1

2

)
+ ∂Du

(
Cn+1, Gn+1, Cn+1, Dn+ 1

2

))

+
1

2

u (Cn, Gn, Cn, Dn+1)− u (Cn, Gn, Cn, Dn)

||Dn+1 − Dn||2
(Dn+1 − Dn)

+
1

2

u (Cn+1, Gn+1, Cn+1, Dn+1)− u (Cn+1, Gn+1, Cn+1, Dn)

||Dn+1 − Dn||2
(Dn+1 − Dn)

− 1

2

∂Du
(
Cn, Gn, Cn, Dn+ 1

2

)
· (Dn+1 − Dn)

||Dn+1 − Dn||2
(Dn+1 − Dn)

− 1

2

∂Du
(
Cn+1, Gn+1, Cn+1, Dn+ 1

2

)
· (Dn+1 − Dn)

||Dn+1 − Dn||2
(Dn+1 − Dn) ,

(6.41)

with

∂Du =
1

εo εr
C−1/2 C D , (6.42)

where C, C and D are evaluated at the corresponding time nodes. Note that in the

limits ||Cn+1 − Cn|| → 0, ||Gn+1 − Gn|| → 0, |Cn+1 − Cn| → 0 and ||Dn+1 − Dn|| → 0

the formulas (6.37)-(6.41) should be replaced with D̄πiu = ∂πiu(πn+ 1
2
).

Remark 6.3. The consideration of convex multi-variable internal energy functionals ensures

the satisfaction of ellipticity at the continuum level. This condition cannot be verified at

the (time) discrete level, where the derivatives of the energy are replaced by their discrete

counterparts. Ellipticity can only be mathematically proven in the limit, i.e. ∆t → 0, when

both the discrete and continuum levels coincide, see (6.36).

6.4.2 Semi-discrete balance laws

A similar procedure to that in Section 6.3.3 will be followed in order to verify that

the proposed time integration scheme (6.32) possesses the conservation properties as

presented in Sections 6.3.3.1 to 6.3.3.4.

6.4.2.1 Balance of linear momentum

Following the procedure in Sec. 6.3.3.1, we choose admissible variations δV = 0 and

δϕ = ζ where ζ ∈ R3 is arbitrary but constant. Then (6.32)2 yields

ζ ·
( 1

∆t
(Ln+1 − Ln)− Fext

)
= 0 . (6.43)
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6.4 Discretization in time

Therefore for vanishing external mechanical loads the total discrete linear momentum

is a constant of motion of the semi-discrete system.

6.4.2.2 Discrete balance of angular momentum

With regard to the developments from Sec. 6.3.3.2, we choose as admissible variations

δϕ = ζ ×ϕn+ 1
2

and δV = ζ × (ϕn+1 −ϕn), where ζ again is a constant vector. Then the

time-discrete variational formulation (6.32) yields in the same way as in Sec. 3.1.2.2

the desired result

ζ ·
( 1

∆t
(Jn+1 − Jn)− Mext

n,n+1

)
= 0 . (6.44)

For vanishing external mechanical loads the total discrete angular momentum is a

constant of motion of the semi-discrete system.

6.4.2.3 Discrete balance of Gauss’s law

Following the procedure in 6.3.3.3 we use δφ = ζ, with ξ ∈ R in (6.32)3 This leads

to ∫

B0

ρe
0

n+ 1
2

dV +
∫

∂Bω
0

ωe
0

n+ 1
2

dA = 0 . (6.45)

Therefore, the total electrical charge is zero for time independent volumetric and

surface electrical charges ρe
0 and ωe

0, (6.45).

6.4.2.4 Discrete balance of energy

In this section, a similar analysis to that in Section (6.3.3.4) will be presented for the

semi-discrete weak forms in (6.32). For this purpose, we choose admissible variations

{δV , δϕ, δφ, δD} = {V n+1 −V n,ϕn+1 −ϕn, φn+1 − φn, Dn+1 − Dn} ∈ V ×V ×Vφ ×VD
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in (6.32). This yields

∫

B0

(V n+1 − V n) ·
1

∆t
(ϕn+1 −ϕn) ρ0 dV =

∫

B0

(V n+1 − V n) · V n+ 1
2

ρ0 dV ,

∫

B0

(V n+1 − Vn) ·
1

∆t
(ϕn+1 −ϕn) ρ0 dV +

∫

B0

Salg :
1

2
DC[ϕn+1 −ϕn]|n+ 1

2
dV

+ DΠext
m [ϕn+1 −ϕn]|n+ 1

2
dV = 0 ,

∫

B0

−Dn+1/2 · DE[φn+1 − φn]dV − DΠext
e [φn+1 − φn]|n+ 1

2
dA = 0 ,

∫

B0

(Dn+1 − Dn) ·
(

DDu − En+ 1
2

)
dV = 0 .

(6.46)

Consideration of time independent forces B̄ and T̄ and charges ρe
0 and ωe

0 and after

addition of the four equations in (6.46), it yields

Tn+1 − Tn +
∫

B0

(
Salg :

1

2
DC[ϕn+1 − ϕn]|n+ 1

2
+ DDu · (Dn+1 − Dn)

)
dV

−
∫

B0

Dn+ 1
2
· DE[φn+1 − φn]dV −

∫

B0

(Dn+1 − Dn) · En+ 1
2

dV

+ DΠext
m [ϕn+1 −ϕn]− DΠext

e [φn+1 − φn] = 0 ,

(6.47)

The terms in the second line of (6.47) can be re-written as

∫

B0

Dn+ 1
2
· DE[φn+1 − φn]dV +

∫

B0

(Dn+1 − Dn) · En+ 1
2

dV

=
∫

B0

(Dn+1 · En+1 − Dn · En)dV .
(6.48)

From the definition of the algorithmic stress Salg in (6.33) and those for Calg and Galg

in (3.63) and (3.64), respectively, it is possible to re-write the second term in (6.46)2

as

Salg :
1

2
DC[ϕn+1 −ϕn]|n+ 1

2

= (DCu + DGu Calg + DCu Galg) : DC[ϕn+1 −ϕn]|n+ 1
2

= DCu : (Cn+1 − Cn) + DGu : (Gn − Gn) + DCu (Cn+1 − Cn) .
(6.49)
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Substitution of (6.48) and (6.49) into (6.47) yields

Tn+1 − Tn +
∫

B0

(
DCu : (Cn+1 − Cn) + DGu : (Gn+1 − Gn) + DCu (Cn+1 − Cn)

+ DDu · (Dn+1 − Dn)
)

dV +
∫

B0

(Dn+1 · En+1 − Dn · En)dV

+ Πext
m

(
ϕn+1

)
− Πext

m (ϕn)− Πext
e (φn+1)− Πext

e (φn) = Hn+1 − Hn .
(6.50)

Comparison of (6.50) and the definition of the total Hamiltonian H in (6.31) enables

to conclude that conservation of energy for the implicit one-step time integrator in

equation (6.32) requires the directionality property in equation (6.35) to be satisfied.

Three points have been crucial to arrive at this conclusion. First, the consideration

of the algorithmic fields Calg and Galg in (3.63) and (3.64) has enabled to obtain the

identity in equation (6.49). Second, the consideration of Dn+1/2 in (6.32)3 and of En+ 1
2

in (6.32)4 has been essential in order to re-write the third and fourth terms in (6.47) as

in (6.48). Third, the use of the discrete gradients in the sense of [52].

6.5 Discretization in space

The underlying formulation makes use of standard isoparametric elements (see, for

example, [71]) based on finite-dimensional approximations for ϕh ∈ Qh ⊂ Q, Vh ∈
Vh ⊂ V and φh ∈ Qh

φ ⊂ Qφ of the form

ϕh(X) =
nnode

∑
a=1

Na(X)ϕa(t), Vh(X) =
nnode

∑
a=1

Na(X)V a(t) and

φh(X) =
nnode

∑
a=1

Na(X) φa(t) .

(6.51)

Here Na : B0 → R denote the nodal shape functions and ϕa(t), V a(t) ∈ R3 and

φa(t) ∈ R are the respective nodal values at time t. Moreover, nnode denotes the

total number of nodes in the finite element mesh. In addition, we introduce finite-

dimensional subspaces Vh
D ⊂ VD defined by

V
h
D =

{
D ∈ VD | Dh

∣∣∣
B0

(e)
=

nen

∑
b=1

Mb Db(t)
}

, (6.52)

which relies on uniform elementwise approximations for the electrical displacements

field D at time t. The shape functions are Mb, with b = 1, ..., nen, where nen denotes
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the number of element nodes arising from the use of Lagrangian shape functions.

The standard (Bubnov) Galerkin approach relies on analogous approximations for

δϕ ∈ V , δV ∈ V , δφ ∈ Vφ and δD ∈ VD denoted by δϕh ∈ Vh ⊂ V , δVh ∈ Vh,

δφh ∈ Vh
φ ⊂ Vφ and δDh ∈ V

h
D ⊂ VD. Since no inter-element continuity is required

for the approximation of D, a static condensation procedure [128, 26] can be applied to

eliminate the additional unknowns on element level. Finally, the thus defined finite

element interpolations can be inserted into the semi-discrete variational equations

(6.32), leading to a system of nonlinear algebraic equations.

6.6 Numerical Investigations

The objective of this section is to study the performance of the newly proposed EM

time integration scheme presented in equation (6.32) in a variety of examples. Differ-

ent discretization spaces for hexahedral-based and tetrahedral-based finite elements

are used, see Fig. 6.1.

ξ ξξξ ξξ

η ηηη ηη

ζ ζζζ ζζ

Figure 6.1: Illustration of the nodal points for the hex-based serendipity finite element Q2 (left), a

hex-based linear finite element Q1 (center-left), a tet-based quadratic finite element P2

(center-right) and a tet-based linear finite element P1 (right). The bullets represent the

nodes of the continuous fields {Vh,ϕh, φh} and the squares represent the nodes of the

discontinuous field Dh .

6.6.1 Rotating actuator

The objective of this example is:

O1.I Study of the accuracy of the proposed EM time integration scheme given in

equation (6.32). Specifically, the objective is to verify the mathematical conclu-

sion obtained in Appendix E, according to which the proposed EM scheme must

converge at the same (second order) rate as the midpoint (MP) scheme.
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6.6 Numerical Investigations

The geometry and the boundary conditions for the actuator considered in this exam-

ple are depicted in Figure 6.2 and Table 6.1. The actuator is free in space. An initial

velocity V0 is given by

V0 = ω × X , ω = [0, 0, 10]T s−1, X = [X1, X2, X3]
T , (6.53)

with {X1, X2, X3} aligned with the orthonormal basis {e1, e2, e3}, respectively (see

Figure 6.2). Electrical Dirichlet boundary conditions are applied on top and bottom

of the plate. Specifically, a value of the potential φt = 0 V is applied on the top (blue)

electrode and of φb = 100 kV on the bottom (blue) electrode (refer to Figure 6.2).

e3
e2

e1

ω

φb

φt

Figure 6.2: Rotating actuator: Configuration and boundary conditions (left), discretization (right).

