• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Online lesen
  • No readable formats available
  • Monodromy representations and Lyapunov exponents of origamis

    André Kappes

     Download

    Origamis are translation surfaces obtained by gluing finitely many unit squares and provide an easy access to Teichmüller curves. In particular, their monodromy represenation can be explicitely determined. A general principle for the decomposition of this represenation is exhibited and applied to examples. Closely connected to it is a dynamical cocycle on the Teichmüller curve. It is shown that its Lyapunov exponents, otherwise inaccessible, can be computed for a subrepresentation of rank two.

    Umfang: VIII, 138 S.

    Preis: €37.00 | £34.00 | $65.00

    Wikipedia Concepts

    These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.

    Metrics:

    Empfohlene Zitierweise
    Kappes, A. 2011. Monodromy representations and Lyapunov exponents of origamis. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000024418
    Kappes, A., 2011. Monodromy representations and Lyapunov exponents of origamis. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000024418
    Kappes, A. Monodromy Representations and Lyapunov Exponents of Origamis. KIT Scientific Publishing, 2011. DOI: https://doi.org/10.5445/KSP/1000024418
    Kappes, A. (2011). Monodromy representations and Lyapunov exponents of origamis. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000024418
    Kappes, André. 2011. Monodromy Representations and Lyapunov Exponents of Origamis. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000024418




    Export to:




    Lizenz

    Dieses Buch ist lizenziert unter Creative Commons Attribution + Noncommercial + NoDerivatives 3.0 DE Dedication

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier

    Weitere Informationen

    Veröffentlicht am 13. Dezember 2011

    Sprache

    Englisch

    Seitenanzahl:

    150

    ISBN
    Paperback 978-3-86644-751-6

    DOI
    https://doi.org/10.5445/KSP/1000024418