Configuring an anomaly-based Network Intrusion Detection System for cybersecurity of an industrial system in the absence of information on networking infrastructure and programmed deterministic industrial process is challenging. Within the research work, different self-learning frameworks to analyze passively captured network traces from PROFINET-based industrial system for protocol-based and process behavior-based anomaly detection are developed, and evaluated on a real-world industrial system.
Umfang: XIV, 193 S.
Preis: 44.00 €
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Meshram, A. 2023. Self-learning Anomaly Detection in Industrial Production. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000152715
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 19. Juni 2023
Englisch
226
Paperback | 978-3-7315-1257-8 |