Comparing Optimization Methodsfor Deep Learning at the Exampleof Artistic Style Transfer
Alexander Geng, Ali Moghiseh, Katja Schladitz, Claudia Redenbach
Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.
Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.
Artistic style transfer is an application of deep learning
using convolutional neural networks (CNN). It combines
the content of one image with the style of another one using
so-called perceptual loss functions. More precisely, the
training of the network consists in choosing the weights such
that the perceptual loss is minimized. Here, we study the
impact of the choice of the optimization method on the final
transformation result. Training an artistic style transfer network
with several optimization methods commonly used in
deep learning, we obtain significantly differing models. In
a default parameter setting, we show that Adam, AdaMax,
Adam AMSGrad, Nadam, and RMSProp yield better results
than AdaDelta, AdaGrad or RProp, both measured by the perceptual
loss function and by visual perception. The results of
the last three methods strongly depend on the chosen parameters.
With a suitable selection, AdaGrad and AdaDelta can
achieve results similar to the versions of Adam or RMSProp.
Geng, A et al. 2020. Comparing Optimization Methodsfor Deep Learning at the Exampleof Artistic Style Transfer. In: Heizmann M. & Längle T (eds.), Forum Bildverarbeitung 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124383-27
This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)
Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.
Veröffentlicht am 25. November 2020