Bildbasierte Geolokalisierung fuer UAVs
Michael Schleiss
Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.
Kapitel/Beitrag aus dem Buch: Heizmann M. & Längle T. 2020. Forum Bildverarbeitung 2020.
When unmanned aerial vehicles (UAVs)
fly autonomous missions, they typically rely on global satellite
navigation systems (GNSS) like GPS for global position
estimation. However, GNSS signals can be easily jammed. We
propose a camera-based method that uses onboard imagery
and data from OpenStreetMap as a backup system for GNSS.
First, the aerial imagery from the onboard camera is translated
into a map-like representation. Then we match it with
a reference map to infer the vehicle’s position. Experiments
over a typically sized mission area are performed and exhibit
localization accuracy close to 6 m. Our results show that
the proposed method can serve as a backup to GNSS systems
where suitable landmarks like buildings and roads are available.
Schleiss, M. 2020. Bildbasierte Geolokalisierung fuer UAVs. In: Heizmann M. & Längle T (eds.), Forum Bildverarbeitung 2020. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000124383-32
This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)
Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.
Veröffentlicht am 25. November 2020