An introduction to quantum image processing on real superconducting quantum computers
Alexander Geng, Ali Moghiseh, Katja Schladitz, Claudia Redenbach
Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2022. Forum Bildverarbeitung 2022.
Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2022. Forum Bildverarbeitung 2022.
The size of images and data we process every day have been growing exponentially over the last years. Quantum computers promise to process this data more efficiently. Experiments on quantum computer simulators prove the paradigms this promise is built on to be correct. However, currently, running the very same algorithms on a real quantum computer is often too error prone to be of any practical use. We explore the current possibilities for image processing on real quantum computers. We redesign a commonly used quantum image encoding technique to reduce its susceptibility to errors. We show experimentally that the current size limit for images to be encoded on the quantum computer and subsequently retrieved with an error of at most 5% is 2×2 pixels. A way to circumvent this limitation is to combine ideas of classical filtering with a quantum algorithm operating locally, only. We show the practicability of this strategy using the application example of edge detection. Our hybrid filtering scheme’s quantum part is an artificial neuron, working well on real quantum computers, too.
Geng, A et al. 2022. An introduction to quantum image processing on real superconducting quantum computers. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2022. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000150865-12
This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)
Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.
Veröffentlicht am 25. November 2022