This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty.
Umfang: XIV, 146 S.
Preis: 41.00 €
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Hubmann, C. 2021. Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000122855
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 13. September 2021
Englisch
180
Paperback | 978-3-7315-1039-0 |