• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • A Step towards Explainable Artificial NeuralNetworks in Image Processingby Dataset Assessment

    Nina Felicitas Heide, Alexander Albrecht, Michael Heizmann

    Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.

     Download

    We propose a methodology for generalized exploratory
    data analysis focusing on artificial neural network
    (ANN) methods. Our method is denoted IC-ACC due to the
    combined assessment of information content (IC) and accuracy
    (ACC) and aims at answering a frequently posed question
    in ANN research: ”What is good data?” As the dataset
    has the primary influence on the development of the model,
    IC-ACC provides a step towards explainable ANN methods
    in the pre-modeling stage by a better insight in the dataset.
    With this insight, detrimental data can be eliminated before a
    negative influence on the ANN performance occurs. IC-ACC
    constitutes a guideline to generate efficient and accurate data
    for a specific, data-driven ANN method. Moreover, we show
    that training an ANN for the semantic segmentation of 3D
    data from unstructured environments with IC-ACC-assessed
    and -customized training data contributes to a more efficient
    training. The IC-ACC method is demonstrated on application
    examples for the visual perception of robotic platforms.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Heide, N et al. 2020. A Step towards Explainable Artificial NeuralNetworks in Image Processingby Dataset Assessment. In: Heizmann M. & Längle T (eds.), Forum Bildverarbeitung 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124383-23
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124383-23