• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Simulation of Synthetically DegradedTracking Data to Benchmark MOT Metrics

    Michael Hartmann, Katharina Löffler, Ralf Mikut

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2022. Proceedings – 32. Workshop Computational Intelligence: Berlin, 1. – 2. Dezember 2022.

     Download

    Multiple object tracking (MOT) is an essential task in computer vision, with
    many practical applications in surveillance, robotics, autonomous driving, and
    biology. To compare different MOT algorithms efficiently and select the best
    MOT algorithm for an application, we rely on tracking metrics that reduce the
    performance of a tracking algorithm to a single score.
    However, there is a lack in testing the tracking metrics themselves, which can
    result in unnoticed biases or flaws in tracking metrics that can influence the
    decision of selecting the best tracking algorithm. To check tracking metrics
    for possible limitations or biases towards penalizing specific tracking errors, a
    standardized evaluation of tracking metrics is needed.
    We propose benchmarking tracking metrics using synthetic, erroneous tracking
    results that simulate real-world tracking errors. First, we select common
    real-world tracking errors from the literature and describe how to emulate
    them. Then, we validate our approach by reproducing previously found tracking
    metric limitations through simulating specific tracking errors. In addition,
    our benchmark reveals a before unreported limitation in the tracking metric
    AOGM. Moreover, we make an implementation of our benchmark publicly
    available.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Hartmann, M et al. 2022. Simulation of Synthetically DegradedTracking Data to Benchmark MOT Metrics. In: Schulte, H et al (eds.), Proceedings – 32. Workshop Computational Intelligence: Berlin, 1. – 2. Dezember 2022. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000151141-12
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 20. November 2022

    DOI
    https://doi.org/10.58895/ksp/1000151141-12