The purely mechanical contribution of the constitutive model considered corresponds

to that of a Mooney-Rivlin model (refer to equation (6.12)). The electromechanical

component corresponds to that of an ideal dielectric elastomer (see equation (6.13)).

The material parameters of the constitutive model can be found in Table 6.1. The

discretization shown in Figure 6.2 has been used in this example, comprised of 8 hex-

ahedral elements with {243, 81, 192} degrees of freedom for {ϕ, φ, D}. A continuous

serendipity-type Q2 interpolation has been used for the fields {ϕ, φ} and a discontin-

uous trilinear Q1 interpolation has been used for D.

In relation to objective O1.I, a study of the accuracy of the proposed EM scheme in

(6.32) has been carried out. This is shown in Figure 6.3, which depicts the conver-

gence with respect to time of the solution when using the hexahedral finite element

described above. Specifically, for the mesh depicted in Figure 6.2, the L2 norm of the

error in the displacements (see (4.92)) between the solution obtained with five differ-

ent time steps {∆t1, ..., ∆t5} such that ∆t1 = 2.5e-2s, ∆t2 = 1e-2s, ∆t3 = 5e-3s, ∆t4 =

2.5e-3s, ∆t5 = 1e-3s and that obtained with a reference time step ∆tref such that

∆tref << ∆t5 has been computed. A time-interval of 0.1s has been considered in or-

der to carry out the described convergence study. Crucially, Figure 6.3 proves that the

proposed EM scheme is second order accurate in time (slope of 1.914).
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Table 6.1: Numerical example 1. Material parameters, simulation parameters and geometry.

mech. parameters a 2.5 × 104 Pa geometry of the actuator

b 5 × 104 Pa

λ 4 × 104 Pa

el. parameters ε0 8.854 × 10−12 F kg−1 2 2

0.1

[m]εr 5 −
ref. pot. φ0 0 V

el. pot. at X3 = 0.1 φt 105 V

el. pot. at X3 = 0 φb 0 V

density ρ0 900 kg m−3

simulation time T 0.1 s

ref time-step size ∆tre f 10−4 s

Newton tolerance ε 10−6 J

10−3 10−2 10−1
10−5

10−4

10−3

10−2

1.914

∆ t [s]

er
ro

r
[-

]

Figure 6.3: Rotating actuator: Second order (1.914) accuracy of the proposed EM scheme in (6.32) with

respect to time for the field ϕ. Results obtained for hexahedral Q2C-Q2C-Q1D element.
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6.6.2 Bending actuator

The objective of this example is two-fold:

O2.I Comparison of the performance of two families of finite elements. Specifically, a

tetrahedral-based and a hexahedral-based finite element will be considered. The

interpolation spaces for the fields {ϕ, φ, D} will be carried out in accordance to

Table 6.2.

O2.II Assessment of the thermodynamical consistency of the time integration scheme

presented in (6.32) for both families of finite elements. In particular, the conser-

vation properties of the proposed EM scheme will be analysed.

Table 6.2: Bending actuator: Discretization spaces for tetrahedral-based and hexahedral-based finite

elements considered. The superscripts C and D stand for continuous and discontinuous

interpolations of fields {ϕ, φ, D}.

Discretization in space

Fields Tet-based Hex-based

ϕ P2C Q2C

φ P2C Q2C

D P1D Q1D

The geometry and boundary conditions for the actuator considered in this example

are described in Figure 6.4 and Table 6.3. The actuator is clamped on one side (zero

Dirichlet displacement boundary conditions). A surface electrical charge ωe
0 is applied

on the top (purple) electrode (refer to Figure 6.4) whereas a prescribed value of the

electric potential of φ = 0 V is applied on the electrode (blue) in the middle of the

actuator. The time dependent function ωe
0 is given by

ωe
0 = 10−3 ×





sin
(

0.5 π
0.4 s t

)
for t ≤ 0.4 s

1 for 0.4 s < t ≤ 1.0 s

cos
(

0.5 π
1.4 s−1.0 s (t − 1 s)

)
for 1.0 s < t ≤ 1.4 s

0 for t > 1.4 s

[Q/m2] . (6.54)

The purely mechanical contribution of the constitutive model considered corresponds

to that of a Mooney-Rivlin model (refer to equation (6.12)). The electromechanical
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e1

e2
e3

ωe
0

φ

Figure 6.4: Bending actuator: Configuration and boundary conditions (left). Discretizations

considered: hexahedral mesh (center), tetrahedral mesh (right).

With regards to O2.I, two discretizations are considered, one for each of the two fam-

ilies of finite elements described in Table 6.2. Both hexahedral-based and tetrahedral-

based meshes are represented in Figure 6.4. The mesh associated with the hexahedral-

based discretization has 2,560 elements, 13,401 nodes for both fields {ϕ, φ} {40203,

13401} degrees of freedom associated to each field) and 20,480 nodes for D (61,440

degrees of freedom). The mesh associated with the tetrahedral-based discretization

has 10,882 elements, 18633 nodes for both fields {ϕ, φ} ({55899, 18633} degrees of

freedom associated to each field) and 43,528 nodes for D (130,584 degrees of free-

dom). In both cases, D is interpolated using a discontinuous interpolation across

elements, which allows to condense out this field.

Figure 6.5 shows the contour plot distribution of the von Mises stress for both, the

hexahedral-based and the tetrahedral-based discretization, respectively, for different

time steps. A good agreement is observed between both discretizations in terms of

the final configuration (displacements) as well as the stress distribution.

Regarding objective O2.II, Figure 6.6 shows the evolution of the Hamiltonian H (6.31)

using both hexahedral and tetrahedral discretizations for a given time step size of

∆t = 0.02 s. The evolution of H is exactly identical for both discretizations. Crucially,

H remains constant for the time interval [0.4, 1] s ∪ [1.4, 4] s, namely, when the sur-

face charge ωe
0 in equation (6.54) remains constant, proving that the Hamiltonian is

conserved in that range. This can be more clearly appreciated in Figure 6.7, where

the variation ∆H = Hn+1 − Hn is depicted for the aforementioned time interval. Cru-

cially, the maximum value of |∆H| is always bounded below the user-defined Newton

tolerance ε, which for this case was selected as ε = 10−5 (refer to Table 6.3).

122

component corresponds to that of an ideal dielectric elastomer (see equation (6.13)).

The material parameters of the constitutive model can be found in Table 6.3.



6.6 Numerical Investigations

Table 6.3: Bending actuator: Material parameters, simulation parameters and geometry.

mech. parameters a 2.5 × 104 Pa geometry of the actuator

b 5 × 104 Pa

λ 1 × 105 Pa
1

0.1

0.01

[m]
el. parameters ε0 8.854 × 10−12 F kg−1

εr 3 −
ref. potential ϕ0 0 V

max. surface charge ω0 1 × 10−3 Q/m2

density ρ0 1000 kg m−3

timestep size ∆t 0.02 s

simulation time T 4 s

Newton tolerance ε 10−5 J

0 1 2 3 4

0

0.2

0.4

0.6

0.8

·101

t [s]

H
n
+

1
[J

]

Hex: EM, ∆t = 0.02
Tet: EM, ∆t = 0.02

Figure 6.6: Bending actuator: Time evolution of

H for both hexahedral and

tetrahedral discretizations using the

proposed EM scheme.
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−2

−1

0

1

2
·10−7

t [s]

H
n
+

1
−

H
n

[J
]

Hex: EM, ∆t = 0.02
Tet: EM, ∆t = 0.02

Figure 6.7: Bending actuator: Time evolution of

∆H for time interval

[0.4, 1] s ∪ [1.4, 4] s for hexahedral and

tetrahedral elements with proposed

EM scheme.
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0

2.5 · 104

Figure 6.5: Bending actuator: Contour plot of von Mises stress for the hexahedral-based and the

tetrahedral-based discretization for different configurations corresponding to (left to

right-top to bottom): t = { 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 }s.

6 EM scheme for nonlinear electroelastodynamics
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6.6.3 Rotating cross

The objective of this example is three-fold:

O3.I Comparison of the stability and robustness of the proposed EM scheme against

the MP scheme.

O3.II Comparison of the thermodynamical consistency of the proposed time integra-

tor to that of the MP integrator.

O3.III Verification of consistent angular momentum approximation.

e1

e2

e3

ωe
0

−ωe
0

ϕ

ω

Figure 6.8: Rotating cross: Configuration and boundary conditions (left), discretization (right).

The geometry and boundary conditions for the actuator considered in this example

are described in Figure 6.8 and Table 6.4. The actuator is completely free (no Dirichlet

boundary conditions are considered for the field ϕ). An initial velocity V0 is pre-

scribed and given by

V0 = ω × X , ω = [0, 0, 4]T s−1, X = [X1, X2, X3]
T , (6.55)

with {X1, X2, X3} aligned with the orthonormal basis {e1, e2, e3}, respectively (see

Figure 6.8). A constant value for the electric potential of φ = 0 V is applied on the

blue electrode. A surface electric charge ωe
0 is applied on the purple electrode (see
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detailed view in Figure 6.8). The time dependent function ωe
0 is given by

ωe
0 =

(
5 × 10−3

)
×





sin
(

0.5 π
0.4 s t

)
for t ≤ 0.4 s

1 for 0.4 s < t ≤ 3.0 s

cos
(

0.5 π
3.4 s−3.0 s (t − 3 s)

)
for 3.0 s < t ≤ 3.4 s

0 for t > 3.4 s

[Q/m2] . (6.56)

The constitutive model is the same as that used in the two preceding examples with

the material parameters defined in Table 6.4. The discretization shown in Figure 6.8

has been used in this example. Specifically, a total of 672 hexahedral Q2C-Q2C-Q1D

finite elements have been considered, yielding a total number of degrees of freedom

of {13215, 4405, 16128} for the fields {ϕ, φ, D}.

