• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Machine learning-based multiobject tracking for sensor-based sorting

    Georg Maier, Marcel Reith-Braun, Albert Bauer, Robin Gruna, Florian Pfaff, Harald Kruggel-Emden, Thomas Längle, Uwe D. Hanebeck, Jürgen Beyerer

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2022. Forum Bildverarbeitung 2022.

     Download

    Sensor-based sorting provides state-of-the-art solutions for sorting of granular materials. Current systems use line-scanning sensors, which yields a single observation of each object only and no information about their movement. Recent works show that using an area-scan camera bears the potential to decrease both the error in characterization and separation. Using a multiobject tracking system, this enables an estimate of the followed paths as well as the parametrization of an individual motion model per object. While previous works focus on physically-motivated motion models, it has been shown that state-of-the-art machine learning methods achieve an increased prediction accuracy. In this paper, we present the development  of a neural network-based multiobject tracking system and its integration into a laboratory-scale sorting system. Preliminary results show that the novel system achieves results comparable to a highly optimized Kalman filter-based one. A benefit lies in avoiding tiresome manual tuning of parameters of the motion model, as the novel approach allows learning its parameters by provided examples due to its data-driven nature.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Maier, G et al. 2022. Machine learning-based multiobject tracking for sensor-based sorting. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2022. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000150865-10
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. November 2022

    DOI
    https://doi.org/10.58895/ksp/1000150865-10