A Step towards Explainable Artificial NeuralNetworks in Image Processingby Dataset Assessment
Nina Felicitas Heide, Alexander Albrecht, Michael Heizmann
Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.
Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.
We propose a methodology for generalized exploratory
data analysis focusing on artificial neural network
(ANN) methods. Our method is denoted IC-ACC due to the
combined assessment of information content (IC) and accuracy
(ACC) and aims at answering a frequently posed question
in ANN research: ”What is good data?” As the dataset
has the primary influence on the development of the model,
IC-ACC provides a step towards explainable ANN methods
in the pre-modeling stage by a better insight in the dataset.
With this insight, detrimental data can be eliminated before a
negative influence on the ANN performance occurs. IC-ACC
constitutes a guideline to generate efficient and accurate data
for a specific, data-driven ANN method. Moreover, we show
that training an ANN for the semantic segmentation of 3D
data from unstructured environments with IC-ACC-assessed
and -customized training data contributes to a more efficient
training. The IC-ACC method is demonstrated on application
examples for the visual perception of robotic platforms.
Heide, N et al. 2020. A Step towards Explainable Artificial NeuralNetworks in Image Processingby Dataset Assessment. In: Heizmann M. & Längle T (eds.), Forum Bildverarbeitung 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124383-23
This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)
Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.
Veröffentlicht am 25. November 2020