Table 6.4: Rotating cross: Material parameters, simulation parameters and geometry.

mech. parameters a 2.5 × 104 Pa geometry of the cross

b 5 × 104 Pa

λ 5 × 105 Pa

0.36

0.36

0.08
0.04 [m]

el. parameters ε0 8.854 × 10−12 F kg−1

εr 4 N/V2

ref. potential ϕ0 0 V

max. surface charge ω0 5 × 10−3 Q/m2

density ρ0 1000 kg m−3

timestep size ∆t 0.01 s

simulation time T 10 s

Newton tolerance ε 10−5 J

Regarding objective O3.I, Figure 6.9 shows that the MP time integrator exhibits an

energy blow-up and becomes unstable approximately in the interval 1s < t < 2s.

However, the newly proposed EM scheme remains stable for the whole simulation

for the same fixed time step size of ∆t = 0.01 s. This proves that the proposed scheme

is more robust and stable than the classical MP scheme.

In relation to objective O3.II, Figure 6.9 shows the evolution of H for both the pro-

posed EM scheme and the MP scheme. Crucially, H remains constant when using
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6.6 Numerical Investigations

the proposed EM scheme for the time interval [0.4, 3] s ∪ [3.4, 10] s, namely, when the

surface charge ωe
0 in equation (6.56) remains constant, proving that the Hamiltonian

is conserved in that range. This can be more clearly appreciated in Figure 6.10, where

the variation ∆H = Hn+1 − Hn is depicted for the aforementioned time interval. Cru-

cially, the maximum value of |∆H| is always bounded below the user-defined Newton

tolerance ε, which for this case was selected as ε = 10−5 (refer to Table 6.4).

Additionally, in relation to objective O3.III Figure 6.12 shows the evolution of the

norm of the total angular momentum J of the system for both the proposed EM

scheme and the MP scheme (before the latter becomes unstable). Crucially, ||J||
remains constant when using the proposed EM scheme for the whole simulation,

proving that the total angular momentum is conserved. This can be more clearly ap-

preciated in Figure 6.13, where the variation ||∆J|| = ||Jn+1 − Jn|| is depicted for the

whole simulation. Crucially, the maximum value of ||∆J|| is also always bounded be-

low the user-defined Newton tolerance ε (here ε = 10−5, refer to Table 6.4). A clearer

evolution of the energy blow-up for the MP scheme can be appreciated in Figure 6.11.

For the interval 1s < t < 2s, a diverging pattern is observed in the evolution of the

Hamiltonian for the MP scheme which ends in an energy blow-up.
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1
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EM, ∆t=0.01
MP, ∆t=0.01

Figure 6.9: Rotating cross: Time evolution of H

with the proposed EM and MP

scheme. Energy blow-up for MP

scheme within time interval

1s < t < 2s.
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Figure 6.10: Rotating cross: Time evolution of

∆H in the time interval

[0.4, 3] s ∪ [3.4, 10] s for hexahedral

element with the proposed EM

consistent scheme.
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EM, ∆t=0.01
MP, ∆t=0.01

Figure 6.11: Rotating cross: Time evolution of ∆H in the time interval 1s < t < 2s for hexahedral

element. Energy blow-up of the MP scheme. Conservation of the Hamiltonian for

proposed scheme.
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Figure 6.12: Rotating cross: Time evolution of

||J|| with proposed EM scheme and

MP scheme.
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Figure 6.13: Rotating cross: Time evolution of

||∆J|| for hexahedral element with

proposed EM scheme.

Finally, the contour plot distribution for the electric potential φ and the evolution of

the combined rotation and electrically induced deformation in the actuator is depicted

in Figure 6.14 for difference instances of time.
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−2 · 106

2 · 106

Figure 6.14: Rotating cross: Contour plot of electric potential φ for hexahedral element for different

configurations corresponding to (left to right-top to bottom):

t = { 0, 0.4, 0.8, 1.2. 1.6, 2, 2.4, 2.8, 3.2, 3.6, 4, 4.4 }s.

6.6.4 Twisting actuator

The objective of this example is:

O4.I The consideration of more sophisticated constitutive models allowing for the

consideration of anisotropic effects. A comparison of the stability and robust-

ness between the proposed EM scheme and the MP scheme will also be carried

out in this example.

The geometry and boundary conditions for the actuator considered in this example

are described in Figure 6.15 and Table 6.5. The actuator is clamped on one side (zero

Dirichlet displacement boundary conditions). A surface electrical charge ωe
0 is applied

on the purple electrode (refer to detailed view in Figure 6.15) whereas a prescribed

value of the electric potential of φ = 0 V is applied on the blue electrode (see detailed
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view in Figure 6.15). The time dependent function ωe
0 is given by

ωe
0 =

(
2 × 10−3

)
×





sin
(

0.5 π
0.5 s t

)
for t ≤ 0.5 s

1 for 0.5 s < t ≤ 1 s

cos
(

0.5 π
1.5 s−1 s (t − 1 s)

)
for 1 s < t ≤ 1.5 s

0 for t > 1.5 s

[Q/m2] . (6.57)

e1

e2
e3

ωe
0

φ

u

a0

Figure 6.15: Twisting actuator: Configuration and boundary conditions (left), discretization (right).

Regarding the constitutive model, its electromechanical component corresponds to

that of an ideal dielectric elastomer (see equation (6.13)). The purely mechanical con-

tribution is more complex than that considered in the preceding examples. This can

be additively decomposed into purely isotropic and transversely anisotropic parts, see

(3.42). In this example, the isotropic contribution uiso
m (C, G, C) will be taken exactly as

that a Mooney-Rivlin model (refer to equation (6.12)). The anisotropic contribution is

defined in (3.44), where the material parameters g0 > 0, gC > 0, gG > 0 and gC ≥ 1

for this model can be found in Table 6.5. Moreover, in Fig. 6.15, a0 represents the

preferred direction of anisotropy in the material configuration. In this example, a0

is defined as a0 = [0.320 − 0.9712 0.320]T. The discretization shown in Figure 6.15

has been used in this example. Specifically, a total of 640 hexahedral Q2C-Q2C-Q1D

finite elements have been considered, yielding a total number of degrees of freedom

of {10995, 3665, 15360} for the fields {ϕ, φ, D}.

Regarding objective O4.I, Figure 6.16 shows that the MP scheme exhibits an energy

blow-up and becomes unstable approximately in the interval 4 < t < 5. However,

the proposed EM scheme remains stable for the whole simulation for the same fixed

time step size of ∆t = 0.0025 s. Like in the preceding example, where a simpler

constitutive law was used, this proves that the proposed EM scheme is more robust
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and stable than the classical MP scheme. In addition, 6.16 shows the evolution of

H for both the proposed EM scheme and the MP scheme (before the latter becomes

unstable). Crucially, H remains constant when using the proposed EM scheme for

the time interval [0.5, 1] s∪ [1.5, 7.5] s, namely, when the surface charge ωe
0 in equation

(6.57) remains constant, proving that the Hamiltonian is conserved in that range. This

can be more clearly appreciated in Figure 6.17, where the variation ∆H = Hn+1 − Hn

is depicted for the aforementioned time interval. The maximum value of |∆H| is

always bounded below the user-defined Newton tolerance ε (refer to Table 6.5).

Finally, the contour plot distribution for the von Mises stress and the evolution of the

electrically induced deformation in the actuator is depicted in Figure 6.18 for different

instances of time.

Table 6.5: Twisting actuator: Material parameters, simulation parameters and geometry.

mech. parameters a 2.5 × 104 Pa geometry of the actuator

b 5 × 104 Pa

λ 1 × 106 Pa

g0 3 × 105 Pa

gC 4 - 1

0.1

0.02

[m]gG 8 -

gC 1 -

el. parameters ε0 8.854 × 10−12 F kg−1

εr 4 −
ref. potential ϕ0 0 V

max. surface charge ω0 2 × 10−3 Q/m2

Density ρ0 1000 kg m−3

timestep size ∆t 0.0025 s

simulation time T 7.5 s

Newton tolerance ε 10−5 J

131



6 EM scheme for nonlinear electroelastodynamics

0 2 4 6

0

20

40

60

t [s]

H
n
+

1
[J

]

EM, ∆t=0.0025
MP, ∆t=0.0025

Figure 6.16: Twisting actuator: Time evolution

of H with the proposed EM scheme

and the MP scheme. Energy

blow-up for MP scheme.
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Figure 6.17: Twisting actuator: Time evolution

of ∆H in the time interval

[0.5, 1.5] s∪ [1.5, 7.5] s for hexahedral

element with the proposed scheme.

0
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Figure 6.18: Twisting actuator: Contour plot of the von Mises stress for hexahedral element for

different configurations corresponding to (left to right-top to bottom):

t = { 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2 }s.
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6.6.5 Clamped membrane

The objective of this example is:

O5.I Comparison of the robustness between the proposed EM scheme and the MP

scheme in scenarios with more sophisticated electrically induced configurations

which can represent a real challenge from the robustness standpoint of the al-

gorithm.

e1

e2
e3

ωe
0

ϕ
u

Figure 6.19: Clamped membrane: Configuration and boundary conditions (left), discretization (right).

The geometry and boundary conditions for the actuator considered in this example

are very similar to those considered in Reference [140] and are described in Figure 6.19

and Table 6.6. The actuator is fully clamped on the perimeter of the blue electrode

(see detailed view in Figure 6.19). A surface electrical charge ωe
0 is applied on the

purple electrode (refer to detailed view in Figure 6.19) whereas a prescribed value of

the electric potential of φ = 0 V is applied on the blue electrode. The time dependent

function ωe
0 is given by

ωe
0 =

(
2 × 10−3

)
×





sin
(

0.5 π
1 s t

)
for t ≤ 1 s

1 for t > 1 s
[Q/m2] . (6.58)

The purely mechanical contribution of the constitutive model considered corresponds

to that of a Mooney-Rivlin model (refer to equation (6.12)). The electromechanical

component corresponds to that of an ideal dielectric elastomer (see equation (6.13)).

The material parameters of the constitutive model can be found in Table 6.6.

