A nonparametric identification method for highly nonlinear systems is presented that is able to reconstruct the underlying nonlinearities without a priori knowledge of the describing nonlinear functions. The approach is based on nonlinear Kalman Filter algorithms using the well-known state augmentation technique that turns the filter into a dual state and parameter estimator, of which an extension towards nonparametric identification is proposed in the present work.
Umfang: XXVIII, 194 S.
Preis: €47.00 | £43.00 | $83.00
These are words or phrases in the text that have been
automatically identified by the
Named Entity Recognition and Disambiguation service,
which provides Wikipedia
()
and Wikidata
(
)
links for these entities.
Kenderi, G. 2018. Nonparametric identification of nonlinear dynamic systems. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000085419
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0 Dedication
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 28. November 2018
Englisch
240
Paperback | 978-3-7315-0834-2 |