• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • MLOps for Scarce Image Data: A Use Case inMicroscopic Image Analysis

    Angelo Yamachui Sitcheu, Nils Friedrich, Simon Baeuerle, Oliver Neumann, Markus Reischl, Ralf Mikut

    Kapitel/Beitrag aus dem Buch: Schulte, H et al. 2023. Proceedings – 33. Workshop Computational Intelligence: Berlin, 23.-24. November 2023.

     Download

    Nowadays, Machine Learning (ML) is experiencing tremendous popularity
    that has never been seen before. The operationalization of ML models is
    governed by a set of concepts and methods referred to as Machine Learning
    Operations (MLOps). Nevertheless, researchers, as well as professionals, often
    focus more on the automation aspect and neglect the continuous deployment
    and monitoring aspects of MLOps. As a result, there is a lack of continuous
    learning through the flow of feedback from production to development, causing
    unexpected model deterioration over time due to concept drifts, particularly
    when dealing with scarce data. This work explores the complete application
    of MLOps in the context of scarce data analysis. The paper proposes a new
    holistic approach to enhance biomedical image analysis. Our method includes:
    a fingerprinting process that enables selecting the best models, datasets, and
    model development strategy relative to the image analysis task at hand; an automated
    model development stage; and a continuous deployment and monitoring
    process to ensure continuous learning. For preliminary results, we perform a
    proof of concept for fingerprinting in microscopic image datasets.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Sitcheu, A et al. 2023. MLOps for Scarce Image Data: A Use Case inMicroscopic Image Analysis. In: Schulte, H et al (eds.), Proceedings – 33. Workshop Computational Intelligence: Berlin, 23.-24. November 2023. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000162754-12
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 18. November 2023

    DOI
    https://doi.org/10.58895/ksp/1000162754-12