The discretization shown in Figure 6.19 has been used in this example. Specifically,

a total of 25200 hexahedral Q2C-Q2C-Q1D finite elements for one quarter of the disc

have been considered, yielding a total number of degrees of freedom (for one quarter)

of {420639, 140213, 604800} for the fields {ϕ, φ, D}.
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Table 6.6: Clamped membrane: Material parameters, simulation parameters and geometry.

mech. parameters µ1 1 × 105 Pa geometry of the disc

µ2 2 × 105 Pa

λ 1 × 105 Pa 2

0.01 [m]

el. parameters ε0 8.854 × 10−12 F kg−1

εr 4 N/V2

ref. potential ϕ0 0 V

max. surface charge ω0 2 × 10−3 Q/m2

Density ρ0 1000 kg m−3

timestep size ∆t 0.01 s

simulation time T 20 s

Newton tolerance ε 10−4 J

Regarding objective O5.I, Figure 6.20 shows that the MP scheme exhibits an energy

blow-up and becomes unstable approximately at the beginning of the time interval for

which ωe
0 becomes constant. However, the proposed EM scheme remains stable for

the whole simulation for the same fixed time step size of ∆t = 0.01 s. This example is

particularly challenging, specially when using the MP scheme, as it can be observed

from the early energy blow-up just described. In addition, Figure 6.20 shows the

evolution of H for both the proposed EM scheme and the MP scheme (before the

latter becomes unstable). Crucially, H remains constant when using the proposed EM

scheme for the time interval t > 1 s, namely, when the surface charge ωe
0 in equation

(6.58) remains constant, proving that the Hamiltonian is conserved in that range. This

can be more clearly appreciated in Figure 6.21, where the variation ∆H = Hn+1 − Hn

is depicted for the aforementioned time interval. The maximum value of |∆H| is

always bounded below the user-defined Newton tolerance ε (refer to Table 6.6).

Finally, the contour plot distribution for the von Mises stress and the evolution of

the electrically induced deformation in the actuator is depicted in Figure 6.22 for

difference instances of time.
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Figure 6.20: Clamped membrane: Time

evolution of H with the proposed

EM scheme and the MP scheme.
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Figure 6.21: Clamped membrane: Time

evolution of ∆H in the time interval

t > 1 s for hexahedral element.

0
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Figure 6.22: Clamped membrane: Contour plot of the von Mises stress for hexahedral element for

different configurations corresponding to (left to right-top to bottom)

t = { 0, 0.05, 0.3, 0.55, 0.8, 1.05, 1.3, 1.55, 1.8, 2.05, 2.3, 2.55 }s.
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7 Summary and outlook

7.1 Summary
1

This thesis deals with the formulation of a mixed framework for the design of EM

consistent schemes inspired by the structure of polyconvex stored energy functions.

This framework has been extended to more involved problems, such as modeling

quasi-incompressible material behavior or the simulation of multi-field problems.

In the beginning we proposed a new mixed variational framework that opens up a

new avenue to the design of EM schemes. The mixed variational framework has been

motivated by the structure of polyconvex stored energy functions. Consequently,

the structure of the underlying frame-indifferent stored energy function gives rise to

three strain-type fields that play the role of independent variables in the Hu-Washizu

type variational formulation. In particular, the strain-type variables are introduced

through a cascade of kinematic relationships, which ultimately makes possible the

design of the present EM method. The mixed framework at hand yields variational

equations that have been discretized first in time. The resulting mixed semi-discrete

EM method facilitates the design of a whole family of EM schemes, dependent on the

specific choice of the spatial discretization. This has been illustrated in the present

work with (i) the pure displacement formulation, and (ii) the fully mixed element for-

mulation relying on the independent approximation of the displacements, the three

strain-type variables, and the corresponding three stress-type Lagrange multipliers.

Concerning the fully mixed approach, we have restricted ourselves to one particular

implementation, relying on 20-node serendipity shape functions for the displacements

(yielding a globally C0 approximation of the displacement field), along with tri-linear

Lagrangian shape functions for the remaining six independent fields. Since the mixed

1 This section is based on the conclusions given in [23, 81, 44, 133].
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fields do not require inter-element continuity, the classical static condensation proce-

dure has been applied. Thus, the mixed formulation does not lead to an increase in

the number of unknowns to be solved for at the global level. Interestingly, the mixed

approach has led to a new form of the algorithmic stress formula, which is a typical

feature of EM schemes for displacement elements. It has been shown that the new

stress formula leads to significant simplifications for the numerical implementation

when compared to previously developed projection-based formulas. Apart from the

advantages for the structure-preserving discretization in time, the newly proposed

mixed variational formulation also offers new options for the design of mixed finite

elements. It has been shown that the specific mixed element formulation singled out

in the present work shows superior numerical robustness and accuracy, when com-

pared to the corresponding displacement element.

Based on this formulation, we extended the recently developed framework of mixed

finite elements to the class of Ogden-type material models. Typically, this class of

material models shows a good correlation between simulations and experiments of

rubber-like materials and contains Mooney-Rivlin and Neo-Hookean material models

as special cases. Since rubber-like materials are known to be nearly incompressible,

we used a multiplicative split of the deformation gradient. This ensures a decou-

pled expression of the underlying stored energy function in an isochoric part and

a volume-changing part. Afterwards, we proposed a mixed variational framework

based on a three-field Hu-Washizu-type variational formulation, where the displace-

ments, the determinant of the deformation gradient, and the hydrostatic pressure

enter the functional. Employing stationarity conditions yield the variational equa-

tions which have been discretized in time and space. For the discretization in time,

we introduced a newly developed algorithmic stress formula, tailor-made for EM

consistent time approximation of Ogden-type material models, within the mixed for-

mulation. The newly proposed EM time discretization of the underlying mixed vari-

ational formulation allows for alternative spatial approximations of the mixed fields.

The numerical examples show that the newly proposed EM time-discretization, along

with the mixed space-discretization (e.g., Q1P0), performs extremely well in terms of

numerical stability and accuracy.

The key follow-up point in this thesis is the extension of the newly developed stress

formula to multi-field problems. We presented a new approach to the design of EM

consistent time integration schemes in the field of nonlinear thermo-elastodynamics.

The key element for this development is the tensor cross product, which allows us

to find a polyconvexity-based, frame-indifferent Helmholtz free energy functional
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and greatly simplifies the algebra. Based on this, a new temperature-based vari-

ational formulation has been devised, which made possible the design of an EM

consistent scheme. The polyconvexity-based framework has been discretized first in

time. In particular, a new algorithmic stress formula has been developed with a re-

markably simple structure for the numerical implementation that avoids the use of

previously developed projection-based formulas. The EM consistent time integrator

consistently reproduces the physical behavior of the coupled thermo-elastodynamic

model. In addition, the algorithm presented herein is numerically stable for different

types of initial and boundary conditions. The newly proposed integration scheme

was investigated with respect to the numerical behavior in different transient exam-

ples. It turned out that the advocated approach exhibited superior numerical stability

properties, which is due to the consistent reproduction of the fundamental thermo-

mechanical balance laws in the discrete setting. It became evident that the proposed

polyconvexity-based formulation, in terms of the temperature, yields a particularly

robust scheme. This leads to remarkably reliable results, even for coarse time-steps,

which is in contrast to standard second-order implicit integrators.

Finally, a new, consistent energy-momentum one-step time stepping scheme was pre-

sented in the context of nonlinear electro-elastodynamics. The new time integrator

relies on the definition of four discrete derivative expressions of the internal energy,

where each one represents the algorithmic counterpart of the work conjugates of the

right Cauchy-Green deformation tensor, its co-factor, its determinant, and the La-

grangian electric displacement field. Proof of thermodynamical consistency and of

second-order accuracy with respect to time of the resulting algorithm, are presented.

A series of numerical examples have been included in order to prove the superior ro-

bustness and conservation properties of the (internal energy-based) EM time-stepping

scheme proposed.

7.2 Outlook

Based on the present contribution, some research projects are currently in progress

or seem to be worth investigating. In particular, we focus on the intersections of the

three circles, as illustrated in Fig. 1.1.

• In [45], the time integrator for finite strain electromechanics, as proposed in

Chapter 6, has been developed from a new mixed variational framework to
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make possible several discretizations in space. According to a suitable choice of

the interpolation spaces for the mixed fields, the new formulation exhibits supe-

rior numerical performance compared to the formulation proposed in Chapter 6.

• In a similar way, it would be worth investigating a mixed formulation for finite

strain thermo-elastodynamics. With regards to Chapter 3, the mixed formu-

lation at hand should show superior numerical robustness and accuracy com-

pared to the formulation proposed in Chapter 5. Moreover, the algorithm pro-

posed in Chapter 5 only approximates the first law of thermodynamics in the

full discrete setting consistently. The consistent formulation of the second law

of thermodynamics could be addressed as well.

• Another field of interest would be a combination of the EM consistent time-

stepping schemes proposed in Chapter 5 and 6. The new time integrator for

finite strain electro-thermo-elastodynamics should show the well-known advan-

tages of structure-preserving time-stepping schemes and would be useful for

many applications of interest. Additionally, a mixed formulation could be ad-

dressed in the context of the electro-thermo-elastodynamic problem at hand.

As mentioned in the beginning of this thesis, variational integratos represent an inter-

esting class of structure-preserving numerical methods. In the context of the mixed

variational framework, it would be of interest to focus on variational integrators orig-

inating from Hu-Washizu-type or Hellinger-Reissner-type variational principles.
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A Appendix to Chapter 2
1

A.1 Relations for the tensor cross product

The relationships for the tensor cross product summarized in (2.12) can be easily

verified by resorting to index notation. Accordingly, using definition (2.8) of the

tensor cross product, commutative property (2.12)1 can be verified by considering

(A B)ij = εiαβ ε jab Aαa Bβb

= εiβα ε jba Bβb Aαa

= (B A)ij .

(A.1)

Here, the fact that the permutation symbol εiαβ changes sign under transposition, i.e.

εiαβ = −εiβα, has been used twice. To verify relation (2.12)2, consider

(A B)T
ij = (A B)ji

= ε jαβ εiab Aαa Bβb

= εiab ε jαβ (AT)aα (B
T)bβ

= AT BT .

(A.2)

Permutation property (2.12)3 follows directly from the fact that the permutation sym-

bol is invariant under cyclic permutation of indices. That is, εiαβ = εαβi = εβiα. Thus,

we obtain, for example,

(A B) : C = (A B)ij(C)ij

= εiαβ ε jab Aαa Bβb Cij

= εαβi εabj Bβb Cij Aαa

= (B C)αa(A)αa

= (B C) : A .

(A.3)

1 This chapter is based on the appendix given in [23].
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To verify relation (2.12)4, we make use of the epsilon-delta identity (see, for example,

[53]),

ε jabε jγδ = δaγ δbδ − δaδ δbγ , (A.4)

to obtain

((A B) (C D))ik = (A B)ij(C D)jk

= εiαβ ε jab Aαa Bβb ε jγδ εkcd Cγc Dδd

= εiαβ εkcd (δaγ δbδ − δaδ δbγ) Aαa Bβb Cγc Dδd

= εiαβ εkcd (Aαγ Cγc Bβδ Dδd − Aαδ Dδd Bβγ Cγc)

= εiαβ εkcd (AC)αc (BD)βd + εiαβ εkdc (BC)βc (AD)αd

= (AC) (BD) + (BC) (AD) .

