• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Online lesen
  • No readable formats available
  • Efficient Reinforcement Learning using Gaussian Processes

    Marc Peter Deisenroth

    Band 9 von Karlsruhe Series on Intelligent Sensor-Actuator-Systems
     Download

    This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.

    First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias.

    Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

    Umfang: IX, 205 S.

    Preis: €36.00 | £33.00 | $63.00

    Wikipedia Concepts

    These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.

    Metrics:

    Empfohlene Zitierweise
    Deisenroth, M. 2010. Efficient Reinforcement Learning using Gaussian Processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000019799
    Deisenroth, M.P., 2010. Efficient Reinforcement Learning using Gaussian Processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000019799
    Deisenroth, M P. Efficient Reinforcement Learning Using Gaussian Processes. KIT Scientific Publishing, 2010. DOI: https://doi.org/10.5445/KSP/1000019799
    Deisenroth, M. P. (2010). Efficient Reinforcement Learning using Gaussian Processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000019799
    Deisenroth, Marc Peter. 2010. Efficient Reinforcement Learning Using Gaussian Processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000019799




    Export to:




    Lizenz

    Dieses Buch ist lizenziert unter Creative Commons Attribution + Noncommercial + NoDerivatives 3.0 DE Dedication

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier

    Weitere Informationen

    Veröffentlicht am 22. November 2010

    Sprache

    Englisch

    Seitenanzahl:

    223

    ISBN
    Paperback 978-3-86644-569-7

    DOI
    https://doi.org/10.5445/KSP/1000019799