In this thesis two probabilistic model-based estimators are introduced that allow the reconstruction and identification of space-time continuous physical systems. The Sliced Gaussian Mixture Filter (SGMF) exploits linear substructures in mixed linear/nonlinear systems, and thus is well-suited for identifying various model parameters. The Covariance Bounds Filter (CBF) allows the efficient estimation of widely distributed systems in a decentralized fashion.
Umfang: XI, 153 S.
Preis: €30.90 | £29.00 | $55.00
These are words or phrases in the text that have been
automatically identified by the
Named Entity Recognition and Disambiguation service,
which provides Wikipedia
()
and Wikidata
(
)
links for these entities.
Sawo, F. 2009. Nonlinear state and parameter estimation of spatially distributed systems. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000011485
Dieses Buch ist lizenziert unter Creative Commons Attribution + Noncommercial + NoDerivatives 3.0 DE Dedication
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 26. Mai 2009
Englisch
180
Paperback | 978-3-86644-370-9 |