• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Comprehensive, non-invasive, and quantitativemonitoring of the health and nutrition state ofcrop plants by means of hyperspectral imagingand computational intelligence based analysis

    Andreas Backhaus, Udo Seiffert

    Kapitel/Beitrag aus dem Buch: Längle, T et al. 2013. OCM 2013 – Optical Characterization of Materials – conference proceedings.

     Download

    Against the background of hyperspectral imaging this
    paper evaluates a number of different machine learning based
    classification methods in terms of their performance. All considered
    methods offer relevance profiles that additionally provide
    valuable information about the relevance of all acquired wavelengths
    to get the obtained classification. This relevance profile
    can be used to select appropriate wavelengths or wavelength
    bands to customize data acquisition and analysis tailored to the
    specific application at hand.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Backhaus A. & Seiffert U. 2013. Comprehensive, non-invasive, and quantitativemonitoring of the health and nutrition state ofcrop plants by means of hyperspectral imagingand computational intelligence based analysis. In: Längle, T et al (eds.), OCM 2013 – Optical Characterization of Materials – conference proceedings. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000032143-10
    Lizenz

    No license information is available about this publication.

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 6. März 2013

    DOI
    https://doi.org/10.58895/ksp/1000032143-10