• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Online lesen
  • No readable formats available
  • Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams

    Matthias T. Frank

     Download

    The rise of the Internet of Things leads to an unprecedented number of continuous sensor observations that are available as IoT data streams. Harmonization of such observations is a labor-intensive task due to heterogeneity in format, syntax, and semantics. We aim to reduce the effort for such harmonization tasks by employing a knowledge-driven approach. To this end, we pursue the idea of exploiting the large body of formalized public knowledge represented as statements in Linked Open Data.

    Umfang: VIII, 216 S.

    Preis: 52.00 €

    Wikipedia Concepts

    These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.

    Metrics:

    Konversationen


    Empfohlene Zitierweise
    Frank, M. 2021. Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000128146
    Frank, M.T., 2021. Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000128146
    Frank, M T. Knowledge-driven Harmonization of Sensor Observations: Exploiting Linked Open Data for Iot Data Streams. KIT Scientific Publishing, 2021. DOI: https://doi.org/10.5445/KSP/1000128146
    Frank, M. T. (2021). Knowledge-Driven Harmonization of Sensor Observations: Exploiting Linked Open Data for IoT Data Streams. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000128146
    Frank, Matthias T.. 2021. Knowledge-driven Harmonization of Sensor Observations: Exploiting Linked Open Data for Iot Data Streams. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000128146




    Export to:




    Lizenz

    Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier

    Weitere Informationen

    Veröffentlicht am 12. Juli 2021

    Sprache

    Englisch

    Seitenanzahl:

    236

    ISBN
    Paperback 978-3-7315-1076-5

    DOI
    https://doi.org/10.5445/KSP/1000128146