Optimal human labelling for anomaly detection in industrial inspection
Tim Zander, Ziyan Pan, Pascal Birnstill, Juergen Beyerer
Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2022. Forum Bildverarbeitung 2022.
Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2022. Forum Bildverarbeitung 2022.
Anomaly detection with machine learning in industrial inspection systems for manufactured products relies on labelled data. This rises the question how the labelling by humans should be conducted. We consider the case where we want to optimise the cost of the combined inspection process done by humans and an algorithm. This also influences the combined performance of the trained model as well as the knowledge of the performance of this model. We focus on so called one-class classification problem models which produce a continuous outlier score. We establish some cost model for human and machine combined inspection of samples. We then discuss in this cost model how to select two optimal boundaries of the outlier score where in between these two boundaries human inspection takes place. We also frame this established knowledge into an applicable algorithm.
Zander, T et al. 2022. Optimal human labelling for anomaly detection in industrial inspection. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2022. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000150865-5
This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)
Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.
Veröffentlicht am 25. November 2022