• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Benefiting from quantum? A comparative study of Q-Seg, quantum-inspired techniques, and U-Net for crack segmentation

    Akshaya Srinivasan, Alexander Geng, Antonio Macaluso, Maximilian Kiefer-Emmanouilidis, Alil Moghiseh

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    Exploring the potential of quantum hardware for enhancing classical and real-world applications is an ongoing challenge. This study evaluates the performance of quantum and quantum- inspired methods compared to classical models for crack segmentation. Using annotated gray-scale image patches of concrete samples, we benchmark a classical mean Gaussian  mixture technique, a quantum-inspired fermionbased method, Q-Seg a quantum annealing-based method, and a U-Net deep learning architecture. Our results indicate that quantum- inspired and quantum methods offer a promising alternative for image segmentation, particularly for complex crack patterns, and could be applied in near-future applications.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Srinivasan, A et al. 2024. Benefiting from quantum? A comparative study of Q-Seg, quantum-inspired techniques, and U-Net for crack segmentation. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-10
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-10