This work presents a data mining framework applied to industrial heattreatment (bainitization and case hardening) aiming to optimize processes and reduce costs. The framework analyses factors such as material, production line, and quality assessment for preprocessing, feature extraction, and drift corrections. Machine learning is employed to devise robust prediction strategies for hardness. Its implementation in an industry pilot demonstrates the economic benefits of the framework.
Umfang: XXIII, 235 S.
Preis: 45.00 €
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Lingelbach, Y. 2024. Application of Data Mining and Machine Learning Methods to Industrial Heat Treatment Processes for Hardness Prediction. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000169018
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 24. Juli 2024
Englisch
278
Paperback | 978-3-7315-1352-0 |