By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems.
Umfang: V, 270 S.
Preis: €45.00 | £41.00 | $79.00
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Huber, M. 2015. Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000045491
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 3.0 DE Dedication
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 11. März 2015
Englisch
304
Paperback | 978-3-7315-0338-5 |