• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Evaluation of spectral unmixing usingnonnegative matrix factorization on stationaryhyperspectral sensor data of specificallyprepared rock and mineral mixtures

    Wolfgang Gross, Sven Borchardt, Wolfgang Middelmann

    Kapitel/Beitrag aus dem Buch: Längle, T et al. 2013. OCM 2013 – Optical Characterization of Materials – conference proceedings.

     Download

    Hyperspectral sensors are used to identify materials via
    spectroscopic analysis. Often, the measured spectra consist of
    mixed materials and depending on the problem, the mixture ratio
    and the pure material spectra are wanted. In this paper, linear
    spectral unmixing is performed using the Nonnegative Matrix
    Factorization to analyze its correlation to ground truth data. The
    results are compared to Nonnegative Least Squares unmixing using
    manually selected endmembers from the image. Additionally,
    the effect of different endmember extraction algorithms and
    abundance initialization methods for NMF are investigated. To
    test the validity of the method, several checkerboard patterns of
    different ground minerals/rocks with predefined mixtures were
    prepared. It was shown that good initialization is beneficial in
    terms of approximation error and correlation to ground truth.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Gross, W et al. 2013. Evaluation of spectral unmixing usingnonnegative matrix factorization on stationaryhyperspectral sensor data of specificallyprepared rock and mineral mixtures. In: Längle, T et al (eds.), OCM 2013 – Optical Characterization of Materials – conference proceedings. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000032143-16
    Lizenz

    No license information is available about this publication.

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 6. März 2013

    DOI
    https://doi.org/10.58895/ksp/1000032143-16