• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Hierarchical classification, countingand length measurement of fishusing a stacking model approach

    Raja sekar Shanta kumar, Andreas Hermann, Daniel Stepputtis

    Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.

     Download

    In this paper, the development of a hierarchical fish
    classification framework is presented. The conventional data
    collection technique for the commercial fish stock assessment
    is a labour intensive and time consuming procedure. The purpose
    of this project is to develop a framework that classifies
    fish species on two level semantic hierarchy label, to count the
    number of fishes and to measure the length of four different
    fish species using a small dataset. In stage 1 of the framework,
    the YOLOv3 convolutional neural network is used to accomplish
    level one semantic hierarchy label, to count the number
    of fishes and to measure the length of the detected fish. In
    stage 2, the features from the images are extracted using the
    VGG16 convolutional neural network. In stage 3, the stacked
    generalization technique is implemented to reduce the generalization
    error and to accomplish level two semantic hierarchy
    label. The classification accuracy of the stack model is 94%.
    The root mean square error of the fish length measurement is
    1.23 cm. The accuracy in counting the number of fish depends
    on the detection accuracy of the stage 1 model and the classification
    accuracy of the stack models. Further, the results
    can be improved by increasing the size and diversity of the
    dataset.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Shanta kumar, R et al. 2020. Hierarchical classification, countingand length measurement of fishusing a stacking model approach. In: Heizmann M. & Längle T (eds.), Forum Bildverarbeitung 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124383-28
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124383-28