• Part of
    Ubiquity Network logo
    Interesse beim KIT-Verlag zu publizieren? Informationen für Autorinnen und Autoren

    Lesen sie das Kapitel
  • No readable formats available
  • Semantic segmentation and uncertainty quantification with vision transformers for industrial applications

    Kira Wursthorn, Lili Gao, Steven Landgraf, Markus Ulrich

    Kapitel/Beitrag aus dem Buch: Längle T. & Heizmann M. 2024. Forum Bildverarbeitung 2024.

     Download

    Vision Transformers (ViTs) have recently achieved state-of-the-art performance in semantic segmentation tasks. However, their deployment in critical applications necessitates reliable  uncertainty quantification to assess model confidence. To tackle this challenge, we combine a state-of-the-art ViT with the popular uncertainty quantification method Monte Carlo Dropout (MCD) to predict both segmentation and uncertainty maps. We focus on an industrial machine vision setting and carry out the experiments on the T-LESS dataset. The  evaluation is carried  out with regard to both the segmentation accuracy and the predicted uncertainties using appropriate metrics.

    :

    Empfohlene Zitierweise für das Kapitel/den Beitrag
    Wursthorn, K et al. 2024. Semantic segmentation and uncertainty quantification with vision transformers for industrial applications. In: Längle T. & Heizmann M (eds.), Forum Bildverarbeitung 2024. Karlsruhe: KIT Scientific Publishing. DOI: https://doi.org/10.58895/ksp/1000174496-12
    Lizenz

    This chapter distributed under the terms of the Creative Commons Attribution + ShareAlike 4.0 license. Copyright is retained by the author(s)

    Peer Review Informationen

    Dieses Buch ist Peer reviewed. Informationen dazu Hier finden Sie mehr Informationen zur wissenschaftlichen Qualitätssicherung der MAP-Publikationen.

    Weitere Informationen

    Veröffentlicht am 21. November 2024

    DOI
    https://doi.org/10.58895/ksp/1000174496-12