• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Simulation Model Calibration for ConditionMonitoring

    Aleksandr Subbotin, Thomas Bartz-Beielstein

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2023. Proceedings – 33. Workshop Computational Intelligence: Berlin, 23.-24. November 2023.

     Download

    Condition monitoring is a key component of condition-based and predictive
    maintenance solutions and has applications in a wide range of industries. However,
    extracting long-term asset condition information from process data is
    not a trivial process. The objective of this paper is to present the first steps
    in developing a condition monitoring solution using a hybrid modeling approach.
    The paper provides an introduction to condition monitoring and hybrid
    modeling and focuses on the problem of calibration of first principles based
    simulation. Several possible approaches to model the calibration coefficients
    that vary during the process simulation were considered. Our results show that
    the developed piecewise constant approach, together with the tuned version of
    the Nelder-Mead optimization algorithm, allows to accelerate the calibration
    process without sacrificing the simulation error.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Subbotin A. & Bartz-Beielstein T. 2023. Simulation Model Calibration for ConditionMonitoring. In: Schulte, H et al (eds.), Proceedings – 33. Workshop Computational Intelligence: Berlin, 23.-24. November 2023. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000162754-11
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 18. November 2023

    DOI
    https://doi.org/10.58895/ksp/1000162754-11