We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations.
Umfang: XI, 297 S.
Preis: 42.00 €
These are words or phrases in the text that have been automatically identified by the Named Entity Recognition and Disambiguation service, which provides Wikipedia () and Wikidata () links for these entities.
Gajek, S. 2023. Deep material networks for efficient scale-bridging in thermomechanical simulations of solids. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.5445/KSP/1000155688
Dieses Buch ist lizenziert unter Creative Commons Attribution + ShareAlike 4.0
Dieses Buch ist Peer reviewed. Informationen dazu finden Sie hier
Veröffentlicht am 25. August 2023
Englisch
326
Paperback | 978-3-7315-1278-3 |