• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Semantic segmentation with small training datasets: A case study for corrosion detection on the surface of industrial objects

    Dennis Haitz, Patrick Hübner, Markus Ulrich, Steven Landgraf, Boris Jutzi

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2022. Forum Bildverarbeitung 2022.

     Download

    In this research, we investigate possibilities to train convolutional neural networks with a small dataset for semantic segmentation, while achieving the best possible model generalization. In particular, we want to segment corrosion on the surface of industrial objects. In order to achieve model generalization, we utilize a selection of established and advanced strategies, i.e. Self-Supervised-Learning. Besides radiometric- and geometric-based data augmentation, we focus on model complexity regarding encoder and decoder, as well as optimal pretraining. Finally, we evaluate the best performing model against a pixel-wise random forest classification. As a result, we achieve an f1-score of 0.79 for the best performing model regarding the segmentation of corrosion.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Haitz, D et al. 2022. Semantic segmentation with small training datasets: A case study for corrosion detection on the surface of industrial objects. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2022. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000150865-7
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 25. November 2022

    DOI
    https://doi.org/10.58895/ksp/1000150865-7