• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Online lesen
  • No readable formats available
  • Development of a modular Knowledge-Discovery Framework based on Machine Learning for the interdisciplinary analysis of complex phenomena in the context of GDI combustion processes

    Massimiliano Botticelli

    Band 2023,2 von Reihe Informationsmanagement im Engineering Karlsruhe
     Download

    In this work, a novel knowledge discovery framework able to analyze data produced in the Gasoline Direct Injection (GDI) context through machine learning is presented and validated. This approach is able to explore and exploit the investigated design spaces based on a limited number of observations, discovering and visualizing connections and correlations in complex phenomena. The extracted knowledge is then validated with domain expertise, revealing potential and limitations of this method.

    Umfang: XVI, 177 S.

    Preis: 45.00 €

    Wikipedia Concepts

    These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.

    Metrics:

    Empfohlene Zitierweise
    Botticelli, M. 2023. Development of a modular Knowledge-Discovery Framework based on Machine Learning for the interdisciplinary analysis of complex phenomena in the context of GDI combustion processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000158016
    Botticelli, M., 2023. Development of a modular Knowledge-Discovery Framework based on Machine Learning for the interdisciplinary analysis of complex phenomena in the context of GDI combustion processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000158016
    Botticelli, M. Development of a Modular Knowledge-discovery Framework Based on Machine Learning for the Interdisciplinary Analysis of Complex Phenomena in the Context of GDI Combustion Processes. KIT Scientific Publishing, 2023. DOI: https://doi.org/10.5445/KSP/1000158016
    Botticelli, M. (2023). Development of a modular Knowledge-Discovery Framework based on Machine Learning for the interdisciplinary analysis of complex phenomena in the context of GDI combustion processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000158016
    Botticelli, Massimiliano. 2023. Development of a Modular Knowledge-discovery Framework Based on Machine Learning for the Interdisciplinary Analysis of Complex Phenomena in the Context of GDI Combustion Processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000158016




    Export to:




    Lizenz

    Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier

    Weitere Informationen

    Veröffentlicht am 3. Juli 2023

    Sprache

    Englisch

    Seitenanzahl:

    210

    ISBN
    Paperback 978-3-7315-1295-0

    DOI
    https://doi.org/10.5445/KSP/1000158016