This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together.
Umfang: XI, 198 S.
Preis: 44.00 €
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Becker, S. 2020. Dynamic Switching State Systems for Visual Tracking. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000122541
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 8. November 2020
Englisch
228
Paperback | 978-3-7315-1038-3 |