• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Spectral and spatial unmixing for materialrecognition in sorting plants

    Matthias Michelsburg, Fernando Puente León

    Kapitel/Beitrag aus dem Buch: Längle, T et al. 2013. OCM 2013 – Optical Characterization of Materials – conference proceedings.

     Download

    In optical inspection systems like automated bulk
    sorters, hyperspectral images in the near infrared range are used
    more and more for identification and classification of materials.
    However, the possible applications are limited due to the coarse
    spatial resolution and low frame rate. By adding an additional
    multispectral image with higher spatial resolution, the missing
    spatial information can be acquired. In this paper, a method is
    proposed to fuse the hyperspectral and multispectral images by
    jointly unmixing the image signals. Therefore, the linear mixing
    model, which is well-known from remote sensing applications,
    is extended to describe the spatial mixing of signals originated
    from different locations. Different spectral unmixing algorithms
    can be used to solve the problem. The benefit of the additional
    sensor and the unmixing process is presented and evaluated, as
    well as the quality of unmixing results obtained with different
    algorithms. With the proposed extended mixing model, an improved
    result can be achieved as shown with different examples.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Michelsburg M. & Puente León F. 2013. Spectral and spatial unmixing for materialrecognition in sorting plants. In: Längle, T et al (eds.), OCM 2013 – Optical Characterization of Materials – conference proceedings. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000032143-17
    Lizenz

    No license information is available about this publication.

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 6. März 2013

    DOI
    https://doi.org/10.58895/ksp/1000032143-17