(A.5)

Eventually, distributive property (2.12)5 is obviously satisfied.
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1

B.1 Implementation details of the

displacement formulation

Inserting the approximations from (6.51) into the semi-discrete variational formula-

tion (3.65) yields the nodal residual vectors Ra
V ∈ R3 and Ra

ϕ ∈ R3 given by

Ra
V = Mab (ϕbn+1 −ϕbn − ∆t V bn+ 1

2
) ,

Ra
ϕ =

∫

B0

BaT

n+ 1
2

SV
A dV +

∫

B0

ρ0 B̄ Na dV + Mab 1

∆t
(V bn+1 − V bn) ,

(B.1)

with mass matrix Mab ∈ R3×3 of the form

Mab =
∫

B0

ρ0 Na Nb dV I , (B.2)

and the standard operator-matrix Ba ∈ R6×3 which links the nodal displacements to

the strains (see, for example, [175]). For the sake of clearness, we neglect superscript h

throughout this appendix. Taking into account the symmetry of SA ∈ R3×3, the inde-

pendent commponents of SA are arranged in a column vector SV
A ∈ R6. Specifically,

AV ∈ R6 refers to the so-called Voigt’s vector notation of a symmetric stress-type

quantity A ∈ R3×3 given by

A =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 → AV =

[
A11 A22 A33 A12 A23 A13

]T
. (B.3)

1 This chapter is based on the appendix given in [23].
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Similarly, Ā
V ∈ R6 collects the independent components of a symmetric strain-type

quantity Ā ∈ R3×3 leading to

Ā =




Ā11 Ā12 Ā13

Ā21 Ā22 Ā23

Ā31 Ā32 Ā33


 → Ā

V =
[

Ā11 Ā22 Ā33 2 Ā12 2 Ā23 2 Ā13

]T
. (B.4)

In this way work-conjugate pairings of stress-type and strain-type quantities can be

written as

A : Ā = Ā
VT

AV . (B.5)

For an efficient implementation, the nodal velocities are expressed in terms of the

displacements. Accordingly, (B.1)1 yields

V bn+1 = −V bn +
2

∆t
(ϕbn+1 −ϕbn) . (B.6)

Inserting (B.6) into (B.1)2 leads to a size-reduced global residual vector R̃ϕ ∈ R3 nnode,

with nodal contributions R̃
a
ϕ ∈ R3 given by

R̃
a
ϕ =

∫

B0

BaT

n+ 1
2

SV
A dV +

∫

B0

ρ0 B̄ Na dV − 2

∆t
Mab V bn +

2

∆t2
Mab (ϕbn+1 −ϕbn) , (B.7)

(a = 1, . . . , nnode). For the iterative solution process, the corresponding tangent mod-

uli are needed. The linearization of the fully discrete system results in

DR̃
a
ϕ · ∆dn+1 = Kab ∆ϕbn+1

, (B.8)

where d ∈ R3 nnode contains the nodal position vectors ϕb ∈ R3. The contribution of

node a and node b to the effective element tangent matrix, Kab ∈ R
3×3, can be written

as

Kab = Kab
dyn + Kab

geo + Kab
mat . (B.9)

Note that we assume dead loads acting on the body (Kab
ext = 0). The dynamical part

of the tangent matrix is given by

Kab
dyn =

2

∆t2
Mab . (B.10)

For the geometrical part we obtain

Kab
geo =

1

2

∫

B0

Na
,I Nb

,J

(
SA

)
I J

I dV , (B.11)
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while the material part is given by

Kab
mat =

1

2

∫

B0

BaT

n+ 1
2

D̃ Bb
n+1 dV . (B.12)

Here, D̃ ∈ R6×6 contains the algorithmic material tangent moduli arising from the lin-

earization of the algorithmic stress tensor (3.66). For example, in case of the Mooney-

Rivlin material we obtain

D̃ = D(DGΨ + DCΨ D

(2

3

(
Cn+ 1

2
+

1

2
Cn+1

))

+ ∂Cn+1

(
DCΨ

1

3

(
Ḡ

V
ϕ

n+ 1
2

+
(
Cn+ 1

2
Cn+ 1

2

)V
)
⊗ Ḡ

V
ϕn+1

)
,

(B.13)

where DGΨ and DCΨ stand for the discrete derivatives given by (3.40)2 and (3.41),

respectively. Moreover, in (B.13), the operator matrix D(A) embodies the operation

A : (V W), where V and W are symmetric, leading to VVT
D(A)WV , where

D(A) =




0 2 A33 2 A22 0 −2 A23 0

2 A33 0 2 A11 0 0 −2 A13

2 A22 2 A11 0 −2 A12 0 0

0 0 −2 A21 −A33 A13 A23

−2 A23 0 0 A13 −A11 A12

0 −2 A13 0 A23 A12 −A22




. (B.14)

The assembly procedure of the element contributions to the global tangent matrix and

the global residual vector is standard and can be found in textbooks such as [175].

B.2 Implementation details of the

formulation

In an analogous way to the implementation of the displacement formulation (see Ap-

pendix B.1) we provide the residual vector and tangent moduli for the mixed element

formulation. As mentioned in Section 3.3.2, it is possible to use different interpolation

formulas for the mixed fields. In the following we allow for different interpolations

of the individual mixed fields on element level. The corresponding shape functions

are distinguished by a subscript. For example, we write

Ah
∣∣∣
B(e)

0

=
nA

en

∑
b=1

Mb
A Ab, Ah

∣∣∣
B(e)

0

=
nA

en

∑
b=1

Mb
A Ab , (B.15)
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where A ∈ R3×3 stands for C, G, Λ
C or Λ

G and A ∈ R stands for C or ΛC . Moreover,

nA
en or nA

en stands for the nodes per element of the corresponding quantity. For the

sake of clearness we neglect the superscript h in the sequel. Inserting the interpolation

formulas into the semi-discrete variational equations (3.33), (3.34) and (3.35) we get

Ra
V = Mab (ϕbn+1 −ϕbn − ∆t V bn+ 1

2
) ,

Ra
ϕ =

∫

B0

BaT

n+ 1
2

(
Λ

C
n+1

)V
dV +

∫

B0

ρ0 B̄ Na dV + Mab 1

∆t
(V bn+1 − V bn) ,

(B.16)

Ra
C =

∫

B0

(
DCΨ − Λ

C
n+1 + Λ

G
n+1 Cn+ 1

2
+

1

3
ΛC

n+1 Gn+ 1
2

)
Ma

C dV ,

Ra
G =

∫

B0

(
DGΨ − Λ

G
n+1 +

1

3
ΛC

n+1 Cn+ 1
2

)
Ma

G dV ,

Ra
C =

∫

B0

(
DCΨ − ΛC

n+1

)
Ma

C dV ,

(B.17)

Ra
ΛC =

∫

B0

(
Cn+1 − Cn+1

)
Ma

ΛC dV ,

Ra
ΛG =

∫

B0

(1

2
Cn+1 Cn+1 − Gn+1

)
Ma

ΛG dV ,

Ra
ΛC =

∫

B0

(1

3
Gn+1 : Cn+1 − Cn+1

)
Ma

ΛC dV ,

(B.18)

with the mass matrix Mab as introduced in (B.2), the standard nodal operator ma-

trix Ba ∈ R6×3, and the vector notation introduced in Appendix B.1. Similar to the

displacement-based formulation, the nodal velocities V bn+1 are eliminated by using

(B.6) to obtain the size-reduced nodal residual vector given by

R̃
a
ϕ =

∫

B0

BaT

n+ 1
2

(
Λ

C
n+1

)V
dV +

∫

B0

ρ0 B̄ Na dV − 2

∆t
Mab V bn +

2

∆t2
Mab (ϕbn+1 −ϕbn) .

(B.19)

Next, we arrange the nodal residual vectors in element residual vectors of the form

R̃ϕ =
[

R̃
1
ϕ; . . . ; R̃

n
ϕ
en

ϕ

]
,

RΞ =
[(

R1
C

)V
; . . . ;

(
R

nC
en

C

)V
;
(

R1
G

)V
; . . . ;

(
R

nG
en

G

)V
;
(

R1
C
)V

; . . . ;
(
R

nC
en

C
)V

]
,

RΛ =
[(

R1
ΛC

)V
; . . . ;

(
R

nΛ
C

en

ΛC

)V
;
(

R1
ΛG

)V
; . . . ;

(
R

nΛ
G

en

ΛG

)V
;
(

R1
ΛC

)V
; . . . ;

(
R

nΛC
en

ΛC
)V

]
,

(B.20)

where

R̃ϕ ∈ R
3n

ϕ
en , RΞ ∈ R

6 (nC
en+nG

en)+nC
en, RΛ ∈ R

6 (nΛ
C

en +nΛ
G

en )+nΛC
en . (B.21)

146



B.2 Implementation details of the mixed formulation

Tangent operator

Next, we consider the tangent moduli pertaining to one individual element. As before

we assume that dead loads are acting on the body. In analogy to Appendix B.1

we assume that the discrete derivatives DCΨ, DGΨ and DCΨ refer to those of the

Mooney-Rivlin material, given by (3.40)2 and (3.41). We start with the linearization of

(B.19) to obtain

Dϕb
R̃

a
ϕ · ∆ϕbn+1

= Kab
ϕϕ ∆ϕbn+1, Kab

ϕϕ =
∫

B0

Na
,I Nb

,J

(
2 Λ

C
n+1

)
I J

I dV + Mab 1

∆t2
,

D
Λ
C
b

R̃
a
ϕ : ∆Λ

C
bn+1

= Kab
ϕΛC

(
∆Λ

C
n+1

)V

b
, Kab

ϕΛC =
∫

B0

BaT

n+ 1
2

Mb
ΛC dV .

