• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Optimal human labelling for anomaly detection in industrial inspection

    Tim Zander, Ziyan Pan, Pascal Birnstill, Juergen Beyerer

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2022. Forum Bildverarbeitung 2022.

     Download

    Anomaly detection with machine learning in industrial inspection systems for manufactured products relies on labelled data. This rises the question how the labelling by humans should be conducted. We consider the case where we want to optimise the cost of the combined inspection process done by humans and an algorithm. This also influences the combined performance of the trained model as well as the knowledge of the performance of this model. We focus on so called one-class classification problem models which produce a continuous outlier score. We establish some cost model for human and machine combined inspection of samples. We then discuss in this cost model how to select two optimal boundaries of the outlier score where in between these two boundaries human inspection takes place. We also frame this established knowledge into an applicable algorithm.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Zander, T et al. 2022. Optimal human labelling for anomaly detection in industrial inspection. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2022. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000150865-5
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. November 2022

    DOI
    https://doi.org/10.58895/ksp/1000150865-5