A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
Umfang: XXVIII, 194 S.
Preis: €47.00 | £43.00 | $83.00
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Kenderi, G. 2018. Nonparametric identification of nonlinear dynamic systems. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000085419
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0 Dedication
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 28. November 2018
Englisch
240
Paperback | 978-3-7315-0834-2 |