• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Automated image-based parameter optimization for single-pulse laser drilling

    Manuel Klaiber, Mathias Hug, Lukas Schneller, Ömer Can, Andreas Jahn, Axel Fehrenbacher, Peter Reimann, Andreas Michalowski

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    A significant challenge in laser drilling is the optimization of process parameters and drilling strategies to achieve highquality holes. This is further complicated by the fact that quality assessment is a manual and time-consuming task. This paper presents a methodology designed to significantly reduce the manual effort required in optimizing parameters for single- pulse laser drilling of 0.3mm thick stainless steel. The objective is to precisely drill holes with an entry diameter of 70μm and an exit diameter of 20 μm, achieving high roundness. The  features of the drilled holes were extracted automatically from the raw data using a combined approach that utilizes deep learning and image processing techniques. The outcomes were  compared against manual measurements. Results indicate that the mean deviations between automated and manual measurements for both inlet and outlet diameters are less than one  micrometer. We employed a Bayesian optimization algorithm to efficiently explore the parameter space without the need for incorporating expert knowledge. The approach rapidly  identified optimal drilling parameters after only a few iterations, significantly expediting the optimization process and considerably reducing manual labor. 

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Klaiber, M et al. 2024. Automated image-based parameter optimization for single-pulse laser drilling. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-1
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-1