Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images.
Umfang: XII, 243 S.
Preis: €54.00 | £50.00 | $95.00
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Stegmaier, J. 2017. New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000060221
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 3.0 DE Dedication
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 8. Februar 2017
Englisch
266
Paperback | 978-3-7315-0590-7 |