(B.22)

The linearization of (B.17)1 yields

DCb
Ra
C : ∆Cbn+1 = Kab

CC ∆C̄
V
bn+1

, Kab
CC =

1

2

∫

B0

Ma
C D(ΛG

n+1) Mb
C dV ,

DGb
Ra
C : ∆Gbn+1 = Kab

CG ∆Ḡ
V
bn+1

, Kab
CG =

1

6

∫

B0

Ma
C Mb

G ΛC
n+1 I dV ,

D
Λ
C
b

Ra
C : ∆Λ

C
bn+1

= Kab
CΛC

(
∆Λ

C
n+1

)V

b
, Kab

CΛC = −
∫

B0

Ma
C Mb

ΛC I dV ,

D
Λ
G
b

Ra
C : ∆Λ

G
bn+1

= Kab
CΛG

(
∆Λ

G
n+1

)V

b
, Kab

CΛG =
∫

B0

Ma
C D(Cn+ 1

2
) Mb

ΛG dV ,

DΛC
b
Ra
C ∆ΛC

bn+1
= Kab

CΛC ∆ΛC
bn+1

, Kab
CΛC =

1

3

∫

B0

Ma
C Ḡ

V
n+ 1

2
Mb

ΛC dV ,

(B.23)

where I ∈ R6×6 is given by I = diag(1, 1, 1, 2, 2, 2). Concerning the linearization of

(B.17)2, we obtain

DCb
Ra
G : ∆Cbn+1

= Kab
GC ∆C̄

V
bn+1

, Kab
GC =

1

6

∫

B0

Ma
G Mb

C ΛC
n+1 I dV ,

D
Λ
G
b

Ra
G : ∆Λ

G
bn+1

= Kab
GΛG

(
∆Λ

G
n+1

)V

b
, Kab

GΛG = −
∫

B0

Ma
G Mb

ΛG I dV ,

DΛC
b
Ra
G ∆ΛC

bn+1
= Kab

GΛC ∆ΛC
bn+1

, Kab
GΛC =

1

3

∫

B0

Ma
G Mb

ΛC C̄
V
n+ 1

2
dV .

(B.24)
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Furthermore (B.17)3 yields

DCb
Ra
C ∆Cbn+1 = Kab

CC ∆Cbn+1 Kab
CC =

∫

B0

∂Cn+1 DCΨ Ma
C Mb

C dV , (B.25)

where ∂Cn+1 DCΨ is the derivative of the Greenspan formula (3.41). Note that this

formula should be replaced with 1
2 f ′′(Cn+ 1

2
) in the limit Cn+1 → Cn. At last, we

obtain

Dϕb
Ra

ΛC · ∆ϕbn+1
= Kab

ΛCϕ
∆ϕbn+1, Kab

ΛCϕ
=

∫

B0

Ma
ΛC Bb

n+1 dV ,

DCb
Ra

ΛC : ∆Cbn+1
= Kab

ΛCC
∆C̄

V
bn+1

, Kab
ΛCC

= −
∫

B0

Ma
ΛC Mb

C I dV ,

DCb
Ra

ΛG : ∆Cbn+1
= Kab

ΛGC
∆C̄

V
bn+1

, Kab
ΛGC

=
∫

B0

Ma
ΛG D(Cn+1) Mb

C dV ,

DGb
Ra

ΛG : ∆Gbn+1
= Kab

ΛGG
∆Ḡ

V
bn+1

, Kab
ΛGG

= −
∫

B0

Ma
ΛG Mb

G I dV ,

(B.26)

DCb
Ra

ΛC : ∆Cbn+1
= Kab

ΛCC ∆C̄
V
bn+1

, Kab
ΛCC =

1

3

∫

B0

Ma
ΛC Ḡ

VT

n+1 Mb
C dV ,

DGb
Ra

ΛC : ∆Gbn+1
= Kab

ΛCG ∆Ḡ
V
bn+1

, Kab
ΛCG =

1

3

∫

B0

Ma
ΛC C̄

VT

n+1 Mb
G dV ,

DCb
Ra

ΛC ∆Cbn+1
= Kab

ΛCC ∆Cbn+1, Kab
ΛCC = −

∫

B0

Ma
ΛC Mb

C dV .

(B.27)

Next, we obtain the element tangent stiffness matrix as




K(e)

ϕϕ 0 0 0 K(e)

ϕΛC 0 0

0 K(e)
CC K(e)

CG K(e)
CC K(e)

CΛC K(e)

CΛG K(e)

CΛC

0 K(e)

GC K(e)

GG K(e)

GC 0 K(e)

GΛG K(e)

GΛC

0 K(e)

CC K(e)

CG K
(e)
CC 0 0 K

(e)

CΛC

K(e)

ΛCϕ K(e)

ΛCC 0 0 0 0 0

0 K(e)

ΛGC K(e)

ΛGG 0 0 0 0

0 K(e)

ΛCC K(e)

ΛCG K
(e)

ΛCC 0 0 0




=




K
(e)
ϕϕ 0 K

(e)
ϕΛ

0 K
(e)
ΞΞ

K
(e)
ΞΛ

K
(e)
Λϕ K

(e)
ΛΞ

0


 . (B.28)

Note that the submatrices of the above tangent stiffness matrix have been arranged

in the same way as the element residual vector (B.20). The superscript e refers to

the finite element under consideration. Note that for the Mooney-Rivlin material the

entries in K
(e)
ΞΞ

are zero except for K
(e)
CC . Together with (B.20), the linearized discrete
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variational equation on element level can be written in the form




δϕ

δΞ

δΛ




T



K
(e)
ϕϕ 0 K

(e)
ϕΛ

0 K
(e)
ΞΞ

K
(e)
ΞΛ

K
(e)
Λϕ K

(e)
ΛΞ

0







∆ϕ
(e)
n+1

∆Ξ
(e)
n+1

∆Λ
(e)
n+1


 = −




δϕ

δΞ

δΛ




T



R
(e)
ϕ

R
(e)
Ξ

R
(e)
Λ


 . (B.29)

Static condensation process

Since the interpolation of Ξ and Λ is confined to each element, a static condensa-

tion procedure can be applied (see also [26]). On the element level we consider the

algebraic system of equations given by



K
(e)
ϕϕ 0 K

(e)
ϕΛ

0 K
(e)
ΞΞ

K
(e)
ΞΛ

K
(e)
Λϕ K

(e)
ΛΞ

0







∆ϕ
(e)
n+1

∆Ξ
(e)
n+1

∆Λ
(e)
n+1


 = −




R
(e)
ϕ

R
(e)
Ξ

R
(e)
Λ


 . (B.30)

The third row of (B.30) yields

∆Ξ
(e)
n+1 =

(
K
(e)
ΛΞ

)−1
(−R

(e)
Λ

− K
(e)
Λϕ∆ϕ

(e)
n+1) . (B.31)

From the second row of (B.30), we obtain

∆Λ
(e)
n+1 =

(
K
(e)
ΞΛ

)−1
(−R

(e)
Ξ

− K
(e)
ΞΞ

∆Ξ
(e)
n+1) . (B.32)

Inserting (B.31) into (B.32) yields

∆Λ
(e)
n+1 =

(
K
(e)
ΞΛ

)−1 (− R
(e)
Ξ

+ K
(e)
ΞΞ

(
K
(e)
ΛΞ

)−1
(R

(e)
Λ

+ K
(e)
Λϕ ∆ϕ

(e)
n+1)

)
. (B.33)

Substituting (B.33) into the first row of (B.30) leads to
(
K
(e)
ϕϕ + K

(e)
ϕΛ

(
K
(e)
ΞΛ

)−1
K
(e)
ΞΞ

(
K
(e)
ΛΞ

)−1
K
(e)
Λϕ

)
∆ϕ

(e)
n+1 (B.34)

+R
(e)
ϕ + K

(e)
ϕΛ

(
K
(e)
ΞΛ

)−1 (− R
(e)
Ξ

+ K
(e)
ΞΞ

(
K
(e)
ΛΞ

)−1
R
(e)
Λ

)
= 0 . (B.35)

Thus, on element level we obtain

K̃
(e)
ϕϕ ∆ϕ

(e)
n+1 = −R̃

(e)
ϕ , (B.36)

where
K̃
(e)
ϕϕ =

(
K
(e)
ϕϕ + K

(e)
ϕΛ

(
K
(e)
ΞΛ

)−1
K
(e)
ΞΞ

(
K
(e)
ΛΞ

)−1
K
(e)
Λϕ

)
,

R̃
(e)
ϕ = R

(e)
ϕ + K

(e)
ϕΛ

(
K
(e)
ΞΛ

)−1 (− R
(e)
Ξ

+ K
(e)
ΞΞ

(
K
(e)
ΛΞ

)−1
R
(e)
Λ

)
.

(B.37)

The element tangent matrix K̃
(e)
ϕϕ and the element residual vector R̃

(e)
ϕ can now be

assembled in the standard way as in the case of the displacement formulation dealt

with in Appendix B.1.
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C Appendix to Chapter 4
1

C.1 Spectral decomposition of a symmetric

tensor and its cofactor

We introduce the cofactor B = cof(A) of a second order tensor A as

B = cof A =
1

2
A A . (C.1)

The spectral decomposition of A yields

A = λA
1 N A

1 ⊗ N A
1 + λA

2 N A
2 ⊗ N A

2 + λA
3 N A

3 ⊗ N A
3 . (C.2)

Now (C.1) gives rise to

B =
1

2

(
λA

1 N A
1 ⊗ N A

1 + λA
2 N A

2 ⊗ N A
2 + λA

3 N A
3 ⊗ N A

3

)

(
λA

1 N A
1 ⊗ N A

1 + λA
2 N A

2 ⊗ N A
2 + λA

3 N A
3 ⊗ N A

3

)

= λA
2 λA

3 (N A
2 ⊗ N A

2 ) (N A
3 ⊗ N A

3 ) + λA
1 λA

3 (N A
1 ⊗ N A

1 ) (N A
3 ⊗ N A

3 )

+ λA
1 λA

2 (N A
1 ⊗ N A

1 ) (N A
2 ⊗ N A

2 )

= λA
2 λA

3 (N A
2 × N A

3 )⊗ (N A
2 × N A

3 ) + λA
1 λA

3 (N A
1 × N A

3 )⊗ (N A
1 × N A

3 )

+ λA
1 λA

2 (N A
1 × N A

2 )⊗ (N A
1 × N A

2 ) .

