This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.
First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias.
Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.
Umfang: IX, 205 S.
Preis: €36.00 | £33.00 | $63.00
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Deisenroth, M. 2010. Efficient Reinforcement Learning using Gaussian Processes. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000019799
Dieses Buch ist lizenziert unter Creative Commons Attribution + Noncommercial + NoDerivatives 3.0 DE Dedication
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 22. November 2010
Englisch
223
Paperback | 978-3-86644-569-7 |