In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.
Umfang: XI, 153 S.
Preis: €30.90 | £29.00 | $55.00
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Sawo, F. 2009. Nonlinear state and parameter estimation of spatially distributed systems. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000011485
Dieses Buch ist lizenziert unter Creative Commons Attribution + Noncommercial + NoDerivatives 3.0 DE Dedication
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 26. Mai 2009
Englisch
180
Paperback | 978-3-86644-370-9 |