• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • EasyMLServe: Easy Deployment of RESTMachine Learning Services

    Oliver Neumann, Marcel Schilling, Markus Reischl, Ralf Mikut

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2022. Proceedings – 32. Workshop Computational Intelligence: Berlin, 1. – 2. Dezember 2022.

     Download

    Various research domains use machine learning approaches because they can
    solve complex tasks by learning from data. Deploying machine learning
    models, however, is not trivial and developers have to implement complete
    solutions which are often installed locally and include Graphical User
    Interfaces (GUIs). Distributing software to various users on-site has several
    problems. Therefore, we propose a concept to deploy software in the
    cloud. There are several frameworks available based on Representational
    State Transfer (REST) which can be used to implement cloud-based machine
    learning services. However, machine learning services for scientific users
    have special requirements that state-of-the-art REST frameworks do not cover
    completely. We contribute an EasyMLServe software framework to deploy
    machine learning services in the cloud using REST interfaces and generic
    local or web-based GUIs. Furthermore, we apply our framework on two
    real-world applications, i. e., energy time-series forecasting and cell instance
    segmentation. The EasyMLServe framework and the use cases are available
    on GitHub.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Neumann, O et al. 2022. EasyMLServe: Easy Deployment of RESTMachine Learning Services. In: Schulte, H et al (eds.), Proceedings – 32. Workshop Computational Intelligence: Berlin, 1. – 2. Dezember 2022. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000151141-2
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 20. November 2022

    DOI
    https://doi.org/10.58895/ksp/1000151141-2