(C.3)

In the above use has been made of the relationship (a ⊗ b) (c ⊗ d) = (a × c)⊗ (b ×
d) along with the orthonormality of the eigenvectors N A

i . Accordingly, the spectral

decomposition of B is given by

B = λB
1 NB

1 ⊗ NB
1 + λB

2 NB
2 ⊗ NB

2 + λB
3 NB

3 ⊗ NB
3 , (C.4)

1 This chapter is based on the appendix given in [81].
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where

λB
1 = λA

2 λA
3 , λB

2 = λA
1 λA

3 , λB
3 = λA

1 λA
2 , (C.5)

and

NB
1 = N A

1 , NB
2 = N A

2 , NB
3 = N A

3 . (C.6)

C.2 Relationship between the eigenvalue of a

tensor and its derivative

The spectral decomposition, introduced in (4.2), is given by

A =
3

∑
i=1

λA
i N A

i ⊗ N A
i . (C.7)

For the differentiation of (C.7) we get

dA =
3

∑
i=1

dλA
i N A

i ⊗ N A
i + λA

i

(
dN A

i ⊗ N A
i + N A

i ⊗ dN A
i

)
. (C.8)

Scalar multiplication of (C.8) by N A
k ⊗ N A

k yields

3

∑
i=1

N A
i · dA N A

i =
3

∑
i=1

dλA
i N A

i ·
(

N A
i ⊗ N A

i

)
N A

i

+ λA
i

(
N A

i · (dN A
i ⊗ N A

i ) N A
i + N A

i · (N A
i ⊗ dN A

i ) N A
i

)

=
3

∑
i=1

dλA
i ,

(C.9)

where N A
i ·

(
N A

i ⊗ N A
i

)
N A

i = 1 and N A
i · (dN A

i ⊗ N A
i ) N A

i + N A
i · (N A

i ⊗ dN A
i ) N A

i =

0 since N A
i form an orthonormal basis. From (C.9), we obtain the following result

3

∑
i=1

dλA
i =

3

∑
i=1

dA : (N A
i ⊗ N A

i ) . (C.10)

Finally, for the derivative of the eigenvalue λA
i with respect to A, we obtain the fol-

lowing result

N A
i ⊗ N A

i =
∂λA

i

∂A
. (C.11)

For more details see [155, 68].
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C.3 Remarks on the numerical implementation

C.3.1 Time discrete eigenvalues

Similarly to the kinematic quantities, we obtain for the eigenvalues at a specific time-

node
(λ̄C

i )n = λ̄C
i (C(ϕn)), (λ̄C

i )n+1 = λ̄C
i (C(ϕn+1)),

(λ̄G
i )n = λ̄G

i (G(ϕn)), (λ̄G
i )n+1 = λ̄G

i (G(ϕn+1)) .
(C.12)

Note that the relationships provided in (4.32), are still valid in the time-discrete set-

ting. For example, in case of the mid-point type discretization as introduced in Section

4.4 we get

λ̄G
1 (G(ϕn+ 1

2
)) = λ̄C

2 (C(ϕn+ 1
2
)) λ̄C

3 (C(ϕn+ 1
2
)),

λ̄G
2 (G(ϕn+ 1

2
)) = λ̄C

1 (C(ϕn+ 1
2
)) λ̄C

3 (C(ϕn+ 1
2
)),

λ̄G
3 (G(ϕn+ 1

2
)) = λ̄C

1 (C(ϕn+ 1
2
)) λ̄C

2 (C(ϕn+ 1
2
)) .

(C.13)

In order to solve a minimum number of eigenvalue problems, the eigenvalues of G in

Section 4.4.1 are defined as

λ̄G
1 (Gn+ 1

2
) = λ̄C

2 (
1

2
Cn+ 1

2
Cn+ 1

2
) λ̄C

3 (
1

2
Cn+ 1

2
Cn+ 1

2
),

λ̄G
2 (Gn+ 1

2
) = λ̄C

1 (
1

2
Cn+ 1

2
Cn+ 1

2
) λ̄C

3 (
1

2
Cn+ 1

2
Cn+ 1

2
),

λ̄G
3 (Gn+ 1

2
) = λ̄C

1 (
1

2
Cn+ 1

2
Cn+ 1

2
) λ̄C

2 (
1

2
Cn+ 1

2
Cn+ 1

2
) .

(C.14)

Therefore, in case of the mid-point discretization we have to solve one eigenvalue

problem for λ̄C
i (C(ϕn+ 1

2
)). In case of the structure preserving integration scheme,

we have to solve three eigenvalue problems for λ̄C
i (Cn), λ̄C

i (Cn+1) and λ̄C
i (Cn+ 1

2
),

respectively. The eigenvalues of G can then be calculated by use of (C.13) or (C.14),

respectively.

C.3.2 Perturbation technique

As already mentioned in Section 4.1.1, we focus on a perturbation technique to

treat the case of equal eigenvalues and circumvent numerical problems. Depend-

ing on the value of the perturbation parameter, this technique can cause numerical
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difficulties or spoil the energy-consistency of the algorithm. The perturbation al-

gorithm as given in [111] is as follows: for two numerical equal eigenvalues |λ̄i −
λ̄j|/(max(|λ̄i |, |λ̄j|, |λ̄k|)) < tol we set

λ̄i = λ̄i (1 + δ), λ̄j = λ̄j (1 − δ), λ̄k = λ̄k/((1 + δ) (1 − δ)) , (C.15)

where the perturbation δ is sufficiently small. A careful analysis of the perturba-

tion technique in the context with structure-preserving integration schemes has been

done in [118]. To define the desired structure-preserving integration scheme without

numerical problems, the discrete derivatives in (4.66) are modified such that

DCΨC
iso = ∂CΨC

iso(
∗

λ̄C
i (Cn+ 1

2
)) +

(
ΨC

iso((λ̄
C
i )n+1)− ΨC

iso((λ̄
C
i )n)

)
∆C

∆C : ∆C

−
∂CΨC

iso(
∗

λ̄C
i (Cn+ 1

2
)) : ∆C

∆C : ∆C
∆C ,

DGΨG
iso = ∂GΨG

iso(
∗

λ̄G
i (Gn+ 1

2
)) +

(
ΨG

iso((λ̄
G
i )n+1)− ΨG

iso((λ̄
G
i )n)

)
∆G

∆G : ∆G

−
∂GΨG

iso(
∗

λ̄G
i (Gn+ 1

2
)) : ∆G

∆G : ∆G
∆G .

(C.16)

In (C.16) we apply perturbation on
∗

λ̄C
i ,

∗
λ̄G

i and no perturbation on λ̄C
i and λ̄G

i .
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1

D.1 Energy termination

Since the EM consistent integrator is able to represent the balance of total energy in a

consistent manner we can define an alternative termination criterion for the Newton-

Raphson method based on the discrete balance of total energy

| 1
∆t(En+1 − En)−Pext

n,n+1 −Qext
n,n+1| ≤ ε , (D.1)

where ε is the tolerance of the Newton-Raphson method.

D.2 Classical mid-point discretization

A fully discrete thermo-elastodynamic system, derived from a classical formulation

(cf. weak form (5.16)), is given by
∫

B0

wh
ϕ · 1

∆t (ϕ
h
n+1 −ϕh

n)dV =
∫

B0

wh
ϕ · ρ−1

0 ph
n+ 1

2
dV ,

∫

B0

wh
p · 1

∆t (ph
n+1 − ph

n)dV =−
∫

B0

Sh
n+ 1

2
:
(
∂Xwh

p
T

Fh
n+ 1

2

)
dV

+
∫

B0

wh
p · B̄n+ 1

2
dV +

∫

∂BP
0

wh
p · T̄n+ 1

2
dA ,

∫

B0

wh
e θh

n+ 1
2

1
∆t (η

h
n+1 − ηh

n)dV =
∫

B0

∂Xwh
e · Qh

n+ 1
2

dV

+
∫

B0

wh
e R̄n+ 1

2
dV +

∫

∂BQ
0

wh
e Q̄n+ 1

2
dA ,

(D.2)

1 This chapter is based on the appendix given in [44].
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where a mid-point integration scheme for the temporal discretization has been ap-

plied. The second Piola-Kirchhoff stress tensor in (D.2) is defined in its midpoint

configuration as

Sh
n+ 1

2
= 2 ∂CΨ̂

(
C(ϕh

n+ 1
2
), θh

n+ 1
2

)
. (D.3)

For the Piola heat flux vector in its midpoint configuration we obtain

Qh
n+ 1

2
= −K

(
C(ϕh

n+ 1
2
), θh

n+ 1
2

)
γ
(
θh

n+ 1
2

)
. (D.4)

Further details about the spatial discretization can be found e.g. in Miehe [113] and

Holzapfel and Simo [69].

D.3 Linearisation of the material model

We consider the Helmholtz free energy density function given in (5.64). This material

model is consistent with the theory of linear thermoelasticity under certain restric-

tions on the material parameters which will be provided in the following. To proof

consistency we perform a push forward operation on the second Piola-Kirchhoff stress

tensor described in the polyconvex framework given by (5.19) and after division by

the volume-map J = det(F) = C1/2 we obtain the Cauchy stress tensor, which can be

devided into three parts

σ = C−1/2 F S FT = σ1 + σ2 + σ3 , (D.5)

where the specific parts are given by

σ1 = 2 a C−1/2 F FT ,

σ2 = 2 b C−1/2 (tr(C) F FT − F C FT) ,

σ3 =
(
c1 (C

−1/2 − C−1)− d1 C−3/2 − 3 β (θ − θ0) (c2 C−1 + d2 C−2)
)

F G FT .

(D.6)

Expressing the deformation gradient using the displacement field u : B0 × I → R3

F = I + ∂Xu with u = ϕ− X , (D.7)

and performing a linearisation in direction of ∆ϕ = ∆u = u − u0 and ∆θ = θ − θ0

with respect to operating points u0 = 0 and θ0

Linσ(u0, θ0)[∆u, ∆θ] = σ(u0, θ0) +
d

dε
σ(u0 + ε∆u, θ0)

∣∣
ε=0

+
d

dε
σ(u0, θ0 + ε∆θ)

∣∣
ε=0

,

(D.8)
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D.3 Linearisation of the material model

using the properties of the tensor cross product in (2.12) yields

Linσ1(u0, θ0)[∆u, ∆θ] =2 a (I − tr(ε) I + 2 ε) ,

Linσ2(u0, θ0)[∆u, ∆θ] =2 b (2 I + 2 ε) ,

Linσ3(u0, θ0)[∆u, ∆θ] =c1 tr(ε) I + d1 (−I + tr(ε) I)− 3 β (θ − θ0) (c2 + d2) I ,

(D.9)

where ε = 1
2(∂Xu + ∂XuT) denotes the infinitesimal strain tensor. Accordingly the

linearized Cauchy stress tensor is provided by

Linσ(u0, θ0)[∆u, ∆θ] =(2 a + 4 b − d1) I + (−2 a + c1 + d1) tr(ε) I + (4 a + 4 b) ε

− 3 β (θ − θ0) (c2 + d2) I .
(D.10)

Comparing the resulting Cauchy stress with the Cauchy stress from theory of linear

thermoelasticity, given by

σlin = λtr(ε)I + 2µε − β(θ − θ0)(3λ + 2µ)I , (D.11)

leads to following restrictions

d1 = 2 (a + 2 b), −2 a + c1 + d1 = λ, 4 (a + b) = 2 µ, λ +
2

3
µ = K = c2 + d2 ,

(D.12)

for consistency of the suggested Helmholtz free energy density function with the

linear theory where λ and µ are the Lamé parameters and K is the bulk modulus.
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1

E.1 Proof of directionality property

The objective of this section is to prove that the definition of the discrete derivatives

of the internal energy u (C, G, C, D) satisfy the directionality property in equation

