• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Weizenaehrenerkennungmithilfe neuronaler Netzeund synthetisch generierter Trainingsdaten

    Lukas Lucks, Laura Haraké, Lasse Klingbeil

    Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.

     Download

    This paper investigates the usability of
    synthesized training data for the recognition of wheat ears
    using neural networks in the context of semantic image segmentation.
    For this purpose, detailed scenes of wheat fields
    consisting of 3D models with high-resolution textures and defined
    material properties are modeled. Afterwards, photo realistic
    color images are synthesized, which also contain a binary
    image mask with the locations of the ear models. The resulting
    image pairs are then used as a training data for two neural networks
    (U-Net and DeepLab-V3+). To determine whether these
    data allows domain adaptation, the trained networks are evaluated
    using real wheat field images. The IoU value of about
    69.96 shows that information transfer from the synthesized
    images to real images is possible.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Lucks, L et al. 2020. Weizenaehrenerkennungmithilfe neuronaler Netzeund synthetisch generierter Trainingsdaten. In: Heizmann M. & Längle T (eds.), Forum Bildverarbeitung 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124383-30
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. November 2020

    DOI
    https://doi.org/10.58895/ksp/1000124383-30