• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Online lesen
  • No readable formats available
  • Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving

    Tobias Michael Kalb

    Band 66 von Karlsruher Schriften zur Anthropomatik
     Download

    Deep learning excels at extracting complex patterns but faces catastrophic forgetting when fine-tuned on new data. This book investigates how class- and domain-incremental learning affect neural networks for automated driving, identifying semantic shifts and feature changes as key factors. Tools for quantitatively measuring forgetting are selected and used to show how strategies like image augmentation, pretraining, and architectural adaptations mitigate catastrophic forgetting.

    Umfang: XIV, 203 S.

    Preis: 43.00 €

    Wikipedia Concepts

    These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.

    Metrics:

    Empfohlene Zitierweise
    Kalb, T. 2024. Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000171902
    Kalb, T.M., 2024. Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000171902
    Kalb, T M. Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving. KIT Scientific Publishing, 2024. DOI: https://doi.org/10.5445/KSP/1000171902
    Kalb, T. M. (2024). Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000171902
    Kalb, Tobias Michael. 2024. Principles of Catastrophic Forgetting for Continual Semantic Segmentation in Automated Driving. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000171902




    Export to:




    Lizenz

    Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier

    Weitere Informationen

    Veröffentlicht am 21. Oktober 2024

    Sprache

    Englisch

    Seitenanzahl:

    236

    ISBN
    Paperback 978-3-7315-1373-5

    DOI
    https://doi.org/10.5445/KSP/1000171902