(6.35). For that, let us denote the expression on the left-hand side of the directionality

property in (6.35) as T , namely

T = DCu : (Cn+1 − Cn) + DGu : (Gn+1 − Gn)

+ DCu (Cn+1 − Cn) + DDu · (Dn+1 − Dn) .
(E.1)

Substitution of the expressions for DCu (6.37), DGu (6.39), DCu (6.40) and DDu (6.41)

into (E.1) leads to

T =
1

2
u (Cn+1, Gn+1, Cn+1, Dn+1)−

1

2
u (Cn, Gn+1, Cn+1, Dn+1)

+
1

2
u (Cn+1, Gn, Cn, Dn)−

1

2
u (Cn, Gn, Cn, Dn)

+
1

2
u (Cn, Gn+1, Cn+1, Dn+1)−

1

2
u (Cn, Gn, Cn+1, Dn+1)

+
1

2
u (Cn+1, Gn+1, Cn, Dn)−

1

2
u (Cn+1, Gn, Cn, Dn)

+
1

2
u (Cn, Gn, Cn+1, Dn+1)−

1

2
u (Cn, Gn, Cn, Dn+1)

+
1

2
u (Cn+1, Gn+1, Cn+1, Dn)−

1

2
u (Cn+1, Gn+1, Cn, Dn)

+
1

2
u (Cn, Gn, Cn, Dn+1)−

1

2
u (Cn, Gn, Cn, Dn)

+
1

2
u (Cn+1, Gn+1, Cn+1, Dn+1)−

1

2
u (Cn+1, Gn+1, Cn+1, Dn)

= ∆u ,

(E.2)

1 This chapter is based on the appendix given in [133].
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which proves that the definition of the discrete derivatives satisfy the directionality

property.

E.2 Definition of the discrete derivatives

limit

The objective of this section is to prove that the defition of the directional derivatives

satisfies the condition stated in (6.36), namely that they are well defined in the limit

||∆C|| → 0, ||∆G|| → 0, |∆C| → 0 and ||∆D|| → 0. In particular, it will be proved

in this Section that based on the definition of the discrete derivatives, these can be

equivalently written as

Dπiu = ∂πiu (πn+1/2) +
4

∑
i=1

O
(
||∆πi ||2

)
+

4

∑
j=1,j 6=i

4

∑
k=j+1,k 6=1

O
(
||∆π j||||∆πk ||

)
,

(E.3)

where π = {C, G, C, D} = {π1, π2, π3, π4}. We now prove that they are well defined

in the limit. For that, let us carry out a Taylor series expansion of the four different

evaluations of the internal energy u in equation (6.37) around Cn+1/2. This enables to

express them as

u (Cn+1, Gn+1, Cn+1, Dn+1) = u (Cn+1/2, Gn+1, Cn+1, Dn+1)

+ ∂Cu (Cn+1/2, Gn+1, Cn+1, Dn+1) :
(1

2
∆C

)

+
(1

2
∆C

)
: ∂2

CCu (Cn+1/2, Gn+1, Cn+1, Dn+1) :
(1

2
∆C

)

+ O
(
||∆C||3

)
,

(E.4)

u (Cn, Gn+1, Cn+1, Dn+1) = u (Cn+1/2, Gn+1, Cn+1, Dn+1)

− ∂Cu (Cn+1/2, Gn+1, Cn+1, Dn+1) :
(1

2
∆C

)

+
(1

2
∆C

)
: ∂2

CCu (Cn+1/2, Gn+1, Cn+1, Dn+1) :
(1

2
∆C

)

+ O
(
||∆C||3

)
,

(E.5)
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u (Cn+1, Gn, Cn, Dn) = u (Cn+1/2, Gn, Cn, Dn)

+ ∂Cu (Cn+1/2, Gn, Cn, Dn) :
(1

2
∆C

)

+
(1

2
∆C

)
: ∂2

CCu (Cn+1/2, Gn, Cn, Dn) :
(1

2
∆C

)

+ O
(
||∆C||3

)
,

(E.6)

u (Cn, Gn, Cn, Dn) = u (Cn+1/2, Gn, Cn, Dn)

− ∂Cu (Cn+1/2, Gn, Cn, Dn) :
(1

2
∆C

)

+
(1

2
∆C

)
: ∂2

CCu (Cn+1/2, Gn, Cn, Dn) :
(1

2
∆C

)

+ O
(
||∆C||3

)
.

(E.7)

Introduction of above equations (E.4)-(E.7) into the last four terms on the right-hand

side of equation (6.37) yields

1

2

u (Cn+1, Gn+1, Cn+1, Dn+1)− u (Cn, Gn+1, Cn+1, Dn+1)

||∆C||2 ∆C

+
1

2

u (Cn+1, Gn, Cn, Dn)− u (Cn, Gn, Cn, Dn)

||∆C||2 ∆C

−1

2

∂Cu (Cn+1/2, Gn+1, Cn+1, Dn+1) : ∆C

||∆C||2 ∆C

−1

2

∂Cu (Cn+1/2, Gn, Cn, Dn) : ∆C

||∆C||2 ∆C = O
(
||∆C||2

)
.

(E.8)

Introduction of the result in (E.8) into the expression for the directional derivative

DCu in (6.37) leads to

DCu =
1

2

(
∂Cu

(
Cn+1/2, Gn+1, Cn+1, Dn+1

)
+ ∂Cu

(
Cn+1/2, Gn, Cn, Dn

))
+ O

(
||∆C||2

)
.

(E.9)

A Taylor series expansion on the two first terms on the right-hand side of above
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equation (E.9) enables these to be expressed as

∂Cu (Cn+1/2, Gn+1, Cn+1, Dn+1) = ∂Cu
(

Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1
2

)

+ ∂2
CGu

(
Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1

2

)
:
(1

2
∆G

)

+ ∂2
CCu

(
Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1

2

)(1

2
∆C

)

+ ∂2
CDu

(
Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1

2

)
:
(1

2
∆D

)

+ O
(
||∆G||2

)
+ O

(
∆C2

)
+ O

(
||∆D||2

)

+ O (||∆G||∆C) + O (||∆G||||∆D||) + O (∆C||∆D||) ,
(E.10)

and

∂Cu (Cn+1/2, Gn, Cn, Dn) = ∂Cu
(

Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1
2

)

− ∂2
CGu

(
Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1

2

)
:
(1

2
∆G

)

− ∂2
CCu

(
Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1

2

)(1

2
∆C

)

− ∂2
CDu

(
Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1

2

)
:
(1

2
∆D

)

+ O
(
||∆G||2

)
+ O

(
∆C2

)
+ O

(
||∆D||2

)

+ O (||∆G||∆C) + O (||∆G||||∆D||) + O (∆C||∆D||) .
(E.11)

Insert (E.10) and (E.11) into (E.9) leads to the final expression for the discrete deriva-

tive DCu (6.37) as

DCu = ∂Cu
(

Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1
2

)

+ O
(
||∆C||2

)
+ O

(
||∆G||2

)
+ O

(
∆C2

)
+ O

(
||∆D||2

)

+ O (||∆G||∆C) + O (||∆G||||∆D||) + O (∆C||∆D||) ,

(E.12)

which proves condition (E.3). Proceeding similarly, it would be possible to generalise

above result (E.12) to the discrete derivatives DGu (6.39), DCu (6.40) and DDu (6.41),

namely

DGu = ∂Gu
(

Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1
2

)

+ O
(
||∆C||2

)
+ O

(
||∆G||2

)
+ O

(
∆C2

)
+ O

(
||∆D||2

)

+ O (||∆C||∆C) + O (||∆C||||∆D||) + O (∆C||∆D||) ,

(E.13)
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DCu = ∂Cu
(

Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1
2

)

+ O
(
||∆C||2

)
+ O

(
||∆G||2

)
+ O

(
∆C2

)
+ O

(
||∆D||2

)

+ O (||∆C||||∆G||) + O (||∆C||||∆D||) + O (||∆G||||∆D||) ,
(E.14)

DDu = ∂Du
(

Cn+1/2, Gn+1/2, Cn+1/2, Dn+ 1
2

)

+ O
(
||∆C||2

)
+ O

(
||∆G||2

)
+ O

(
∆C2

)
+ O

(
||∆D||2

)

+ O (||∆C||||∆G||) + O (||∆C||∆C) + O (||∆G||∆C) .

(E.15)
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[124] S. Ober-Blöbaum, O. Junge, and J.E. Marsden. Discrete mechanics and optimal

control: An analysis. ESAIM: Control, Optimisation and Calculus of Variations, 17

(2):322–352, 2011.

[125] R.W. Ogden. Large deformation isotropic elasticity: on the correlation of theory

and experiment for compressible rubberlike solids. The Royal Society, 328(1575):

567–583, 1972.

[126] R.W. Ogden. Non-Linear Elastic Deformations. Ellis Horwood, Chichester, 1984.

[127] A. O’Halloran, F. O’Malley, and P. McHugh. A review on dielectric elastomer

actuators, technology, applications, and challenges. Journal of Applied Physics,

104(7), 2008.

[128] R. Ortigosa and A. J. Gil. A new framework for large strain electromechanics

based on convex multi-variable strain energies: Conservation laws, hyperbol-

icity and extension to electro-magneto-mechanics. Computer Methods in Applied

Mechanics and Engineering, 309:202–242, 2016.

182



Bibliography

[129] R. Ortigosa and A. J. Gil. A new framework for large strain electromechanics

based on convex multi-variable strain energies: Finite element discretisation

and computational implementation. Computer Methods in Applied Mechanics and

Engineering, 302:329–360, 2016.

[130] R. Ortigosa and A. J. Gil. A computational framework for incompressible elec-

tromechanics based on convex multi-variable strain energies for geometrically

exact shell theory. Computer Methods in Applied Mechanics and Engineering, 317:

792–816, 2017.

[131] R. Ortigosa, A. J. Gil, and C. H. Lee. A computational framework for large

strain nearly and truly incompressible electromecahnics based on convex multi-

variable strain energies. Computer Methods in Applied Mechanics and Engineering,

310:297–334, 2016.

[132] R. Ortigosa, A.J. Gil, J. Bonet, and C. Hesch. A computational framework for

polyconvex large strain elasticity for geometrically exact beam theory. Compu-

tational Mechanics, 57:277 – 303, 2016.

[133] R. Ortigosa, M. Franke, A. Janz, A. Gil, and P. Betsch. An energy-momentum

time integration scheme based on a convex multi-variable framework for non-

linear electro-elastodynamics. Computer Methods in Applied Mechanics and Engi-

neering, 339:1–35, 2018.
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