• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Comparing Optimization Methodsfor Deep Learning at the Exampleof Artistic Style Transfer

    Alexander Geng, Ali Moghiseh, Katja Schladitz, Claudia Redenbach

    Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.

     Download

    Artistic style transfer is an application of deep learning
    using convolutional neural networks (CNN). It combines
    the content of one image with the style of another one using
    so-called perceptual loss functions. More precisely, the
    training of the network consists in choosing the weights such
    that the perceptual loss is minimized. Here, we study the
    impact of the choice of the optimization method on the final
    transformation result. Training an artistic style transfer network
    with several optimization methods commonly used in
    deep learning, we obtain significantly differing models. In
    a default parameter setting, we show that Adam, AdaMax,
    Adam AMSGrad, Nadam, and RMSProp yield better results
    than AdaDelta, AdaGrad or RProp, both measured by the perceptual
    loss function and by visual perception. The results of
    the last three methods strongly depend on the chosen parameters.
    With a suitable selection, AdaGrad and AdaDelta can
    achieve results similar to the versions of Adam or RMSProp.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Geng, A et al. 2020. Comparing Optimization Methodsfor Deep Learning at the Exampleof Artistic Style Transfer. In: Heizmann M. & Längle T (eds.), Forum Bildverarbeitung 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124383-27
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124383-27