• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Constrained Design of Experiments forData-Driven Models

    Fabian Schneider, Max Schüssler, Ralph Hellmig, Oliver Nelles

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2022. Proceedings – 32. Workshop Computational Intelligence: Berlin, 1. – 2. Dezember 2022.

     Download

    The quality of data-driven models depends significantly on the data distribution
    in the input space. In this work, design of experiments (DoE) methods
    for constrained input spaces are discussed. An approach based on an Latin
    hypercube (LH) design is introduced to deal with strongly constrained input
    spaces. For the unconstrained case, where the input space is a hypercube,
    different design of experiments methods have been developed. The dominating
    state-of-the-art methods are Sobol sequences and Latin hypercubes. Instead
    of optimizing complete LH designs, the proposed strategy is to incrementally
    construct an LH design. Every new sample is selected by a distance-based
    metric. The presented method is then applied in two test cases and compared
    to a method based on a Sobol sequence. Here, an initial design is created by a
    Sobol sequence and every sample is removed that violates the constraints. The
    design qualities are measured by the resulting model accuracies of data-driven
    models. A function generator is applied to create synthetic data sets to train
    and evaluate local linear model networks.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Schneider, F et al. 2022. Constrained Design of Experiments forData-Driven Models. In: Schulte, H et al (eds.), Proceedings – 32. Workshop Computational Intelligence: Berlin, 1. – 2. Dezember 2022. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000151141-14
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 20. November 2022

    DOI
    https://doi.org/10.58895/ksp/1000151141-14